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Abstract

Using a cognitive task (mental calculation) and a perceptual-motor task (stylized golf putting), we examined differ-
ential proficiency using the CWS index and several other quantitative measures of performance. The CWS index (Weiss
& Shanteau, 2003) is a coherence criterion that looks only at internal properties of the data without incorporating an
external standard. In Experiment 1, college students (n = 20) carried out 2- and 3-digit addition and multiplication prob-
lems under time pressure. In Experiment 2, experienced golfers (n = 12), also college students, putted toward a target
from nine different locations. Within each experiment, we analyzed the same responses using different methods. For
the arithmetic tasks, accuracy information (mean absolute deviation from the correct answer, MAD) using a coherence
criterion was available; for golf, accuracy information using a correspondence criterion (mean deviation from the target,
also MAD) was available. We ranked the performances of the participants according to each measure, then compared
the orders using Spearman’s rs. For mental calculation, the CWS order correlated moderately (rs =.46) with that of
MAD. However, a different coherence criterion, degree of model fit, did not correlate with either CWS or accuracy.
For putting, the ranking generated by CWS correlated .68 with that generated by MAD. Consensual answers were also
available for both experiments, and the rankings they generated correlated highly with those of MAD. The coherence
vs. correspondence distinction did not map well onto criteria for performance evaluation.
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1 Introduction
To evaluate the work of a plumber, therapist, or surgeon,
it is necessary to assess on-the-job performance. While
all professionals have their creative moments, in most
fields it is the ability to perform a practiced task consis-
tently well that is the hallmark of the expert. Performance
assessment is also the key to determining whether a train-
ing program or technical innovation is worthwhile. Ide-
ally, assessment can be objective rather than a matter of
opinion. Quantitative assessment of performance attends
to measurable aspects of the work, typically the “bottom
line” of the outcome of the labor. How many leaks were
stopped? How many patients were cured?

Such outcome measures capture what Hammond
(1996) refers to as correspondence competence, in that
they focus directly on consequences. Outcomes can also
be compared to theory-based standards; for example, up-
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dating of opinions should be governed by Bayes’s theo-
rem. Hammond (1996) refers to this type of standard as
a coherence criterion. These two types of criteria for op-
timality compare performance to a gold standard, a com-
pelling benchmark against which to measure the behav-
ior. Indeed, some researchers argue that performance can
be measured meaningfully only when a gold standard has
been agreed upon (Ericsson, 1996). Just as Hammond
(1996) hoped that the correspondence-coherence distinc-
tion would help to clarify debates about the proper way
to evaluate a scientific theory, in this paper we invoke that
distinction in the hope of clarifying debates about how to
assess performance.

For many professional domains, gold standards sim-
ply are not available. What is the outcome that reflects
the quality of a film review, the grade assigned by an in-
structor, or the sentence imposed by a magistrate? Weiss
and Shanteau (2003) responded to the challenge that gold
standards are elusive by constructing an empirical index,
referred to as CWS,1 that does not incorporate ground
truth. They suggested that proficiency has evaluative skill

1The CWS acronym derives from the initials of its creators, David
J. Weiss and James Shanteau, along with that of the statistician William
Cochran, who independently had previously proposed using an F-ratio
to compare response instruments.
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at its core. Whatever the task, one must attend to relevant
aspects of the situation and decide what to do. View-
ing evaluation as akin to what a measuring instrument
does, Weiss and Shanteau (2003) identified two neces-
sary properties of expert judgment: discrimination, re-
sponding differently to different stimuli, and consistency,
responding similarly to similar stimuli. The CWS index,
presented as Equation 1, combines these two properties in
a ratio format. The ratio is large when the judge discrimi-
nates effectively, and is reduced when the judge is incon-
sistent. Weiss and Shanteau stressed that the two proper-
ties are not conceptually independent. It is easy enough
to adopt a strategy that trades off one property at the ex-
pense of the other, but achieving both at the same time
requires accurate evaluation of the stimuli, the essence of
expert judgment.

CWS =
Discrimination

Inconsistency
(1)

When they originally proposed the CWS index, Weiss
and Shanteau were intentionally non-committal about the
measures of discrimination and inconsistency. The trade-
off implied by the ratio definition is the heart of the con-
cept, and any measures that reflect the two properties will
do. In applications that generate numerical data, includ-
ing the present ones, discrimination and inconsistency
have been operationalized using terms familiar from anal-
ysis of variance. An experimental design suitable for
CWS analysis may be as simple as the presentation of
each of several stimuli more than once. Discrimina-
tion means that different stimuli are responded to dif-
ferently. Accordingly, discrimination is captured by the
mean square between stimuli. Inconsistency implies that
a given stimulus presented multiple times inspires differ-
ent responses on the various occasions. Inconsistency is
captured by the mean square between replications.

The CWS approach resembles a coherence criterion,
in that it examines purely internal properties of behavior.
However, it differs from other coherence criteria in that
while proficient performance inexorably generates high
values of CWS, there is no theory specifying the optimal
behavior. Our view is that performance ought to be tied
to the external world, and that experts should follow the
prescriptive model for their task. However, it is not al-
ways possible for an evaluator to know the best answers,
and the applicable model is often unknown as well. The
absence of optimal answers does not diminish the practi-
cal importance of having the capability to evaluate mem-
bers of the large class of professionals who provide opin-
ions about the status and achievements of people (Weiss,
Shanteau, & Harries, 2006).

A more popular approach to evaluating these subjec-
tive domains is to compare someone’s responses to those
of other people. Opinions often converge toward the

truth (Surowiecki, 2004). Consensual answers have of-
ten been proposed as surrogates for correct answers (Ash-
ton, 1985; Einhorn, 1974), although the logic of doing so
has been criticized (Weiss & Shanteau, 2004). The gist
of the criticism is simply that people may agree on poor
answers. One may view consensus as a coherence crite-
rion, postulating that there exists across people a common
latent structure underlying their opinions (Batchelder &
Romney, 1988; Uebersax & Grove, 1990).

In the current project, we employed tasks for which
there were indisputably optimal responses, namely men-
tal calculation and golf putting. Accuracy in arithmetic
calculation is customarily assessed using a coherence cri-
terion; correct answers are dictated by the abstract, logi-
cal rules of mathematics. The accuracy of a putt is usu-
ally assessed using a correspondence criterion, how close
the ball gets to its target. A goal of the present research
was to shed light on CWS’s ability to capture the sub-
jective domains by examining objective domains. We
assessed performance for both tasks using the clear-cut
gold standards, then assessed that same performance us-
ing CWS, which does not make use of such informa-
tion, and consensus, which provides a “silver standard”
(Phillips, 1988) when the group knows what it is doing.

1.1 The logic underlying CWS

A CWS assessment entails analyzing responses to a range
of stimuli, situations, or scenarios that would normally be
handled within the profession. Tasks may be divided into
four categories (Weiss & Shanteau, 2003). Judgment is
exemplified by auditing a financial statement or diagnos-
ing a patient’s condition. Prediction includes forecasting
the weather or advising the parole board. Teaching en-
compasses training people or setting criteria for testing.
Typical physical performance tasks are playing an instru-
ment or shooting a ball. In all cases, evaluating the stim-
uli underlies proper execution of the tasks. In the latter
three categories, additional abilities overlay the requisite
judgmental skill. The predictor must anticipate changes
that will occur in the future. The instructor must com-
municate and motivate. The performer requires physical
abilities needed to execute the planned maneuvers. The
CWS index can be used to assess behavior in all of these
categories, but underlying judgmental skill may be ob-
scured by the additional components.

Still, because judgment is paramount, reasonably ac-
curate assessments of demonstrated skill in all of the cat-
egories can be achieved with CWS. The key properties,
discrimination and consistency, are inherent in the be-
havior itself, so that measuring the ratio does not require
knowledge about how things turned out. Of course, there
is more to skilled performance than these two properties.
CWS is necessary but not sufficient; in other words, one
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who does the task well will generate high CWS, but high
CWS does not guarantee that the task was done correctly
(Weiss & Shanteau, 2003). The question of how much of
the demonstrated skill is captured by the index is essen-
tially an issue of validity.

In order to assess validity, one must have some approx-
imation of the truth. We suggest five presumptions an
analyst might make toward that end. Each presumption
assumes domain knowledge on the part of the analyst,
external knowledge that is provided by experts within the
field. This circular reasoning, presuming that the ana-
lyst can identify the true domain experts, seems unavoid-
able in the early stages of research. The first three of the
presumptions have been supported in previous research
using the CWS framework. The last two have not been
tested before.

Presumption 1 is that CWS can distinguish experts
from novices; experts should generate higher CWS
scores. Weiss & Shanteau (2003) illustrated this capabil-
ity with data from several domains, including medicine,
auditing, and personnel selection. Identifying novices is
easy, but we have to assume that we know who the ex-
perts are in order to validate. Regarding experience as
the equivalent of expertise is risky (Weiss, Shanteau, &
Harries, 2006).

Presumption 2 is that CWS decreases systematically
with increasing task difficulty. Here, the assumption
is that the analyst can identify the more difficult tasks.
Shanteau, Friel, Thomas, and Raacke (2005) varied the
number of planes in simulated air traffic control, reason-
ing that having to deal with more aircraft should make the
task harder. CWS decreased with the number of planes.

Presumption 3 is that CWS increases with training.
Shanteau et al. (2005) also found that CWS increased
over training periods, showing improvement long after
less sensitive (outcome) measures such as the number of
accidents or number of intrusion errors stopped showing
performance gains. The assumption in this case is that the
analyst knows performance to be in the sub-asymptotic
range where increases are possible. In a study of the as-
sessment of upper limb disorders, Williams, Haslam, and
Weiss (2008) found that professional ergonomists, who
had specialized training, exhibited higher CWS when
judging patients’ risk status than members of other pro-
fessions who also make such judgments regularly. The
ergonomists also were superior, according to CWS, to
students in ergonomics courses. Similar results for oc-
cupational therapy have been reported by Rassafiani, Zi-
viani, Rodger, and Dalgleish (2008).

The two new experiments reported here examine our

fourth and fifth presumptions. The experiments are quite
different in nature, but they have in common that there
are known correct answers. In the first experiment, col-
lege students are asked to carry out intuitive addition and
multiplication under time pressure. The tasks in Experi-
ment 1 are purely judgmental. In Experiment 2, golfers
putt toward a series of targets. This task involves physical
performance as well as an implicit judgment. Our pur-
pose in selecting both a cognitive and a perceptual-motor
task was to shed light on the breadth of applicability of
CWS as a performance index.

Presumption 4 is that CWS should be associated with
the extent to which performance follows a correct process
model. For the mental calculation tasks, participants who
show higher CWS should be more likely to follow the
additive and multiplicative models as assessed by func-
tional measurement. Functional measurement (Ander-
son, 1979) invokes a coherence criterion, in that there is
a normative model for the task; the analysis involves ex-
amining the algebraic structure underlying the responses.
Because the number of everyday tasks for which a pre-
scriptive model is available is limited, this presumption
can be examined only in special cases. Presumption 4
cannot be tested with the putting task.

Presumption 5 is more widely applicable. Presump-
tion 5 is that, in tasks for which correct answers are avail-
able, CWS should be higher for those whose answers
are closer to correct. Our analytic strategy for testing
Presumption 5 is to first rank the performances exhib-
ited by the individuals within an experiment according
to the gold standard of correct answers. Next, we rank
the same performances according to CWS, which knows
nothing of correct answers. High correlation between the
two rankings is supporting evidence for this presumption.
This comparison is the key empirical contribution of the
present paper. If CWS can be shown to capture differ-
ences in performance when correct answers are known,
that increases confidence in the ability of this relatively
new index to provide valid assessments when correct an-
swers are unavailable.

In order for this research strategy to be effective, it is
necessary that there be differential ability among the par-
ticipants. At the same time, they must all be able to do
the task with some degree of competency, or the results
mean little. We were willing to presume that all col-
lege students can do mental calculations. For golf, we
required credentials in the form of some experience, as
novices have essentially no expertise. To some extent it
is a matter of fortune whether the recruits in a study vary
sufficiently, but we tried to assist chance by informally
seeking a range of self-estimated talent for arithmetic.
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Employing a gold standard of correctness requires the
analyst to choose a rule for penalizing errors. When the
response is measured on a numerical scale, it is traditional
to use the mean squared deviation (MSD) from the cor-
rect answers as an index. Gigone and Hastie (1997) pro-
vide an extensive comparison of accuracy measures, fa-
voring MSD because it contains the most information and
penalizes large errors, which they see as an advantage.
Our view is that while MSD fits nicely with statistical
theory, it does not reflect how wrong the answer is from
a behavioral perspective (Weiss, Edwards, & Shanteau,
2009).2 Although we will report MSD, we deem the
mean absolute deviation (MAD) from the correct answers
to be the gold standard for performance.

The unique feature of this study is that we use the same
data to compare various performance criteria. In evaluat-
ing Presumption 5, we use the golf data to provide a di-
rect comparison of a correspondence criterion (accuracy)
and a coherence criterion (CWS). Similarly, we invoke
Presumption 4 with the mental calculation data to sug-
gest a comparison of two kinds of coherence criteria, one
(functional measurement) that incorporates a standard of
optimality and one (CWS) that does not. We also eval-
uate the coherence criterion of consensus with both data
sets.

2 Experiment 1: Mental calculation

The task for participants is to solve math problems in
their heads (Busemeyer, 1991; Peterson & Beach, 1967);
specifically, to perform mental calculation of either the
sum or the product of a pair of numbers. Preliminary
work using these tasks suggested that incorporating some
time pressure was necessary in order to induce holistic
judgments. Explicit use of arithmetic rules was deemed
undesirable, because we wanted the laboratory task to
simulate real-world judgments, few of which have for-
mulaic solutions. The participant’s incentive on each trial
was based on the difference between the response and the
correct answer; no credit was given for responses occur-
ring after a time limit specified for each problem type.

Intuitive addition of numerical stimuli has been exten-
sively studied, including research that employed a func-
tional measurement perspective (Anderson, 1968; Levin,
1975). A result of particular interest is that some peo-

2In everyday life, errors are often penalized on an absolute basis,
and occasionally on the basis of extent. For example, a basketball shot
either goes in or misses. In golf, the distance the ball lands from the
hole contributes to the difficulty of the next shot. We are hard pressed
to think of natural situations in which errors are punished in proportion
to the square of their magnitude. Using simulation results, Dielman
(1986) concluded that the use of absolute value in regression analysis
provides better forecasts than does the use of least squares, especially
when the data contain outliers.

ple exhibit consistent biases, thus implying incorrect an-
swers, while following the appropriate model. This illus-
trates the key principle that a focus on accuracy may ob-
scure important information. Multiplication is inherently
more difficult than adding, and one would expect less
accurate answers. Intuitive multiplication has not been
studied much beyond one or two-digit problems (Seitz &
Schumann-Hengsteler, 2000).

2.1 Method
Participants and Procedure. Twenty participants were re-
cruited via fliers posted across the California State Col-
lege, Los Angeles campus, with the qualification being
that applicants were enrolled students (any major) and
at least 18 years old. Students who claimed to be poor
at math were encouraged to participate; those recruited
spanned a wide range of (self-assessed) ability. Par-
ticipants received base compensation at minimum wage
level, as well as a bonus for accurate answers.3 They also
received a bonus for completing all sessions, which took
between 2–3 hr.

After receiving instructions regarding use of the com-
puter program, participants performed the arithmetic
tasks on a computer in a small individual laboratory, with
the experimenter visible in the hallway. The concept of
intuitive math was stressed; the use of paper or calcu-
lator was prohibited. Participants were told to guess if
they did not know the answer, as there was no penalty
for wrong answers. They were informed that an answer
within 5% of the correct value would be scored as cor-
rect for bonus purposes, but the answer had to be entered
within 30 sec. There was an additional brief training com-
ponent for each type of equation, with outcome feedback
and illustrative bonus points. No feedback was provided
during data collection.

The program presented two types of problems, one
calling for adding and the other for multiplying. Most of
the problems were expected to be difficult for most stu-
dents. In an attempt to inhibit explicit calculation, each
problem was presented briefly (3 sec for addition, 5 sec
for multiplication) before the screen went blank.

The inter-question interval was 15 sec, but the partic-
ipant could bypass the break by clicking the Enter key.
After a block of trials, which lasted 10–20 min, the pro-
gram informed the participants of how many bonus points
had been earned during that block. Three to four blocks
of trials were scheduled during each 1 hr session. In be-
tween blocks, participants were allowed to take brief rest
periods.

Design. The anticipated difficulty of the problems was
manipulated by varying the number of digits in the num-

3An answer within 5% of the correct value earned a bonus of $.05.
Typical performance earned a bonus of $4–5/hr.
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Table 1: Numbers used for addition and multiplication
problems within each difficulty level.

2 digit, 2 digit 2 digit, 3 digit 3 digit, 3 digit

Left
Position

Right
Position

Left
Position

Right
Position

Left
Position

Right
Position

18 15 26 195 131 138
29 24 34 268 294 216
33 51 49 391 352 425
46 57 52 453 384 548
64 64 65 575 585 641
79 72 77 628 613 776
83 87 81 746 882 893
96 98 93 982 947 991

ber. Three difficulty levels were used. The same diffi-
culty level was maintained throughout a block. The pairs
of numbers that constituted the 64 problems within each
difficulty level were constructed according to an 8x8 (left
position x right position), factorial design, following An-
derson (1968). No number was permitted to have a zero
as the right-most digit. Addition problems came first,
then multiplication; in both cases, the problems were pre-
sented in order of increasing difficulty level. Two replica-
tions of the design, using the same 64 pairs of numbers in
an independently randomized order, were presented for
both addition and multiplication problems, thus yielding
a total of 12 blocks for each participant. The numbers
used are shown in Table 1.

2.2 Measures

Accuracy. Although accuracy sounds transparent enough,
there are at least three sensible ways to capture the accu-
racy of the responses. The most commonly used mea-
sure, Mean Squared Deviation (MSD), is the average of
the squared deviations, (

∑
[Ci − Xi]2)/N where Ci is

the correct answer and Xi is the response on the i-th trial.
The Mean Absolute Deviation (MAD), (

∑ |Ci−Xi|)/N
is an accuracy measure that does not weight discrepancies
via squaring. The Correlation between correct answers
and responses is also an accuracy measure, but it does
not distinguish between truly accurate and linearly dis-
crepant responses (Stewart & Lusk, 1994). All of these
accuracy measures may be viewed as coherence based, in
that they compare correct answers to those specified by a
mathematical formula.

CWS. The CWS index (Weiss & Shanteau, 2003) for an
individual’s performance is the ratio of discrimination to

inconsistency, calculated separately for each task and dif-
ficulty level as the mean square between stimuli divided
by the mean square within replications. The computa-
tion for Equation 1 is that for a single-S design (Weiss,
2006), which is identical to the calculation of an F-ratio
in an independent groups design. Accordingly, the data
can be entered into a standard ANOVA program as a 64
(stimuli) x 2 (replications) design. CWS may be viewed
as a coherence standard, in that it is based on a theory
of optimality, but of a special type that does not incorpo-
rate correct answers. The CWS ratio depends only upon
internal properties of the set of responses.

Consensus. The mean response can be calculated
across respondents for each stimulus pair and that mean
can be used as a criterion. From the set of consensual cri-
teria, we can construct pseudo-accuracy measures similar
to the accuracy measures described above. Our consen-
sus measure was based on MSD, in that we substituted the
mean response, Mi, for the correct answer, so that Con-
sensus is (

∑
[Mi − Xi]2)/N . We might equally have

based the consensus measure on MAD, but did not be-
cause the MSD-based version has been traditionally used
in the literature.

For an arithmetic task, those who provide correct
answers will inevitably agree. However, agreed-upon
answers need not be correct. One possibility is the
widespread use of a heuristic strategy (Gigerenzer, Todd,
& The ABC Research Group, 1999) that simplifies the
challenging multiplication task. For example, one might
round the numbers to the nearest ten or hundred prior to
multiplying, and then make an upward or downward ad-
justment to correct for rounding.

Model Fit. Because the stimuli were constructed ac-
cording to a factorial design, it is possible to employ
functional measurement analyses (Weiss, 2006) on the
responses. Functional measurement invokes a coherence
criterion, evaluating the fit of a plausible algebraic model
to the observed judgments. For the adding task, an ad-
ditive model should apply. For the multiplying task, a
multiplicative model should apply. These models can be
tested using analysis of variance; they predict that spe-
cific sources in a factorial analysis of variance will yield
significant effects and that others will not (Weiss, 2006).
If people do the task perfectly, then the model will fit, and
the answers will be accurate. However, it is possible for
the model to fit and for the answers to be systematically
inaccurate, e.g., by consistently placing higher weight on
the number presented on the left (primacy). A potential
weakness of the model fit approach is that high variability
increases the likelihood that data will appear to support
the model because there is insufficient power to reject it.
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Table 2: Performance for two individual participants across mental calculation tasks, as assessed by six indices.

Problems

Index 2 + 2 2 + 3 3 + 3 2 x 2 2 x 3 3 x 3

Participant G

MAD 0.06 0.08 0.40 3.12 24.59 250.56

MSD 0.75 12.64 80.45 12396.00 323660.13 39112205.50

Correlation 0.94 0.98 0.96 0.78 0.94 0.93

CWS 16.84 41.05 22.63 3.16 18.94 15.56

Consensus 9.98 15149.85 1519.92 66886.54 6480550.31 436290435.69

Model Fit 1.03 1.04 0.82 1.12 0.92 1.08

Participant E

MAD 0.90 17.49 0.68 3.78 625.25 2236.50

MSD 60.84 6996224.11 2135.85 14784.45 2886585990.68 68662171252.01

Correlation 0.54 0.30 0.64 0.68 -0.12 0.22

CWS 1.24 1.00 1.66 2.44 1.15 1.00

Consensus 78.69 9017726.92 3325.01 65329.33 2870853841.73 67531546588.76

Model Fit 1.00 1.00 1.08 1.06 0.62 0.13

2.3 Results
Performance. To convey the flavor of the data, we present
the performance indices achieved by one of the most suc-
cessful participants and by one of the least successful in
Table 2. These extremes illustrate how the various indices
track the same observed behavior. The three accuracy
measures (MAD, MSD, Correlation) all report the superi-
ority of Participant G over Participant E in the same way,
with lower values for all six of the problem types. MAD
and MSD also confirm that multiplication is more diffi-
cult than addition and that problem difficulty increases
with the number of digits, although Participant E had an
especially hard time with adding 2 digit and 3 digit num-
bers. On the other hand, Correlation was not effective in
capturing these expected trends.

Our featured index, CWS, did show the superiority of
Participant G’s performance over that of Participant E,
but did not fare particularly well in capturing the diffi-
culty we built into the design. The picture presented when
Consensus was used as a surrogate for correctness was
comparable to that provided by MAD and MSD.

We assessed model fit using the F-ratio of the source
that captures deviations from the normative additive (test-
ing the Left x Right interaction) and multiplicative (test-
ing the deviations from bilinearity) models (Weiss, 2006)
for the respective tasks. These F-ratios are shown in
the bottom line of Table 2. The normative models were
quite descriptive, in that the key F-ratios were nonsignif-

icant for most blocks for most participants. This non-
significance is not attributable to lack of power, because
the main effects and (for the multiplicative model) the
bilinear component of the interaction were both signif-
icant and sizable. Graphically, the appropriate pattern
— parallelism in the case of addition, fan in the case of
multiplication — was observed for most of the individ-
ual plots, especially for addition. Thus, the functional
measurement analysis does shed light on the behavior,
telling us that people did follow the applicable combina-
tion rule. However, the small F-ratios did not distinguish
among participants of varying proficiency. In this appli-
cation, the process analysis was uninformative regarding
differential proficiency; Presumption 4 could not be ver-
ified. To be fair, functional measurement has never been
proposed by its adherents as a tool for assessing perfor-
mance; nor has the magnitude of a nonsignificant F-ratio
ever been proposed to be meaningful.

Participant Rankings. One of our primary purposes
was to see how the indices compared in terms of scor-
ing the people. In employment contexts, rankings are the
usual basis of decisions. For each index, we ranked the 20
participants according to their average score4 across the

4To average the index values across the six conditions for each
participant, we followed the recommendation of Weiss and Edwards
(2005), transforming so that the averaging is carried out on the units
of the original measurements. For CWS, FM, MSD and Consensus,
the appropriate average is the square of the mean of the square roots of
the six individual values. For Correlation, we employed Fisher’s r to z
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Table 3: Rank order correlations (Spearman’s rs) between six performance measures on mental calculation tasks.

MSD Correlation Model Fit CWS Consensus

MAD .78* (–).65* (–).05 (–).46* .70*
MSD (–).55* (–).34 (–).46* .92*
Correlation .07 .86* (–).50*
Model Fit .37 (–).55*
CWS (–).43

* p < .05. n = 20 for all correlations. Minus signs indicate direction only, and are unimportant to the strength
of the relationship.
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Figure 1: CWS vs. MAD for mental calculation data
from nineteen students. Each data point represents the ap-
propriate index-specific average over the six conditions.
Spearman’s rs = (–).50, p <.05. In order to avoid dis-
torting the graphical impression of the relationship, we
omitted the data from an outlier whose average CWS was
much higher than anyone else’s. With that twentieth stu-
dent included, rs = (–).46, p <.05.

6 conditions, then examined the correspondence among
those rankings using Spearman’s rs, the rank-order cor-
relation. The rank orders we compared were based on
quality of performance as conveyed by each measure. For
MSD, MAD, Consensus, and Model Fit, lower scores
indicate better performance. For Correlation and CWS,
higher scores indicate better performance. These correla-
tions are presented in Table 3.

We consider MAD to be the gold standard for the task.
The other accuracy indices yielded rankings that agreed
well, but not perfectly, with that established using MAD.

transformation. The ordinary arithmetic mean is appropriate for MAD.

Presumably, MSD generates slightly different orders be-
cause it weights large errors differently. Correlation is
a less sensitive index, in that it can fail to penalize re-
sponses that are incorrect if the errors follow an orderly
pattern. Consensus did fairly well, perhaps reflecting the
objective nature of the task. People are aiming at the same
target, the correct answer, and on average their guess
corresponds to that target reasonably well (Surowiecki,
2004). Consensus and MSD, which both square devia-
tions, yielded similar rankings. CWS agreed moderately
with the gold standard order. CWS agreed moderately
with the gold standard order as is shown graphically in
Figure 1.

3 Experiment 2: Golf putting

There is an obvious gold standard for a golf shot; the ball
either goes in the hole or does not. Within the traditional
game, the degree of imperfection of a shot that misses is
measured by the number of subsequent shots required to
get the ball in. However, the latter measure is confounded
with the quality of those subsequent shots. A more pure
measure of the imperfection of a shot is the distance be-
tween its landing point and the hole.

We employed a laboratory version of golf putting that
has proven useful in understanding skilled performance
and its attentional limitations (Beilock & Carr, 2001;
Beilock, Carr, MacMahon, & Starkes, 2002; Perkins-
Ceccato, Passmore, & Lee, 2003). In this stylized ab-
straction of one of golf’s core skills, the task is to putt
to a target. The distance between where the ball lands
and the target is analogous to the difference between the
correct answer and the stated response in our arithmetic
tasks.

For golf, we can invoke a correspondence assessment.
The ball is supposed to hit the target, and experience
teaches golfers how to achieve that goal. We can also
parse each golfer’s putts into a CWS index. In accord
with Presumption 5, we anticipated that higher CWS
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would be related to more accurate putting. Our logic is
that greater discrimination means that the golfer knows
to hit the ball farther the more distant the target. Bet-
ter golfers should also be more consistent, because their
strokes are well-regulated. A Consensus criterion, again
invoking the argument about a common latent structure
guiding the golfers’ efforts, is also available.

3.1 Method
Participants. We report data from twelve experienced
golfers between the ages of 18–22. Participants were
required to have two or more years of high school var-
sity golf experience or a Professional Golfers’ Associa-
tion (PGA) handicap less than 8. The session lasted ap-
proximately one hour. The golfers were paid $10 for their
time. There was no performance-based incentive.

Experimental design and procedure. Participants re-
ceived instructions to putt the ball from one of nine dif-
ferent starting points so it stopped as close as possible to
a target, marked by a taped X on a uniformly flat syn-
thetic turf mat. Three of the locations were 1.2 m from
the target, three were 1.4 m from the target, and the other
three were 1.5 m from the target. Following instructions
and 10 practice putts, participants performed two blocks
of 21 putts. Accuracy (more precisely, amount of inaccu-
racy) for a single shot was measured by the distance from
the center of the ball to the center of the target (in cm).
This target feature is slightly more challenging than real
golf, in that there is no hole in which the ball can come
to rest. Possibly, a shot that rolled gently over the target
(and thereby generated an error) might have gone into a
real golf hole. The Mean Absolute Deviation (MAD) for
an individual at each starting location was computed by
averaging the single shot accuracy scores.

We also measured the total distance the ball traveled (in
cm), for use in the CWS computation. CWS is defined as
the ratio of discrimination to inconsistency. Discrimina-
tion, the numerator of the ratio, is calculated here as the
mean square between the distances the ball was hit from
different starting points. Inconsistency, the denominator,
is divided by the mean square between replications, that
is, the mean square between the distances when the ball
was hit from the same starting point. Thus as in Experi-
ment 1, CWS is computed like a standard F-ratio.

3.2 Results
The task was fairly challenging. Only 4 putts actually
landed on the target. There were 22 additional putts that
had a zero angle error and a distance greater than the cor-
rect distance; some of these might have gone in a real
hole. So all told, about 10% of the putts could have gone
in.

2 3 4 5 6 7

12
14

16
18

20
22

CWS 

M
A

D
 D

is
ta

nc
e 

(c
m

) 
B

al
l f

ro
m

 T
ar

ge
t 

Figure 2: CWS vs. MAD for putting data from twelve
golfers. Spearman’s rs = (–).676, p < .05.

We calculated a separate CWS value for each golfer,
entering a 21 (stimuli) x 2 (replications) single-S design
into the ANOVA program. The rankings from CWS were
significantly correlated with those from accuracy as mea-
sured by MAD (rs = (–).676, p < .05; n = 12). Thus, al-
though CWS is ignorant of how far away the target is, or
whether the shot is accurately directed, it yielded values
that were reasonably well correlated with putting perfor-
mance as measured by a gold standard (distance between
the final ball location and the target). The relationship is
shown graphically in Figure 2.

In the evaluation of Consensus, we used as the consen-
sual answers5 the mean distance the ball was hit toward
each of the targets, and calculated each individual’s devi-
ations using the same definition employed for consensus
in the mental calculation tasks, (

∑
[Mi −Xi]2)/N . The

rankings for putting generated by the consensus criterion
correlated very highly with the accuracy rankings given
by MAD, rs = .888 (p < .05, n = 12).

4 General Discussion
In the present paper, we illustrate how CWS can be used
to assess complex performance in the absence of a true
gold standard, using mental calculation and golf putting
as prototypes. We chose these tasks because in each case
there is an obvious gold standard against which to test
the capability of the index. How much proficiency can be

5An alternative definition of the consensual answer might be the cen-
troid of the landing points of the putts toward each target. Our data were
not collected in a manner that would permit that centroid to be calcu-
lated.
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captured if we don’t know the right answers or whether
the ball lands on the target? The answer seems to be
that a moderate amount of the proficiency can indeed
be detected by CWS, a measure that looks only at the
discrimination and consistency exhibited by the respon-
dents. Combining these two necessary properties of good
judgment yields an index that is able to capture a con-
siderable amount of the variation in how well people did
the tasks. The participants in these studies knew nothing
of CWS. They were trying to maximizing accuracy, not
discrimination and consistency. Because accuracy sub-
sumes discrimination and consistency, CWS can serve as
a proxy.

CWS is a coherence criterion, albeit an unusual one
in that there is no gold standard for a response. Ex-
periment 1 examined how CWS compared with other
coherence-based measures. Our Presumption 4, that
Model Fit would be associated with CWS, was not sup-
ported. More generally, the several criteria we employed
for mental calculation did not yield correlated rankings.
So we may conclude that not all coherence criteria pro-
duce similar evaluations. Experiment 2 compared CWS
to a correspondence-based measure. Our Presumption 5,
that participants who score well according to an accuracy
criterion also should score well according to CWS, was
confirmed by the correlation in the rankings for both men-
tal calculation and golf putting. The golf results showed
that a theory-based coherence criterion can produce eval-
uations similar to those generated by a correspondence
criterion. That fact that evaluations using coherence cri-
teria do not group themselves conveniently, and that eval-
uations using coherence criteria do not stand apart from
that produced by a correspondence criterion, casts doubt
on the value of Hammond’s distinction in this context.

The technique we relied upon, comparing the rankings
generated by the various indices, is constrained by the
true differential expertise of the participants. The more
similarly the contenders performed, the less differential
performance there is for CWS (or any performance in-
dex) to detect. To that end, we selected tasks our par-
ticipants already knew how to do but at which they were
not so skilled that all performances would be excellent.
Accordingly, the exact magnitude of the correlations be-
tween CWS and MAD is not critical to our validation;
what does matter is that CWS has been shown to detect
differences in demonstrated skill in much the same way
that MAD did for both a judgment task and a physical
performance task.

The CWS index has previously been used to assess the
judgmental performance of professionals in several do-
mains for which a true standard is unavailable. These in-
clude physicians judging the likelihood that patients had
chronic heart failure (Weiss & Shanteau, 2003), occupa-
tional therapists prioritizing clients for therapy (Weiss,

Shanteau, & Harries, 2006), and ergonomists determin-
ing the risk of workers complaining about upper limb dis-
orders (Williams, Haslam, & Weiss, 2008). A lingering
concern has been that if a putative expert consistently dis-
criminates an irrelevant feature of the behavior, CWS can
be fooled (Weiss & Shanteau, 2003). It is crucial to tap
into a dependent variable that captures the heart of per-
formance on the task. Identifying the right variable re-
quires domain knowledge. For example, in CWS investi-
gations of air traffic control (Shanteau et al., 2005), time
through sector eventually came to be recognized as the
dependent variable of choice. CWS indices built on time
through sector were found to be related to task difficulty
and to type of training. The evidence from the mental
calculation and golf studies presented here suggests that
CWS does indeed provide reasonable assessments of pro-
ficiency. So long as a sensitive independent variable has
been chosen, performance assessment can proceed with
the analyst blind to any individual characteristics of the
contenders.

CWS’s ability to capture performance on the putting
task without target information is particularly impressive.
Not only is the measure unaware of whether the ball was
struck accurately, it does not even know which of the tar-
gets are farther away. Because the distance the ball trav-
eled turned out to contain useful information, in principle
it would have been possible to assess differential perfor-
mance just by knowing how hard the ball was struck.

Our outcome-based assessments would not have been
feasible without continuous error measures. Few of the
answers in the arithmetic tasks (other than for two digit +
two digit addition) were exactly correct. Capturing per-
formance by whether a ball either goes in the hole or not
can be insensitive to how well a shot was hit. We noted
that only about 10% of the putts could have gone in a
hole.

We advocate MAD as the error penalization rule; but
our results suggest that the traditional MSD index, in
which errors are squared, yields similar rankings. Be-
cause we calculated CWS ratios using mean squares,
CWS effectively uses squared error penalization. The
use of mean squares is not critical to the formulation of
CWS, and indeed it is feasible to construct an index using
measures of discrimination and inconsistency based on
MAD. Whether the analyst’s decision regarding error pe-
nalization will have serious consequences depends upon
whether large errors occur frequently within the data set.

The CWS methodology for assessing performance is
limited to quantifiable, repeatable behaviors. CWS is,
like all objective assessment techniques, limited in scope.
It does not address the quality of an actor’s performance,
an artist’s creation, or a professor’s lecture. As well,
when comparing performers, every candidate must face
essentially the same conditions. Repeatability within a
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person can also be a limitation; some tasks can be done
meaningfully only once. The analyst applying CWS must
be willing to assume that observations occurring at differ-
ent moments are in fact comparable (Weiss & Shanteau,
2003). Under those circumstances, which characterize
much of the routine work of many professionals, when
correspondence measures are unavailable, a reasonable
assessment of performance can be achieved with CWS, a
coherence criterion.

5 Summary and confession

Hammond (1996) used the coherence-correspondence
distinction to help distinguish among metatheories for
scientific truth, where the metatheory provides a basis for
telling whether a theory is true. We attempted to map
that distinction onto performance evaluation. We had
thought that comparing observed to optimal responses
was employing a correspondence criterion, while the use
of CWS, an index based on a theory of expert perfor-
mance, was an application of a coherence criterion. Ac-
cordingly, we examined evaluation methods that did or
did not incorporate optimal responses. The reviewers
showed us the error in our thinking, in that arithmetic is at
its core a theory-driven system that does not depend upon
a connection with consequences. So involving optimality
did not imply the use of a correspondence approach.

Our imperfect mapping leads us to suggest that the
coherence-correspondence distinction may not be well-
suited to dichotomizing performance criteria. Empiri-
cally, the distinction did not provide two distinct sorts of
results. One reason that correspondence does not stand
alone may be that correspondence criteria are likely to
be temporary in applied contexts. For example, a physi-
cian’s competence or a drug’s value might at first be eval-
uated according to patient outcomes such as survival, a
correspondence criterion. But as medical science pro-
gresses and theoretical insights evolve, the rather crude
index of survival is replaced by physiological indicators.
Of course the physiological measures are ultimately con-
nected to survival; but they are connected by a theory, and
it is that theory that governs the construction of the instru-
mentation that reports the measures. Lewin’s (1951) fa-
mous dictum that “there is nothing more practical than a
good theory” is very pertinent to performance evaluation.

An alternative dichotomization that might be proposed
for evaluating performance is using process criteria vs.
using outcome criteria. For example, one might evalu-
ate an athlete’s performance according to either purity of
style or to scoreboard result. Purity of style is the basis
in figure skating and diving. Most other sports, in con-
trast, are scored according to the final result: who was
the fastest, who scored more points, etc. One might ex-

pect good form to produce good results, but it remains an
empirical question whether the quarterback who throws
the most beautiful spiral also completes the most passes.
It is interesting to note that modern baseball analysts are
beginning to evaluate players according to process — for
example, how many pitches does a hitter swing at —
as opposed to traditional criteria such as batting average
(Lewis, 2003).

Applying objective process criteria to behaviors that
take place out of sight, most prominently thinking, is
challenging. Our Presumption 4 did invoke a process
model for mental calculation. Although we had prescrip-
tive algebraic models for the two arithmetic tasks, the
measure of discrepancy from model predictions was not
associated with the gold standard of correct answers or
with most of the other indices. We concluded that func-
tional measurement was not an effective tool for compar-
ing candidates. The moderate correlation between Model
Fit and Consensus is an anomaly within this description.
We found it puzzling that Model Fit could be correlated
with consensus, Consensus with everything else, and yet
Model Fit with nothing else. Error variance may play a
role in this seeming paradox; but a more satisfying res-
olution is that contrary to intuition, correlations are not
necessarily transitive (Langford, Schwertman, & Owens,
2001).

In a more positive vein, we were able to confirm that
the CWS index was effective in capturing performance,
and we now have further justification for recommending
it when valid outcome measures are not available. We
also found that consensual answers can provide an effec-
tive substitute for correct answers when the task is one
that people do reasonably well.
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