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Abstract

In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained
as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them.
Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can
be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be
used as part of the explanation behind other known biases. That means that, although the observed errors are still errors
under the laboratory conditions in which they are demonstrated, they can be understood as adaptations to the solution
of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary
advantage, since they would give us an efficient way of making decisions.
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1 Introduction

It is a well known fact that humans make mistakes when
presented with probabilistic problems. In the famous
paradoxes of Allais (1953) and Ellsberg (1961), it was
observed that, when faced with the choice between dif-
ferent gambles, people make their choices in a way that
is not compatible with normative decision theory. Sev-
eral attempts to describe this behavior exist in the litera-
ture, including Prospect Theory (Kahneman & Tversky,
1979), Cumulative Prospect Theory (Kahneman & Tver-
sky, 1992), and a number of configural weighting models
(Birnbaum & Chavez, 1997; Luce, 2000; Marley & Luce,
2001). All these models use the idea that, when analyzing
probabilistic gambles, people alter the stated probabilistic
values using a S-shaped weighting function w(p) and use
these altered values in order to calculate which gamble
would provide a maximum expected return. Exact details
of all operations involved in these calculations, as values
associated to each branch of a bet, coalescing of equal
branches, or aspects of framing are dealt with differently
in each model, but the models agree that people do not
use the exact known probabilistic values when making
their decisions. There are also models based on different
approaches, as the decision by sampling model. Decision
by sampling proposes that people make their decision by
making comparisons of attribute values remembered by
them and it can describe many of the characteristics of
human reasoning well (Stewart et al., 2006).
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Recently, strong evidence has appeared indicating that
the configural weighting models describe human behav-
ior better than Prospect Theory. Several tests have shown
that people don’t obey simple decision rules. If a bet is
presented with two equal possible outcomes, for exam-
ple, 5% of chance of getting 10 in one outcome and 10%
of chance of getting the same return, 10, in another possi-
ble result, it should make no difference if both outcomes
were combined into one single possibility, that is, a 15%
chance of obtaining 10. This property is called coalesc-
ing of branches and it has been observed that it is not
always respected (Starmer & Sugden, 1993; Humphrey,
1995; Birnbaum, 2004).

Other strong requirement of decision theory that is vi-
olated in laboratory experiments is that people should
obey stochastic dominance. Stochastic dominance hap-
pens when there are two bets available and the possi-
ble gains of one of them are as good as the other one,
with at least one possibility to gain more. Per exam-
ple, given the bets G = $96, 0.9; $12, 0.1 and G+ =
$96, 0.9; $14, 0.05; $12, 0.05, G+ clearly dominates G,
since the first outcome is the same and the second out-
come in G is split into two possibilities in G+, returning
the same or more than G, depending on luck. The only
rational choice here is G+, but laboratory tests show that
people do not always follow this simple rule (Birnbaum,
1999). Since rank-dependent models, as Prospect Theory
(and Cumulative Prospect Theory) obey both stochastic
dominance and coalescing of branches, configural weight
models, that can predict those violations, are probably
a better description of real behavior. In the configural
weight models, each branch of a bet is given a different
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weight, so that the branches with worst outcome will be
given more weight by the decider. This allows those basic
principles to be violated. However, although configural
weight models can be good descriptive models, telling
how we reason, the problem of understanding why we
reason the way we do is not solved by them. The vio-
lations of normative theory it predicts are violations of
very simple and strong principles and it makes sense to
ask why people would make such obvious mistakes.

Until recently, the reason why humans make these mis-
takes was still not completely clear. Evolutionary psy-
chologists have suggested that it makes no sense that
humans would have a module in their brains that made
wrong probability assessments (Pinker, 1997), therefore,
there must be some logical explanation for those biases.
It was also suggested that, since our ancestors had to deal
with observed frequencies instead of probability values,
the observed biases might disappear if people were pre-
sented with data in the form of observed frequencies in a
typical Bayes Theorem problem. Gigerenzer and Hof-
frage (1995) conducted an experiment confirming this
idea. However, other studies checking those claims (Grif-
fin, 1999; Sloman, 2003) have shown that frequency for-
mats seem to improve the reasoning only under some
circumstances. If those circumstances are not met, fre-
quency formats have either no effect or might even cause
worse probability evaluations by the tested subjects.

On the other hand, proponents of the heuristics and bi-
ases point of view claim that, given that our intellectual
powers are necessarily limited, errors should be expected
and the best one can hope is that humans would use
heuristics that are efficient, but prone to error (Gigeren-
zer & Goldstein, 1996). And, as a matter of fact, they
have shown that, for decision problems, there are sim-
ple heuristics that do a surprisingly good job (Martignon,
2001). But, since many of the calculations involved in the
laboratory experiments are not too difficult to perform,
the question of the reasons behind our probabilistic rea-
soning mistakes still needed answering. If we are using
a reasonable heuristics to perform probabilistic calcula-
tions, understanding when this is a good heuristic and
why it fails in the tests is an important question.

Of course, the naïve idea that people should simply
use observed frequencies, instead of probability values,
can certainly be improved from a Bayesian point of view.
The argument that our ancestors should be well adapted
to deal with uncertainty from their own observations is
quite compelling, but, to make it complete, we can ask
what would happen if our ancestors minds (and therefore,
our own) were actually more sophisticated than a simple
frequentistic mind. If they had a brain that, although pos-
sibly using rules of thumb, behaved in a way that mim-
icked a Bayesian inference instead of a frequentistic eval-
uation, they would be better equipped to make sound

decisions and, therefore, that would have been a good
adaptation. In other words, our ancestors who were (ap-
proximately) Bayesians would be better adapted than any
possible cousins who didn’t consider uncertainty in their
analysis. And that would eventually lead those cousins
to extinction. Of course, another possibility is that we
learn those heuristics as we grow up, adjusting them to
provide better answers. But, even if this is the dynam-
ics behind our heuristics, good learning should lead us
closer to a Bayesian answer than afrequentistic one. So,
it makes sense to ask if humans are actually smarter than
the current literature describes them as.

Evidence supporting the idea that our reasoning resem-
bles Bayesian reasoning already exists. Tenenbaum et al.
(in press) have shown that observed inductive reasoning
can be modeled by theory-based Bayesian models and
that those models can provide approximately optimal in-
ference. Tests of human cognitive judgments about ev-
eryday phenomena seems to suggest that our inferences
provide a very good prediction for the real statistics (Grif-
fiths & Tenenbaum, 2006).

1.1 Adaptive probability theory (APT)

In a recent work (Martins, 2005), I have proposed the
Adaptive Probability Theory (APT). APT claims that the
biases in human probabilistic reasoning can be actually
understood as an approximation to a Bayesian inference.
If one supposes that people treat all probability values
as if they were uncertain (even when they are not) and
make some assumptions about the sample size where
those probabilities would have been observed as frequen-
cies, it follows that the observed shape of the weighting
functions is obtained. Here, I will review those results
and also show that we can extend the ideas that were in-
troduced to explain weighting functions to explain other
observed biases. I will show that some of those biases
can be partially explained as a result of a mind adapted
to make inferences in an environment where probabilities
have uncertainties associated to them. That is, the weight-
ing functions of Prospect Theory (and the whole class of
models that use weighting functions to describe our be-
havior) can be understood and predicted from a Bayesian
point of view. Even the observed violations of descrip-
tive Prospect Theory, that is, violations of coalescing and
stochastic dominance, that need configural weight mod-
els to be properly described, can also be predicted by
using APT. And I will propose that Bayesian methods
should be used as part of the explanation behind a number
of other biases (for a good introductory review to many
of the reported mistakes, see, for example, Plous, 1993).
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1.2 What kind of theory is APT?
Finally, a note on what APT really is, from an episte-
mological point of view, is needed. Usually, science in-
volves working on theories that should describe a set of
data, making predictions from those theories and testing
them in experiments. Decision theory, however, requires
a broader definition of proper scientific work. This hap-
pens because, unlike other areas, we have a normative de-
cision theory that tells us how we should reason. It does
not necessarily describe real behavior, since it is based on
assumptions about what the best choice is, not about how
real people behave. Its testing is against other decision
strategies and, as long as it provides optimal decisions,
the normative theory is correct, even if it does not predict
behavior for any kind of agents. That means that certain
actions can be labeled as wrong, in the sense that they are
far from optimal decisions, even though they correspond
to real actions of real people.

This peculiarity of decision theory means that not ev-
ery model needs to actually predict behavior. Given non-
optimal observed behavior, understanding what makes
the deciders to behave that way is also a valid line of in-
quiry. That is where APT stands. Its main purpose is
to show that apparently irrational behavior can be based
on an analysis of the decision problem that follows from
normative theory. The assumptions behind such analy-
sis might be wrong and, therefore, the observed behavior
would not be optimal. That means that our common sense
is not perfect. However, if it works well for most real life
problems, it is either a good adaptation or well learned.
APT intends to make a bridge between normative and de-
scriptive theories. This means that it is an exploratory
work, in the sense of trying to understand the problems
that led our minds to reason the way they do. While based
on normative theory, it was designed to agree with the
observed biases. This means that APT does not claim to
be the best actual description of real behavior (although
it might be). Even if other theories (such as configural
weight models or decision by sampling) actually describe
correctly the way our minds really work, as long as their
predictions are compatible with APT, APT will show that
the actual behavior predicted by those theories is reason-
able and an approximation to optimal decisions. Labora-
tory tests can show if APT is actually the best description
or not and we will see that APT suggests new experiments
in the problem of base rate neglect, in order to understand
better our reasoning. But the main goal of APT is to show
that real behavior is reasonable and it does that well.

2 Bayesian weighting functions
Suppose you are an intuitive Bayesian ancestor of
mankind (or a Bayesian child learning how to reason

about the world). That is, you are not very aware of how
you decide the things you do, but your mind does some-
thing close to Bayesian estimation (although it might not
be perfect). You are given a choice between the following
two gambles:

Gamble A Gamble B
85% to win 100 95% to win 100
15% to win 50 5% to win 7

If you are sure about the stated probability values and
you are completely rational, you should just go ahead and
assign utilities to each monetary value and choose the
gamble that provides the largest expected utility. And, as
a matter of fact, the laboratory experiments that revealed
the failures in human reasoning provided exact values,
without any uncertainty associated to them. Therefore, if
humans were perfect Bayesian statisticians, when faced
with those experiments, the subjects should have treated
those values as if they were known for sure. But, from
your point of view of an intuitive Bayesian, or from the
point of view of everyday life, there is no such a thing
as a probability observation that does not carry with it
some degree of uncertainty. Even values from probabilis-
tic models based on some symmetry of the problem de-
pend, in a more complete analysis, on the assumption that
the symmetry does hold. If it doesn’t, the value could
be different and, therefore, even though the uncertainty
might be small, we would still not be completely sure
about the probability value.

Assuming there is uncertainty, what you need to do is
to obtain your posterior estimate of the chances, given the
stated gamble probabilities. Here, the probabilities you
were told are actually the data you have about the prob-
lem. And, as long as you were not in a laboratory, it is
very likely they have been obtained as observed frequen-
cies, as proposed by the evolutionary psychologists. That
is, what you understand is that you are being told that, in
the observed sample, a specific result was observed 85%
of the times it was checked. And, with that information
in mind, you must decide what posterior value it will use.

The best answer would certainly involve a hierarchical
model about possible ways that frequency was observed
and a lot of integrations over all the nuisance parameters
(parameters you are not interested about). You should
also consider whether all observations were made under
the same circumstances, if there is any kind of correlation
between their results, and so on. But all those calculations
involve a cost for your mind and it might be a good idea
to accept simpler estimations that work reasonably well
most of the time. You are looking for a good heuristic,
one that is simple and efficient and that gives you cor-
rect answers most of the time (or, at least, close enough).
That is the basic idea behind Adaptive Probability Theory
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(Martins, 2005). Our minds, from evolution or learning,
are built to work with probability values as if they were
uncertain and make decisions compatible with that pos-
sibility. APT does not claim we are aware of that, it just
says that our common sense is built in a way that mimics
a Bayesian inference of a complex, uncertain problem.

If you hear a probability value, it is a reasonable as-
sumption to think that the value was obtained from a fre-
quency observation. In that case, the natural place to look
for a simple heuristic is by treating this problem as one
of independent, identical observations. In this case, the
problem has a binomial likelihood and the solution to the
problem would be straight-forward if not for one missing
piece of information. You were informed the frequency,
but not the sample size n. Therefore, you must use some
prior opinion about n.

In the full Bayesian problem, that means that n is a nui-
sance parameter. This means that, while inference about
p is desired, the posterior distribution depends also on n
and the final result must be integrated over n. The like-
lihood that a observed frequency o, equivalent to the ob-
servation of s = no successes, is reported is given by

f(o|p, n) ∝ pon(1− p)(n(1−o)). (1)

In order to integrate over n, a prior for it is required.
However, the problem is actually more complex than

that since it is reasonable that our opinion on n should de-
pend on the value of o. That happens because if o = 0.5,
it is far more likely that n = 2 than if o = 0.001, when
it makes sense to assume that at least 1,000 observations
were made. And we should also consider that extreme
probabilities are more subject to error. In real life, outside
the realm of science, people rarely, if ever, have access to
large samples to draw their conclusions from. For the
problem of detecting correlates, there is some evidence
that using small samples can be a good heuristics (Ka-
reev, 1997). In other words, when dealing with extreme
probabilities, we should also include the possibility that
the sample size was actually smaller and the reported fre-
quency is wrong.

The correct prior f(n, o), therefore, can be very diffi-
cult to describe and, for the complete answer, hierarchical
models including probabilities of error are needed. How-
ever, such a complicated, complete model is not what we
are looking for. A good heuristic should be reasonably
fast to use and shouldn’t depend on too many details of
the model. Therefore, it makes sense to look for reason-
able average values of n and simply assume that value for
the inference process.

Given a fixed value for n, it is easy to obtain a posterior
distribution. The likelihood in Equation 1 is a binomial
likelihood and the easiest way to obtain inferences when
dealing with binomial likelihoods is assuming a Beta dis-
tribution for the prior. Given a Beta prior with parameters

a and b, the posterior distribution will also be a Beta dis-
tribution with parameters a+s and b+n. The average of a
random variable that follows a Beta distribution with pa-
rameters a and b has a simple form, a

a+b . That means that
we can obtain a simple posterior average for the proba-
bility p, given the observed frequency o, w(o) = E[p|o]

w(o) =
a + on

a + b + n
, (2)

which is a straight line if n is a constant (independent of
o), but different and less inclined than w(o) = o. For
a non-informative prior distribution, that corresponds to
the choice a = 1 and b = 1, Equation 2 can be written in
the traditional form (1 + s)/(2 + n) (Laplace rule).

However, a fixed sample size, equal for all values of p
does not make much sense in the regions closer to cer-
tainty and n must somehow increase as we get close to
those regions (o → 0 or o → 1). The easiest way to
model n is to suppose that the event was observed at least
once (and, at least once, it was not observed). That is, if o
is small, choose an observed number of successes s = 1
(some other value would serve, but we should remember
that humans tend to think with small samples, as observed
by Kareev et al., 1997). If p is closer to 1, take s = n−1.
That is, the sample size will be given by n = 1/t where
t = min(o; 1− o) and we have that w(o) = 2o/(2o + 1)
for o < 0.5 and w(o) = 1/(3 − 2o) for o > 0.5. By
calculating [

w(x)
w(y)

]
[

w(cx)
w(cy)

] ,

it is easy to show that the common-rate effect holds,
meaning that the curves are subproportional, both for
o < 0.5 and o > 0.5. Estimating the above fraction
shows that w(x)/w(y) < w(cx)/w(cy), for c < 1, ex-
actly when x < y. The curve w(o) can be observed in
Figure 1, where it is compared to a curve proposed by Pr-
elec (2000) as a parameterization that fits reasonably well
the data observed in the experiments.

A few comments are needed here. For most values of o,
the predicted value of n will not be an integer, as it would
be reasonable to expect. If o = 0.4, we have n = 2.5,
an odd and absurd sample size, if taken literally. One
could propose using a sample size of n = 5 for this case,
but that would mean a non-continuous weighting func-
tion. More than that, for too precise values, as 0.499, that
would force n to be as large as 1.000. However, it must
be noted that, in the original Bayesian model, n is not
supposed to be an exact value, but the average value that
is obtained after it is integrated out (remember it is a nui-
sance parameter). As an average value, there is nothing
wrong with non-integer numbers. Also, it is necessary to
remember that this is a proposed heuristic. It is not the
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Figure 1: Weighting Function as a function of observed
frequency. The curve proposed by Prelec, fitted to the
observed data, as well as the w(o) = o curve are also
shown for comparison.

exact Bayesian solution to the problem, but an approxi-
mation to it. In the case of o = 0.499, it is reasonable to
assume that people would interpret it as basically 50%. In
that sense, what the proposed behavior for n says is that,
around 50%, the sample size is estimated to be around
n = 2; around o = 0.33, n is approximately 3; and so on.

The first thing to notice in Figure 1 is that, by cor-
recting the assumed sample size as a function of o, the
S-shaped format of the observed behavior is obtained.
However, there are still a few important quantitative
differences between the observations and the predicted
curve. The most important one is on the location of
the fixed point of , defined as the solution to the equa-
tion w(o) = o. If we had no prior information about o
(a = b = 1), we should have of = 0.5. Instead, the ac-
tual observed value is closer to 1/3. That is, for some rea-
son, our mind seems to use an informative prior where the
probability associated with obtaining the better outcomes
are considered less likely than those associated with the
worse outcomes (notice that the probability o is tradition-
ally associated with the larger gain in the experiment).
As a matter of fact, configural weighting models propose
that, given a gamble, the branches with worst outcomes
are given more weight than those with higher returns. For
gambles with two branches, the lower branch is usually
assigned a weight around 2, while the upper branch has a
weight of 1. This can be understood as risk management
or also as some lack of trust. If someone offered you a
bet, it is possible that the real details are not what you are
told and it would make sense to consider the possibility
that the bet is actually worse than the described one.
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Figure 2: Weighting Functions as a function of observed
frequency for a binomial likelihood with fixed point of =
1/e

A different fixed point can be obtained by assigning
different priors, that is if a, in the Beta distribution, cor-
respond to the upper branch and b to the lower one, keep
using a = 1 and change the value of b for something
larger. Following the suggestion that of = 1/e (Prelec,
2000), based on compound invariance, we have a = 1
and b = e − 1. This values are not necessarily exact
and they can also be understood as giving more weight
to the worse outcome. That choice would be reasonable
if there was any reason to believe that the chances might
actually be worse than the stated probability values. Fig-
ure 2 shows the results for this informative prior, with the
s = 1 (n− 1 for p > 0.5) and s = 2 (or n− 2) curves.

This change leads to a posterior average w(o) with a
correct fixed point, but the predicted curve does not de-
viate from the w(o) = o curve as much as it has been
observed. This is especially true for values of o near the
certainty values, where the effect should be stronger, due
to what is known as certainty effect (Tversky & Kahne-
man, 1981). The certainty effect is the idea that when
a probability changes from certainty to almost certain,
humans change their decisions about the problem much
more than decision theory tells they should. This means
that the real curve should approach 0 and 1 with larger
derivatives than the ones obtained from the simple bino-
mial model. In order to get a closer agreement, other ef-
fects must be considered. Martins (2005) has suggested
a number of possible corrections to the binomial curve.
Among them, there is a possibility that the sample size
does not grow as fast as it should when one gets closer to
certainty (changing as tγ , instead of t1). Another inves-
tigated explanation is that people might actually be us-
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ing stronger priors. The curves generated from those hy-
potheses are similar to those of Figure 2. The main effect
of the different parametrizations is on how the weighting
function behaves as one gets closer to certainty. Simple
stronger priors (a = 3, b = 3(e − 1)) do not actually
solve the certainty effect, while slowly growing sample
sizes seem to provide a better fitting. This agrees with the
idea that people tend to use small samples for their deci-
sions. Large samples are costly to obtain and it makes
sense that most everyday inferences are based on small
samples, even when the stated probability would imply a
larger one. And it is important to keep in mind that what
is being analyzed here are possible heuristics and in what
sense they actually agree with decision theory. That mis-
takes are still made is nothing to be surprised about.

This means that APT is able to explain the reasons be-
hind the shape of the weighting functions. As such, APT
is also capable of explaining the observed violations of
coalescing and stochastic dominance. For example, sup-
pose that you have to choose between the two gambles A
and B. One of the possibilities in gamble A is a branch
that gives you a 85% chance to win 100. If gamble A
is changed to a gamble A’, where the only change is that
this branch is substituted for two new branches, the first
with 5% to win 100 and the second with 80% to win
100, no change was actually made to the gamble, if those
values are known for sure. Both new branches give the
same return and they can be added up back to the origi-
nal gamble. In other words, the only difference between
the gambles is the coalescing of branches. Therefore, if
only coalescing (or splitting) of branches is performed to
transform A into A’, people who chose A over B, should
still choose A’ over B. However, notice that, the game
A has its most extreme probability value equal to 15%,
while in A’, it is 5%. If people behave in a way that is
consistent with APT, that means they will use different
sample sizes. And they will make different inferences.
It should not be a surprise, therefore, that, under some
circumstances, coalescing would be broken. Of course,
coalescing is not broken for every choice, but APT, by
using the supposition that the sample grows slower than
it should (γ around 0.3) does predict violation of coalesc-
ing in the example reported by Birnbaum (2005). The
assumption about sample sizes will also affect choices
where one gamble clearly dominates the other and, there-
fore, Martins (2005) has shown that APT can explain the
observed violations of coalescing and stochastic domi-
nance.

3 Other biases

It is an interesting observation that our reported mistakes
can be understood as an approximation to a Bayesian in-

ference process. But if that is true, the same effect should
be able to help explain our observed biases in other situ-
ations, not only our apparent use of weighting functions.
And, as a matter of fact, the literature of biases in human
judgment has many other examples of observed mistakes.
If we are approximately Bayesians, it would make sense
to assume that the ideas behind APT should be useful un-
der other circumstances. In this section, I will discuss a
collection of other mistakes that can be, at least partially,
explained by APT. In the examples bellow, a literature
trying to explain those phenomena already exists, so, it
is very likely that the explanations from APT are not the
only source of the observed biases, and I am not claim-
ing that they are. But APT should, at least, show that our
mistakes are less wrong than previously thought. There-
fore, it makes sense to expect a better fit between norma-
tive and descriptive results when uncertainty is included
in the analysis as well as the possibility that some sort
of error or mistake exists in the data. We will see that
the corrections to decision theoretic results derived from
those considerations are consistently in the direction of
observed human departure from rationality.

3.1 Conjunctive events
Cohen et al. (1979) reported that people tend to overesti-
mate the probability of conjunctive events. If people are
asked to estimate the probability of a result in a two-stage
lottery with equal probabilities in each state, their answer
was far higher than the correct 25%, showing an average
value of 45%. Again, as in the choice between gambles,
this is certainly wrong from a probabilistic point of view.
But the correct 25% value is only true if independence
can be assumed and the value 0.5 is actually known for
sure. Real, everyday problems can be more complex than
that. If you were actually unsure of the real probabil-
ity and only thought that, in average, the probability of a
given outcome in the lottery was 50%, the independence
becomes conditional on the value of p. The chance that
two equal outcomes will obtain is given by p2. But, if p is
unknown, you’d have to calculate an average estimate for
that chance. Supposing a uniform prior, that is f(p) = 1
for 0 ≤ p ≤ 1, the expected value will be

E[p2] =
∫ 1

0

f(p).p2 dp = 1/3.

That is, for real problems where only conditional inde-
pendence exists, the result is not the correct 25% for the
situation where p is known to be 0.5 with certainty. Of
course, if the uncertainty in the priori was smaller, the
result would become closer to 25%.

Furthermore, if the conditional independence assump-
tion is also dropped, the predicted results can become
even closer to the observed behavior. In many situations,
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especially when little is known about a system, even con-
ditional independence might be too strong an assumption.
Suppose, for example, that our ancestors needed to eval-
uate the probability of finding predators at the river they
used to get water from. If a rational man had a prior uni-
form (a = b = 1, with an average a/(a + b) = 1/2) dis-
tribution for the chance the predator would be there and,
after that, only one observation was made an hour ago
where the predator was actually seen, the average chance
a predator would be by the river would change to a pos-
terior where a = 2 and b = 1. That is, the average prob-
ability would now be 2/3. However, if he wanted to re-
turn to the river only one hour later, the events would not
be really conditionally independent, as the same predator
might still be there. The existence of correlation between
the observations implies that the earlier sighting of the
predator should increase the probability of observing it
there again. Real problems are not as simple as complete
independence would suggest. Therefore, a good heuris-
tic is not one that simply multiplies probabilities. When
probabilistic values are not known for sure, true indepen-
dence does not exist, only conditional independence re-
mains, and the heuristic should model that. If our heuris-
tics are also built to include the possibility of dependent
events, they might be more successful for real problems.
However, they would fail more seriously in the usual lab-
oratory experiments. This means that the observed esti-
mate for the conjunctive example in Cohen, around 45%,
can be at least partially explained as someone trying to
make inferences when independence, or even conditional
independence, do not necessarily hold.

It is important to keep in mind that our ancestors had to
deal with a world they didn’t know how to describe and
model as well as we do nowadays. It would make sense
for a successful heuristic to include the learning about
the systems it was applied to. The notion of indepen-
dent sampling for similar events might not be natural in
many cases, and our minds might be better equipped by
not assuming independence. When faced with the same
situation, not only the previous result can be used as in-
ference for the next ones, but also it might have happened
that some covariance between the results existed and this
might be the origin of the conjunctive events bias. Of
course, this doesn’t mean that people are aware of that
nor that our minds perform all the analysis proposed here.
The actual calculations can be performed following dif-
ferent guidelines. All that is actually required is that,
most of the time, they should provide answers that are
close to the correct ones.

3.2 Conservatism

It might seem, at first, that humans are good intuitive
Bayesian statisticians. However, it has been shown that,

when faced with typical Bayesian problems, people make
mistakes. This result seems to contradict APT. One ex-
ample of such a behavior is conservatism. Conservatism
happens because people seem to update their probabil-
ity estimates slower than the rules of probability dic-
tate, when presented with new information (Phillips &
Edwards, 1966). That is, given the prior estimates and
new data, the data are given less importance than they
should have. And, therefore, the subjective probabilities,
after learning the new information, change less than they
should, when compared to a correct Bayesian analysis.
This raises the question of why we would have heuristics
that mimic a Bayesian inference, but apparently fail to
change our points of view by following the Bayes Theo-
rem.

Described like that, conservatism might sound as a
challenge to APT. In order to explain what might be go-
ing on, we need to understand that APT is not a simple
application of Bayesian rules. It is actually based on a
number of different assumptions. First of all, even though
our minds approximate a Bayesian analysis, they do not
perform one flawlessly. Second, we have seen that, when
given probabilities, people seem to use sample sizes that
are actually smaller than they should be. And, for any set
of real data, there is always the possibility that some mis-
take was made. This possibility exists in scientific works,
subject to much more testing and checking than everyday
problems. For those real problems, the chance of error
is certainly larger. This means that our heuristics should
approximate not just a simple Bayesian inference, but a
more complete model. And this model should include
the possibility that the new information could be erro-
neous or deceptive. If the probability of deception or er-
rors, is sufficiently large, the information in the new data
should not be completely trusted. This means that the
posterior estimates will actually change slower than the
simpler calculation would predict. This does not mean
that people actually distrust the reported results, at least,
not in a conscious way. Instead, it is a heuristic that might
have evolved in a world where the information available
was subject to all kind of errors.

3.3 Illusory and invisible correlations

Another observed bias is the existence of illusory and in-
visible correlations. Chapman and Chapman (1967) ob-
served that people tended to detect correlations in sets of
data where no correlation was present. They presented
pairs of words on a large screen to the tested subjects,
where the pairs were presented such that each first word
was shown an equal number of times together with each
of the different word from the second set. However, after
watching the whole sequence, people tended to believe
that pairs like lion and tiger, or eggs and bacon, showed
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up more often than the pairs where there was no logical
relation between the variables. Several posterior studies
have confirmed that people tend to observe illusory cor-
relations when none is available, if they expect some re-
lation between the variables or observations for whatever
reason.

On the other hand, Hamilton and Rose (1980) observed
that, when no correlation between the variables were ex-
pected, it is common that people will fail to see a real cor-
relation between those two variables. Sometimes, even
strong correlations go unnoticed. And the experiment
also shows that, even when the correlation is detected,
it is considered weaker than the actual one. That is, it
is clear that, whatever our minds do, they do not simply
calculate correlations based on the data.

From a Bayesian point of view, this qualitative descrip-
tion of the experiments can not be called an error at all.
Translated correctly, the illusory correlation case simply
states that, when your prior tells you there is a correlation,
it is possible that a set of data with no correlation at all
will not be enough to convince you otherwise. Likewise,
if you don’t believe a priori that there is a correlation,
your posterior estimate will be smaller than the observed
correlation calculated from the sample. That is, your pos-
terior distribution will be something between your prior
and the data. When one puts it this way, the result is so
obvious that what is surprising is that those effects have
been labeled as mistakes without any further checks.

Of course, this does not mean that the observed behav-
ior is exactly a Bayesian analysis of the problem. From
what we have seen so far, it is most likely that it is only
an approximation. In order to verify how people actually
deviate from the Bayesian predictions, we would need to
measure their prior opinions about the problem. But this
may not be possible, depending on the experiment. If the
problem is presented together with the data, people had
to make their guesses about priors and update them at the
same time they were already looking at the data (by what-
ever mechanism they actually use).

It is important to notice that, once more, the observed
biases were completely compatible with an approxima-
tion to a Bayesian inference. Much of the observed prob-
lem in the correlation case was actually due to the ex-
pectation by the experimenters that people should sim-
ply perform a frequentistic analysis and not include any
other information. However, if connections were appar-
ent between variables, it would be natural to have used
an informative prior, since the honest opinion would be,
initially, that you know something about the correlation.
Of course, in problems where just words are put together,
there should be no reason to expect a correlation. But,
for a good heuristic, detecting a pattern and assuming a
correlation can be efficient.

3.4 Base rate neglect

In Section 3.2, we have seen an example of how hu-
mans are not actually accomplished Bayesian statisti-
cians, since they fail to apply Bayes Theorem in a case
where a simple calculation would provide the correct an-
swer. Another observed bias where the same effect is ob-
served is the problem of base rate neglect (Kahneman and
Tversky, 1973).

Base rate neglect is the observed fact that, when pre-
sented with information about the relative frequency
some events are expected to happen, people often ignore
that information when making guesses about what they
expect to be observed, if other data about the problem is
present. In the experiment where they observed base rate
neglect, Kahneman and Tversky told their subjects that
a group was composed of 30 engineers and 70 lawyers.
When presenting extra information about one person of
that group, the subjects, in average, used only that extra
information when evaluating the chance that the person
might be an engineer. Even if the information was non-
informative about the profession of the person, the sub-
jects provided a 50%-50% of being either an engineer or
a lawyer, despite the fact that lawyers were actually more
probable.

Application of APT to this problem is not straight-
forward. Since APT claims that we use approximations
to deal with probability problem, one possible approxi-
mation is actually ignore part of the information and use
only what the subject considers more relevant. In the case
of those tests, it would appear that the subjects consider
the description of the person much more relevant than the
base rates. Therefore, one possible approximation is ac-
tually ignoring the base rates. If our ancestors (or the
subjects of the experiments, as they grew up) didn’t have
access to base rates of most problems they had to deal
with, there would be no reason to include base rates in
whatever heuristics we are using.

On the other hand, it is possible that we actually use
the base rates. Notice that base rates are given as fre-
quencies and, assuming people are not simply ignoring
them, those frequencies would be altered by the weight-
ing functions. In this problem, a question that must be
answered is if there is a worst outcome. Remember that
we can use a non-informative prior (a = b = 1), but, for
choice between bets, the fixed point agrees with a prior
information that considers the worse outcome as initially
more likely to happen (a = 1 and b = e − 1, for exam-
ple). In a problem as estimating if someone is an engineer
or a lawyer, the choice of best or worst outcome is non-
existent, or individual, at best. This suggests we should
use the non-informative prior for a first analysis. In or-
der to get a complete picture, we present the results of
calculating weighting functions for the base rates in Kah-
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Table 1: The result of the weighting functions w(o) ap-
plied to the base rates of Kahneman and Tversky (1973)
experiment, for observed frequencies of engineers (or
lawyers) given by o = 0.3 or o = 0.7. The parameter
γ describes how the sample size n grows as the observed
value o moves towards certainty.

a = b = 1 a = 1 and b = e− 1

o = 0.3, γ = 1 0.375 0.330

o = 0.3, γ = 0.3 0.416 0.344

o = 0.7, γ = 1 0.625 0.551

o = 0.7, γ = 0.3 0.584 0.483

neman and Tversky (1973) experiment in Table 1. The
weighting functions associated with the observed values
of o = 30% and o = 70% are presented and two pos-
sibilities are considered in the table, that the sample size
grows with 1/t (corresponding to γ = 1) and that it grows
slower than it should, with 1/t0.3 (γ = 0.3). While the
first one would correspond to a more correct inference,
the second alternative (γ = 0.3) actually fits better the
observed behavior (Martins, 2005).

The first thing to notice in Table 1 is that, both for ob-
served frequencies of o = 0.3 and o = 0.7, all weighting
functions provide an answer closer to 0.5 than the pro-
vided base rate. Actually ignoring the base rates corre-
spond to a prior choice to 0.5, therefore this means that
people would actually behave in a way that is closer to ig-
noring the base rates. Notice that, using the case that bet-
ter describes human observed choices (γ = 0.3) and the
fact that there are no better outcomes here, a = b = 1, we
get the altered base rates of 0.42 and 0.58, approximately,
instead of 0.3 and 0.7. The correction, once more, leads
in the direction of the observed biases, confirming that
APT can play a role in base rate neglect, even if the base
rates are not completelly ignored.

These results also provide an interesting test of how
much information our minds see in the base rate prob-
lem. As mentioned above, it is not clear if people simply
ignore the base rates, or transform them, obtaining values
much closer to 0.5 than the base rates as initial guesses.
Even if the actual behavior is to ignore the base rates,
APT shows that there might be a reason why this approx-
imation is less of an error than initially believed. Any-
way, since we have different predictions for this problem,
how we are actually thinking can be tested and an experi-
ment is being planned in order to check which alternative
seems to provide the best description of actual behavior.

4 Conclusions

We have seen that our observed biases seem to originate
from an approximation to a Bayesian solution of the prob-
lems. This does not mean that people are actually decent
Bayesian statisticians, capable of performing complex in-
tegrations when faced with new problems and capable of
providing correct answers to those problems. What I have
shown is that many of the observed biases can actually
be understood as the use of a heuristic that tries to ap-
proximate a Bayesian inference, based on some initial as-
sumptions about probabilistic problems. In the laboratory
experiments where our reasoning was tested, quite often,
those assumptions were wrong. When a probability value
is stated without uncertainty, people still behave as if it
were uncertain and that was their actual mistake. When
assessing correlations, some simple heuristics might be
involved in evaluating what seems reasonable, that is, our
minds work as if they were using a prior that, although in-
formative, might not be including everything we should
know. Even violations of Bayesian results, as ignoring
prior information in the base rate neglect problem, can be
better understood by applying the tools proposed by APT.

Since full rationality would require an ability to make
all complex calculations in almost no time, departures
from it are inevitable. Still, it is clear that, whatever our
mind is doing when making decisions, the best evolution-
ary (or learning) solution is to have heuristics that do not
cost too much brain activity, but that provide answers as
close as possible to a Bayesian inference.

In this sense, the explanations presented here are not
meant to be the only cause of the errors observed and, as
such, do not challenge the rest of the literature about those
biases. What APT provides is an explanation to the open
problem of why we make so many mistakes. People use
probabilistic rules of thumbs that are built to approximate
a Bayesian inference under the most common conditions
our ancestors would have met (or that we would have met
as we grew up and learned about the world). The labora-
tory experiments do not show that these results actually
come from an evolutionary process. It is quite possible
that we actually learned to think that way when we grow
up. In both circumstances, APT shows that we are a little
more competent than we previously believed.
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