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Abstract

The gambler’s fallacy (Tune, 1964) refers to the belief that a streak is more likely to end than chance would dictate. In
three studies, participants exhibited a retrospective gambler’s fallacy (RGF) in which an event that seems rare appears to
come from a longer sequence than an event that seems more common. Study 1 demonstrates this bias for streaks, while
Study 2 does so with single rare events and shows that the appearance of rarity is more important than actual rarity. Study
3 extends these findings from abstract gambling domains into real world domains to demonstrate the generalizability of
the effects. The RGF follows from the law of small numbers (Tversky & Kahneman, 1971) and has many applications,
from perceptions of the social world to philosophical debates about the existence of multiple universes.
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1 Introduction
Statisticians know that large samples are more likely than
small samples to approximate the true population distri-
bution of random events such as coin flips or die rolls.
But people often ignore this distinction, and behave as
though small samples are just as representative — what
Tversky and Kahneman termed the “law of small num-
bers” (1971). Since people believe that small samples
should be representative of underlying random distribu-
tions, they tend to think of streaks (and low-probability
events more generally) as anomalies and suspect that a
non-random process is interfering. Thus when streaks oc-
cur in random processes, as is likely to happen over time,
individuals display a variety of biases that reflect their un-
ease with the fact that the sample does not represent the
distribution of the underlying population.

The most famous instantiation of this logic is the gam-
bler’s fallacy (Tune, 1964; Crites, 2003; Darke & Freed-
man, 1997; Gold, 1998) — the belief that a streak is more
likely to end than chance would dictate. For example, af-
ter a coin flip yields three successive “heads,” participants
are more likely to bet that the next flip will be tails than
after a mixed sequence that conforms to their schemata of
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what a random sequence will look like. This is a logical
extension from the belief in the law of small numbers. If
an individual expects a short sequence of coin flips to ap-
proximate the true distribution of all coin flips, then after
a short streak of heads, tails must be more likely in future
flips to “even out” the distribution. The end result is that
by believing this, people act as though successive trials of
a random event are not independent.

The gambler’s fallacy is a bias in which people make
inferences about future random events based on the out-
come of previous events. However, the law of small num-
bers should also lead to inferences about unknown past
events based upon knowledge of subsequent outcomes.
We call this the retrospective gambler’s fallacy: when
making inferences about a series of random events that
have occurred, people will show systematic biases in line
with their conceptions of randomness.

The most straightforward instantiation of the retro-
spective gambler’s fallacy would be formally identical
to the gambler’s fallacy, only in the past; after observ-
ing a coin land on three successive “heads,” an individual
might surmise that the flip immediately before the obser-
vation was a tails. While this would be a natural exten-
sion of the gambler’s fallacy, it has, to our knowledge,
never been tested. However, in this paper we explore
other instantiations that are more novel and unique to the
retrospective gambler’s fallacy; namely, that unlikely out-
comes will be perceived to have come from longer se-
quences than seemingly more common outcomes.

When individuals witness a low-probability event in a
random series, what conclusions might they draw about
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what preceded it? The law of small numbers suggests that
people will not believe that rare events should occur in
small samples of stochastic processes. Thus upon seeing
a rare event, they must either abandon the notion that the
process is stochastic, or abandon the notion that the sam-
ple is small. While there are documented situations in
which participants reject the notion of randomness (e.g.,
the hot-hand fallacy, Gilovich, Vallone & Tversky, 1985),
in this paper we focus on the other possibility: assuming
the sample must have been large.

Real-world examples of this fallacy readily come to
mind. If we hear that a teenager has unprotected sex
and becomes pregnant on a given night, we might infer
that she has been engaging in unprotected sex for longer
than if we hear she had unprotected sex but didn’t become
pregnant, whereas, to our knowledge at least, the proba-
bility of becoming pregnant as a result of each intercourse
is independent of the amount of prior intercourse. If you
hear that two of your neighbours played the lottery yes-
terday and one of them won, our guess is that you would
be more likely to assume that the one who has been play-
ing for ten years has won rather than the one who just
played this week for the first time in her life. Although it
is true that a greater number of trials makes it more likely
that the event will happen at some point in the series, the
number of past trials has no relation to the outcome of the
particular trial sampled, so witnessing an unlikely event
in isolation says nothing about the number of prior trials.

Indeed, this bias may even speak to theories of the ori-
gin of the universe. Puzzling over the unlikelihood of the
perfect alignment of all the variables enabling our uni-
verse to be stable and life to emerge (the “fine-tuning”
problem), an influential school of thought has countered
that as improbable as our universe is, it was inevitable for
such a universe to exist if we assume that a great num-
ber of universes varying randomly on the important vari-
ables either co-exist at any given time or have succeeded
each other for a very long time (see Misner, Thorne &
Wheeler, 1973, cited in Hacking, 1987). For example,
Leslie (1989, p. 70) writes that “the presence of vastly
many universes very different in their characters might
be our best explanation for why at least one universe has
a life-permitting character.” In other words, the “best ex-
planation” for a low-probability event is that it is only one
in a multitude of trials, which is the core intuition of the
reverse gambler’s fallacy. Yet others have criticized this
reasoning by pointing out that however improbable our
universe is, its occurrence tells us nothing about the exis-
tence of prior trials (Hacking, 1987), nor about the like-
lihood of co-existing multiple universes (White, 2000).
The philosophical debate is focused on whether such ar-
guments reflect the fallacy, but it provides little evidence
as to whether people actually ever exhibit such a fallacy
about more mundane matters. Note also that Hacking and

White argue that the fallacy is demonstrated by believing
in the very existence of prior trials, whereas we investi-
gate a weaker form, where the existence of prior trials is
a given, but the number of such trials is the focus.

We predict that in an unambiguously stochastic domain
— such as a coin toss or a die throw — people will believe
that the series of events has been occurring for longer af-
ter witnessing a seemingly unlikely event, than if no such
event is observed, even if the event, sampled in isolation,
in fact says nothing about the prior number of trials.

2 Study 1

2.1 Method
Participants and procedure. One hundred and eight
Stanford University undergraduates filled out a survey as
part of a course requirement. The survey was included
in a packet of unrelated one-page questionnaires. Packets
were distributed in class, and participants were given a
week to complete the entire packet.

Stimuli and design. Two versions of a survey were cre-
ated. Participants were asked to imagine that they walk
into a room, and as they enter they observe a man flip-
ping a coin five times. In the “streak” conditions, par-
ticipants were told that all five flips came up heads. In
the “non-streak” condition, participants were told that the
coin landed on heads three times and on tails twice. Par-
ticipants in both conditions were then asked to estimate,
in an open-ended format, how many times the man had
flipped the coin before they had entered the room.

2.2 Results and discussion
One outlier was eliminated for providing an estimate
greater than five standard deviations from the mean. Par-
ticipants believed that a sequence of coin flips was nearly
twice as long before a streak (M = 16.2) than when there
was no streak (M = 8.7), and this difference was signifi-
cant, t(106) = 2.17, p < .05, Cohen’s d = .42.

The results of Experiment 1 provide initial support for
the existence of the RGF. In observing a series of inde-
pendent events, one should learn nothing about the num-
ber of past events by witnessing subsequent events in the
sequence. A critic might argue that if the goal of the
coin-flipper was to achieve a streak of five heads, and the
flipper kept going until reaching that goal, then the ob-
servation of the streak actually would be suggestive of a
lengthier sequence. After all, the expected number of to-
tal flips necessary to observe a sequence of five heads is
greater than the average expected number of total flips
necessary to observe a sequence containing a mixture
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of heads and tails.1 However, in this experiment it was
clearly specified that the particular streak of five flips that
was observed was determined by chance elements (when
the participant happened to walk into the room) with no
stated goal of achieving this particular outcome. Under
these conditions, the objective expected total length of the
sequence is unrelated to what is observed. Moreover, ex-
plicitly stating that the observation of that particular set
of coin flips was arbitrary undermines the possibility of
pragmatic inference that the flipper was actively trying
to produce a streak. However, participants behaved as
though the observation of a streak was evidence that the
sequence was relatively long.

Study 1 focused on a particular category of rare event:
a streak. It is unclear at this point whether retrospective
reasoning about randomness is sensitive specifically to
streaks or whether this phenomenon can be observed in
response to any event that is perceived to be rare/unlikely.
That is, like streaks, single events that are rare may not be
expected to occur in small samples — the man who hits
the slot machine jackpot might be perceived to have been
playing for a longer time before winning, even though a
jackpot is a one-time event. Therefore, the logic under-
lying the RGF for streaks should also apply to other rare
single events. Study 2 was therefore designed to extend
the findings beyond responses to streaks.

Additionally, Study 2 was designed to address several
shortcomings in the first experiment. First, the scenario
in the first study may have been ambiguous; while the
number of each outcome (heads or tails) was given to
participants, the order of those outcomes was not. In the
streak condition, the order was unequivocal, as all five
outcomes were heads. However, in the non-streak condi-
tion, the three heads and two tails could have been in a
number of orders, ranging from alternating (HTHTH) to
streaky (TTHHH). It could be that this ambiguity shook
the confidence of participants and caused them to reduce
their estimations of sequence length. This issue was ad-
dressed in Study 2.

Finally, it has long been known that people reason
heuristically about subjective probability based on how
representative a sequence is of an individual’s notion of
what a random series should look like (Kahneman &
Tversky, 1972). In Study 1, the type of sequence that was
objectively less likely was also less representative of ran-
domness. Thus, the results of Study 1 do not shed light
on whether the RGF is driven by representativeness or by
the objective likelihood of a sequence.

Accordingly, Study 2 had four goals: to remove any

1To illustrate this, we created a simulation program in R (R Devel-
opment Core Team, 2009). With 10,000 iterations, the median number
of trials to get 5 heads in a row was 43 (mean = 63), while for only 3 it
was 10 (mean = 14) (For a more systematic computational approach to
“waiting times,” see Hombas, 1997, cited in Nickereson, 2007.)

confounds created by the ambiguity in the instructions
from Study 1, to tease apart the influence of represen-
tativeness vs. objective likelihood in eliciting the phe-
nomenon, to determine if the phenomenon could be ob-
served in rare single events in addition to streaks (Study
2a), and to determine if the effect would obtain in a
within-subject design (Study 2b).

3 Study 2a

3.1 Method

Participants and procedure. Eighty Stanford Univer-
sity undergraduates participated to fulfil part of a course
requirement. The survey was included in a packet of un-
related one-page questionnaires. Packets were distributed
in class, and participants were given a week to complete
the entire packet.

Stimuli and design. Three versions of a survey were
created, and each participant received only one version.
Participants were asked to imagine that they are in a
casino and happen to pass a man rolling dice. In one ver-
sion of the survey, participants were told they witnessed
three dice being rolled which all came up 6’s. In a second
condition, they witnessed three dice being rolled, two of
which came up 6’s and one of which came up a 3. A final
condition told participants that they witnessed the rolling
of two dice, both of which came up 6’s. Although rolling
two 6’s on two dice is objectively twice as probable as
rolling two 6’s and a 3 on three dice, the latter sequence
should be perceived as more representative of random-
ness (Griffiths & Tennenbaum, 2003). That is, it is more
representatively random for the outcome of multiple die
rolls to show several numbers than to have only a single
number come up multiple times. Participants in all con-
ditions were then asked to estimate, in an open-ended for-
mat, how many times the man had rolled the dice before
they had entered the room.

3.2 Results

Participants believed that a sequence of die rolls was
more than three times as long when a set of three 6’s were
observed (M = 34.2) than when there were only two 6’s
(M = 10.6), which in turn was believed to be longer than
the representatively random sequence of two 6’s and a 3
(M = 3.2).2 The differences between groups was reliable,
omnibus F(2, 77) = 4.8, p < .05, Cohen’s f = .18. Pairwise

2As in Study 1, we scanned for outliers. However, in Study 2 there
were no obvious outliers, so all data points were included in the analy-
sis.
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comparisons showed that all differences between condi-
tions were reliable as well, t(47,48,57) = 1.94, 2.32, 2.65,
p < .05, Cohen’s d = .56, .67, .69).

4 Study 2b

A critic might argue that in Study 2a participants had to
pick a number, and thus could not indicate that they felt
that there was no basis for judgment. Of course, were
that the case one would expect them to answer randomly.
The fact that there were reliable trends indicates that par-
ticipants behaved as though they believed it possible to
make inferences. That said, a stronger refutation to this
criticism is to allow participants to indicate that they don’t
believe there is a difference between events prior to rare
or common events. Thus, in Study 2b we ran a slightly
altered version of Study 2a, but using a within-subject
design.

4.1 Method

Participants, procedure, and design. Thirty-one par-
ticipants were recruited from the Princeton University
student center and compensated with candy. Participants
were provided with the same basic scenario as in Study 2a
in which they imagine observing a man rolling three dice.
The man either rolled triple 6’s in the “rare” condition or
a 2, 4, 5 in the common condition. Participants were then
asked to estimate, in an open-ended format, how many
times the man had rolled the dice before they had entered
the room. Participants responded to both conditions; the
order of presentation was counterbalanced.

4.2 Results

Three participants were eliminated from the analysis for
providing non-numerical answers (e.g., “many”). Partic-
ipants believed that a sequence of die rolls was more than
three times as long when a set of three 6’s were observed
(M = 20.4) than when a 2,4,5 was observed (M = 12.7).
A paired-samples t-test run on log-transformed data con-
firmed that this difference was reliable, t(27) = 2.67, p
< .05., Cohen’s d = .88. It is worth noting that half of
the participants provided the same answer for both sce-
narios. This suggests, that while the phenomenon is quite
prevalent, there are individual differences in susceptibil-
ity. However, as half of the participants did show the bias,
even in a conservative within-study design, it seems rea-
sonable to presume that the effect is not merely an artifact
of forcing participants to provide an answer.

4.3 Discussion of Studies 2a and 2b
Study 2 successfully replicated Study 1 using a different
domain. This scenario involved a single rare event, rather
than a streak in a series, suggesting that individuals do not
expect rare events to occur in small samples, and that this
expectation biases estimates of the number of total events
that have occurred. Furthermore, the fact that individuals
believed that two 6’s came from a longer series than two
6’s and a 3 is consistent with the predictions of the rep-
resentativeness heuristic (Kahneman & Tversky, 1972).
Moreover, the fact that the effect was strong enough to be
observable in a conservative within-subject design (Study
2b) is testament to its robustness. As before, we stress
that, although unlikely events are more likely to occur at
some point in a longer sequence,3 the number of prior tri-
als is independent of the outcome of any particular trial.

At this point the demonstration of the RGF has been
limited to two fairly artificial domains. This led not only
to questions about the robustness of the effect but also
about its generalizability. While the real world examples
of teenage pregnancy and lotteries discussed in the in-
troduction suggest that the RGF could apply to everyday
events, Studies 1 and 2 examined only aleatory domains.
This had the advantage of ensuring conditional indepen-
dence and thus serving as a rigorous arena for an initial
investigation. However ultimately this sort of reasoning
should apply to a wider array of events, a possibility we
explore in Study 3.

5 Study 3

5.1 Method
Participants. Thirty-one participants were recruited
from a list of Princeton University students and staff who
had signed up to be part of a paid subject pool. Partici-
pants were paid $8 for a half hour’s worth of lab activi-
ties, which included the present study as well as several
unrelated studies.

Stimuli and procedure. Sixteen stories were created
which described an activity that a person was engaging in
and the outcome of that activity. Because of a typograph-
ical error the results of one story were not included in the
analysis4. Two versions of each story were constructed,
one with a common outcome and one with an uncommon
outcome (see Table 1 for brief versions). For example,
“A little boy is playing in the sand at the beach and finds

3Again using an R simulation program with 10,000 iterations, the
median number of throws was 150 to get a triple 6, 25 to get a double
6, and 51 to get two 6 and a 3.

4“A woman was stuck in traffic” was accidentally transformed into
“a woman was struck in traffic.”
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Table 1: Summaries of stories used in Study 3, and descriptive statistics broken down by rare vs. common ending.
Note: TM is the 20% trimmed mean.

Story Version Estimated number of prior trials Likelihood ratings

Mean SD TM Median Mean SD

A man eats undercooked meat and
... gets sick 0.46 0.72 0.25 0 6.03 2.17
... does not get sick 26.40 76.68 3.67 3 4.40 2.25

A basketball team has a
... five-game winning streak 6.92 6.18 5.67 4 4.24 2.05
... one-game winning streak 3.06 2.73 2.73 3 8.46 2.05

A man’s train is
... three hours late 16.67 27.95 8.75 7 2.07 1.60
... five minutes late 24.80 33.41 13.56 10 7.70 1.86

A man purchases a lotto ticket and
... wins 78,287.46 276,955.33 857.89 150 1.30 0.79
... does not win 39.44 56.52 22.60 11 8.73 2.61

A man cheats on his taxes and
... gets caught 10.77 16.62 5.56 2 4.30 2.26
... does not get caught 2.26 2.45 1.86 2 5.70 2.07

A man buys a bottle of soda and
... wins a prize 637.08 1,696.04 141.25 150 1.57 0.73
... does not win a prize 67.35 241.06 3.64 1 9.2 1.37

A woman enters a raffle for concert tickets and
... wins 12.69 26.40 5.67 5 3.07 1.89
... does not win 3.91 3.28 3.23 3 7.97 2.13

A telemarketer calls somebody and
... makes a sale 146.92 261.52 82.78 75 2.53 1.17
... gets hung up on 115.25 237.99 59.20 50 6.97 2.16

A man pets a strangers dog and
... the dog bites him 26.00 22.43 21.56 15 3.77 2.11
... the dog is friendly 21.31 51.11 7.60 5.5 6.83 2.09

A boy is playing on the beach and
... finds a fish skeleton 11.42 14.56 7.00 8.50 3.17 1.93
... finds some shells 4.91 3.25 4.23 4 9.03 1.07

A woman is playing miniature golf and
... gets a hole in one 5.75 4.16 4.75 5 3.70 1.49
... takes four strokes on the current hole 5.59 6.56 3.82 3 5.83 2.12

A man enters a restaurant and is seated
... near a friend he hasn’t seen recently 4.25 5.03 3.12 3 2.87 2.16
... near a window 8.09 9.49 5.95 5 5.63 1.52

A man goes fishing and
... catches a very large fish 22.5 15.66 18.75 18.5 4.20 1.52
... catches only fish that are too small to keep 5.62 5.63 4.60 3 7.60 1.81

A man buys a guitar at a yard sale which
... turns out to be worth a lot of money 7.77 5.26 7.22 10 2.60 1.65
... turns out to be out of tune 2.79 2.02 2.68 2 8.40 1.89

A woman has unprotected sex and
... gets pregnant 7.31 7.65 6.11 3 5.97 1.99
... does not get pregnant 11.71 23.86 4.73 4 4.67 1.77
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some shells” (common) or “. . . finds a fish skeleton)” (un-
common). Participants were randomly assigned to either
the “common” or “rare” condition, and received stories
of only one type. In an open-ended response prompt, par-
ticipants were asked how many times the protagonist had
engaged in the activity prior to the current story. For ex-
ample “How many times has he been to the beach be-
fore?”

After answering all of the questions, participants were
distracted for approximately ten minutes while they filled
out unrelated surveys. They were then provided with the
scenarios again, but this time with both outcomes, and
asked to rate on a 10-point scale how likely each outcome
was to have occurred, e.g. “A little boy is playing in the
sand at the beach. On a scale of 1–10 how likely is he
to find (a fish skeleton/some shells) (1 = not at all likely,
10 = extremely likely)?” The order of presentation was
counterbalanced. This served as a manipulation check to
ensure that the rare events were indeed perceived as more
rare, and as a possible measure of mediation by perceived
likelihood.

5.2 Results and discussion

The data from one participant were excluded for failure
to follow the instructions. Additionally, responses given
in non-numeric form (e.g., “many”) were excluded (17
instances). Answers that were provided in a range were
set to the mean of the range (e.g. “2–3” entered as “2.5”)
for the purpose of analysis (11 instances).

The remaining 435 observations were log-transformed
to address the skewness of distributions [using log(x+.5)
to deal with zeros], and analyzed as a mixed-effect model
using lmer() from the lme4 package for R (Bates &
Maechler, 2009). Specifically, we modelled random in-
tercepts for the 15 remaining stories and the 30 remaining
participants, treating version (rare or common) as a fixed
factor (Model 1). As recommended by Baayen, David-
son, and Bates (2008), we used the pvals.fnc() function
of languageR (Baayen, 2008) with 100,000 iterations to
gauge significance. The results of these analyses are pre-
sented in Table 2. As predicted, we found that the contrast
for version was highly significant, t = 2.7, pMCMC < .005
— participants estimated a larger number of prior trials
when they received the rare version than when they re-
ceived a common version (see Table 1 for by-item means,
medians, and 20% trimmed means — Wilcox, 2001).

Although rarity was manipulated between participants,
all participants later rated how likely they thought both
version of each story would be. However, to test me-
diation, we considered only ratings of likelihood corre-
sponding to the version that participants encountered in
their condition. First, versions designed to appear more
surprising were on average rated less likely (Model 2), t

= −14.09, pMCMC < .0001. Second, when we included
perceived likelihood for the relevant version of the story
to the initial model (Model 3), we found that likelihood
was a significant predictor, t = −3.79, pMCMC = .0003,
but that version was no longer a significant predictor, t =
.58, pMCMC = .54. Thus it looks like the difference in esti-
mated number of trials observed between versions is me-
diated by the difference in average estimated likelihood.

Study 3 replicated the effects of Studies 1 and 2 in a
variety of real-world domains. This demonstrates the ro-
bustness of the effect and implies that the RFG is not lim-
ited to situations when people believe an item is amenable
to formal statistical analysis. Indeed the range of domains
in which the RGF can be shown suggests that this sort of
reasoning may be common outside of the laboratory.

6 General discussion

Three studies demonstrated that people believe that
events perceived to be unlikely come from longer se-
quences than events that seem more probable, a conse-
quence of reasoning retrospectively about random events
as though those events were not independent. In Study
1, participants estimated a greater number of trials pre-
ceding a streak of coin tosses than a more typically ran-
dom sequence. In Study 2, participants believed that
more trials preceded seemingly unlikely die rolls than a
more common-looking one, regardless of whether they
considered such events in isolation or side by side. Fi-
nally, Study 3 showed that this reasoning generalizes and
is prevalent in reasoning about rare and common events
more broadly. Just like John Leslie writing about the fine-
tuning problem in cosmology (1989), participants seem
to think that the “best explanation” for an unlikely event
is that it comes at the tail-end of many previous trials.

The retrospective gambler’s fallacy may arise from the
confusion between generating an unlikely event at some
point in a sequence vs. at a particular point in the se-
quence. If you know that an unlikely event happened at
some point in a sequence, all things being equal, it is ra-
tional to assume that the sequence was longer than one
that did not contain the unlikely occurrence (see Foot-
notes 1 and 3). If two men had been put in a room and
told to roll dice until getting a triple six, the first one to
come out is indeed expected to have rolled more times.
But if you just ask two men to roll dice continuously and
you walk into the room at a random point in time, see-
ing that one of them just rolled a triple six doesn’t tell
you anything about how many times he rolled before you
walked in. Even though the number of trials increases the
probability that a given event will be obtained at some
point in the sequence, it doesn’t change the probability
on any given trial.
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Table 2: Mixed-effect model equations for Study 3. Model 1 shows the effect of condition on estimates, while Models
2 and 3 serve to test mediation by likelihood ratings.

s2 b SE t pMCMC

Model 1 (Predicting log[estimates + .50])

Random Subject Intercept .27

Story Intercept 1.18

Residual 3.86

Fixed Version (rare) 0.74 0.27 2.73 .006

Intercept 1.23 0.33 3.71 <.0001

Model 2 (Predicting perceived likelihood)

Random Subject Intercept 0.13

Story Intercept 0.32

Residual 5.00

Fixed Version (rare) −3.54 0.25 −14.09 <.0001

Intercept 6.98 0.22 31.66 <.0001

Model 3 (Predicting log[estimates + .50])

Random Subject Intercept 0.28

Story Intercept 1.17

Residual 3.74

Fixed Version (rare) 0.18 0.31 0.58 .54

Likelihood −0.16 0.04 −3.79 .0003

Intercept 2.35 0.45 5.27 <.0001

Note: Analyses conducted using lmer() function of the lme4 package for R. Markov Chain Monte
Carlo p-values (pMCMC) computed using pvals.fnc() function of the languageR package for R, with
100,000 iterations.

This may be an instance of what Kahneman and Fred-
erick (2002) call attribute substitution — the notion that
people presented with a difficult question will often sub-
stitute a different question that they can answer. In the
current studies, the question of series length is difficult,
as there is no “right” answer. However, participants did
not answer randomly, as evidenced by the reliable dif-
ferences between conditions. One explanation for these
differences is that participants substituted the length of
the particular series they were being asked about with the
number of events necessary for them to expect such an
unlikely event to occur. Nonetheless, while there is no
“right” answer, we believe that making inferences about
sequence length from single observations is both natural
and common. This is evident in the fact that the findings
generalized to such a wide array of domains in Study 3.

These studies raise an interesting puzzle about the law

of small numbers. Original demonstrations of the law of
small numbers (Tversky & Kahneman, 1971) suggested
that people were insensitive to sample size when making
judgments about random events. However, in our studies
as the perceived rarity of an event increases, people esti-
mate that it came from a larger sample, which suggests
that people do indeed have an intuitive conception of the
importance of sample size (even if they are mis-applying
such conceptions in this instance). The literature on intu-
itive statistics is full of contradictory evidence about the
extent to which people consider sample size in statisti-
cal reasoning (for a review, see Sedlmeier & Gigerenzer,
1997). Investigations into the RGF could lend new in-
sight to this problem.

The fact that the magnitude of the bias appears to be
related to participants’ beliefs about the rarity of the out-
come has important methodological implications. In-
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vestigations on beliefs about subjective probability es-
timates can be hampered by participants “knowing the
right answer.” For example, anybody who has taken a
class in statistics should be able to tell you that there is a
50% chance of flipping a head even after five consecutive
tosses of tails. However, when the task is subtle enough,
even statistically sophisticated social scientists exhibit bi-
ases due to belief in the law of small numbers (e.g. Tver-
sky & Kahneman, 1971). This suggests that, while in-
dividuals can be trained to give the normatively correct
answer to a particular question, the underlying cognitive
mechanisms for reasoning about randomness remain un-
changed — it just takes more subtle and nuanced tasks to
measure them.

Because many students have been exposed to the gam-
bler’s fallacy in psychology and statistics courses, it
has become more difficult to measure reasoning about
stochastic processes using traditional methods. The RGF
offers a new tool in the repertoire for studying such top-
ics. Not only is it a novel paradigm that participants are
likely to be unfamiliar with, but by its very nature it pre-
vents participants from computing values of how prob-
able things are. Participants are never explicitly asked
for probability estimates, so such computations would not
give them the right answer.

In addition to their methodological implications,
these findings have important theoretical implications.
While this set of studies focused exclusively on judg-
ment/inference about unobserved past events, there is rea-
son to think that memory may similarly be biased by be-
lief in the law of small numbers. There is a large liter-
ature demonstrating that memory is reconstructive (e.g,.
Bartlett, 1932; Bower, Black, & Turner, 1979) and that
memories are constructed so as to be consistent with prior
beliefs (Abelson, 1981). Therefore, the beliefs that peo-
ple hold about the nature of randomness could reasonably
be expected to influence their memories for events that
are perceived to be generated by stochastic processes. In-
deed, recent research has shown that this can often be
the case (Olivola & Oppenheimer, 2008). As people’s
schemas of randomness do not include the presence of
long streaks, when people are exposed to sequences with
long streaks they often remember the streaks to be shorter
than they really were, damaging the accuracy of overall
recall.

Aside from memory biases, there are also potential real
world applications of the phenomenon. For example, the
RGF may tie into people’s belief in a just world (e.g.
Lerner & Miller, 1978). People may be more inclined
to “blame the victim” of unfortunate rare tragedies, on
the premise that the victim must have been engaging in
risky behaviors for a long time. Similarly, people may be

willing to attribute rare and lucky successes to the notion
that a person had been working towards that outcome for
a long time and thus deserved it. In another vein, people
who are biased in their estimates of how many trials pre-
ceded a perceived rare or common outcome might budget
their time and resources inefficiently, akin to the planning
fallacy (Buehler, Griffin & Ross, 1994).

The world is full of stochastic processes, and belief in
the law of small numbers is a powerful principle for un-
derstanding reasoning about randomness. A thorough un-
derstanding of such reasoning processes requires that we
not only examine how they influence our predictions of
the future, but also our perceptions of the past.
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