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Abstract

The Markov True and Error (MARTER) model (Birnbaum & Wan, 2020) has three components: a risky decision making

model with one or more parameters, a Markov model that describes stochastic variation of parameters over time, and a true and

error (TE) model that describes probabilistic relations between true preferences and overt responses. In this study, we simulated

data according to 57 generating models that either did or did not satisfy the assumptions of the True and Error fitting model,

that either did or did not satisfy the error independence assumptions, that either did or did not satisfy transitivity, and that had

various patterns of error rates. A key assumption in the TE fitting model is that a person’s true preferences do not change in

the short time within a session; that is, preference reversals between two responses by the same person to two presentations of

the same choice problem in the same brief session are due to random error. In a set of 48 simulations, data generating models

either satisfied this assumption or they implemented a systematic violation, in which true preferences could change within

sessions. We used the true and error (TE) fitting model to analyze the simulated data, and we found that it did a good job of

distinguishing transitive from intransitive models and in estimating parameters not only when the generating model satisfied

the model assumptions, but also when model assumptions were violated in this way. When the generating model violated the

assumptions, statistical tests of the TE fitting models correctly detected the violations. Even when the data contained violations

of the TE model, the parameter estimates representing probabilities of true preference patterns were surprisingly accurate,

except for error rates, which were inflated by model violations. In a second set of simulations, the generating model either had

error rates that were or were not independent of true preferences and transitivity either was or was not satisfied. It was found

again that the TE analysis was able to detect the violations of the fitting model, and the analysis correctly identified whether

the data had been generated by a transitive or intransitive process; however, in this case, estimated incidence of a preference

pattern was reduced if that preference pattern had a higher error rate. Overall, the violations could be detected and did not

affect the ability of the TE analysis to discriminate between transitive and intransitive processes.
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1 Introduction

When the same person is asked the same questions on dif-

ferent occasions, she or he does not always give the same

answers. For example, a person might be asked if she

prefers � = $40 for sure or if instead she prefers the gamble

� = ($100, 0.5; $0), a lottery with a probability of 0.5 to

win $100 or otherwise receive nothing. One day, she might

choose � but on the another day, she might choose �. It is

possible that she changed her mind in the intervening time,
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and it is also possible that the change in response was due

to random error. A family of true and error (TE) theories

has been developed in a series of papers to analyze such

reversals of preference in order to separate variability in re-

sponding due to changing true preferences from variability

due to random errors (Birnbaum, 2004, Appendix C; 2008,

2013; Birnbaum & Bahra, 2007, 2012a, 2012b; Birnbaum

& Quispe-Torreblanca, 2018).

Birnbaum and Wan (2020) proposed an extension of ba-

sic true and error (TE) theory: MARkov True and ERror

(MARTER) theory, in which parameters of a risky decision

making model change gradually over time according to a

random walk, which produces different true preference pat-

terns at different times. The theory retains the family of TE

models to represent the relationship between true preference

patterns and overt responses. The addition is a specific rep-

resentation of how true preference patterns can change over

time.

TE models can be used to analyze response patterns

obtained in empirical studies. Response patterns are com-
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binations of responses that may be indicative of satisfaction

or violation of critical properties of risky decision making

models. For example, some risky decision making models

imply that true preferences are transitive. That is, for all �,

�, and �,

if � ≻ � and � ≻ �, then � ≻ �

where � ≻ � denotes that a person truly prefers � to

�. Such models are called transitive, because they imply

that a person can never have an intransitive true preference

pattern, for example, of preferring � to �, � to � and �

over �. However, a set of overt responses might violate

transitivity due to error, such as might occur if a person

misreads an item, mis-remembers or mis-aggregates the

information, or pushes the wrong response key by accident.

So, we need a way to distinguish true preferences from

individual responses which might contain random error.

In the hypothetical experiment analyzed by Birnbaum and

Wan (2020), the experimenter has followed an appropriate

design in which each participant serves in many sessions

(blocks of trials), and within each session, each of the key

choice problems are replicated (presented at least twice), ran-

domly ordered, and embedded among filler trials. Choice

problems, replications, and fillers are intermixed and pre-

sented in random order with positions counterbalanced. Re-

sponses by the same person to the same choice problem

presented twice within the same session are called "repli-

cations"; responses by the same person to the same choice

problem in different sessions are termed "repetitions", to re-

mind the reader that a person’s true preferences may have

changed over time between sessions.

A key assumption in the TE fitting model is that changes

in response to the same item by the same person within the

same brief session are due to random error. This assumption

allows the TE models to separate probabilities of true pref-

erence patterns from probabilities of errors. One purpose

of this paper is to explore consequences of violation of this

assumption.

For three gambles, �, �, and �, there are three binary

choice problems, ��, ��, and ��. Let 1 or 2 represent

preference for the first or second listed item in a choice prob-

lem; in the three choice problems, there are 8 preference

patterns, 111, 112, 121, 122, 211, 212, 221, and 222, where

111 and 222 are intransitive, and the other patterns are tran-

sitive. This same notation can be used for true preference

patterns and for overt response patterns, but it is impor-

tant to maintain the distinction between true preferences and

overt responses. If there are two replications of these three

problems in each session, there are 64 (8 times 8) possible

response patterns per session.

In TE theory, overt responses may contain random er-

rors. Random errors may occur, for example, when a person

misreads an item, forgets or mis-remembers the information

or the decision, mis-aggregates the information; when ag-

gregating information over time, errors might occur when

evidence accumulation reaches the wrong decision thresh-

old, or when the wrong response button is pushed by accident

(a "typo"). Brief histories of developments that led to true

and error theory are given in Birnbaum (2004, 2013); recent

articles include Birnbaum & Diecidue (2015), Birnbaum et

al. (2016), Birnbaum and Quispe-Torreblanca (2018), Lee

(2018), Schramm (2020), Birnbaum and Wan (2020), and

Birnbaum (2019).

1.1 MARTER Models

A MARTER model adds additional structure to the TE

model: A full MARTER model specifies three components:

a risky decision making model that dictates the possible

response patterns, a stochastic model of how parameters

within that model behave over time to produce the different

true preference patterns, and the TE model that specifies the

relationships between true preferences and overt responses.

Birnbaum and Wan (2020) examined two particular risky

decision making models: a transitive, transfer of attention

exchange (TAX) model (Birnbaum, 2008) and a mixture

of intransitive Lexicographic Semiorders (LS) model (Birn-

baum, 2010). These risky decision making models were em-

bedded in stochastic structures following Markov processes

for changing parameters and TE models of the errors.

Birnbaum and Wan (2020) illustrated MARTER models

for a hypothetical mini-experiment designed to test transitiv-

ity of preferences. In their example, � = ($100, 0.50; $0), a

risky gamble with a 50% chance to win $100 and otherwise

nothing ($0); � = ($92, 0.58; $0), and � = ($84, 0.66; $0).

According a simplified TAX model (with one free pa-

rameter), the possible true preference patterns for choice

problems ��, ��, and ��, respectively, are 112, 211, 212,

and 221, for different values of the parameter, W. According

to the rival, LS mixture model, the possible preference pat-

terns are 111, 112, 221, and 222, depending on parameters

of that model.1 Either of these models can create a mixture

of true preference patterns over time, if parameters change

from session to session.

The main new ingredient in MARTER was the theorized

Markov process to describe how true preference patterns

change from session to session.

1.2 Example Markov Model

Figure 1 shows an example of a Markov model to represent

how true response patterns produced by different values of

W in the TAX model might drift from session to session in a

long study.

The model in Figure 1 shows that if a person has the true

preference pattern of 112 in a session, the probability to stay

1For more detail on these models, see Birnbaum and Wan (2020).
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Figure 1: A Markov model for a transitive (TAX) model be-

tween true preference states produced by changes of param-

eter, W. The dataset, Example 1, was generated with @ = 0.2

and ? = 0.1 (From Birnbaum & Wan, 2020).

in that state is 1 − @, and the probability to transition to 212

is @. A person in the 212 state can transition to 211 with

probability @, revert to 112 with probability ?, or stay in the

true preference pattern of 212 with probability 1 − ? − @.

In this model, the probability of a true, intransitive pref-

erence pattern (111 or 222) is zero, so this model is called

"transitive." The requirement that ?111 = ?222 = 0 means that

at no time does a person ever have an intransitive pattern of

true preferences.2

For small values of ? and @, the model in Figure 1 im-

plies that a person tends to retain the same true preferences

and when parameters (and true preferences) change in a

brief period, they tend to change to similar parameter values

(and to similar response patterns). Thus, this example can

be described as a Markov process with "gradual" changes.

Such a gradual process can be contrasted with a rival pro-

cess, for example, in which the decision maker randomly

and independently chooses a new set of parameters in each

new session or even on each new trial. Birnbaum and Wan

(2020) describe tests of independence properties and other

analyses that can be used to distinguish these different types

of stochastic processes.

In a Markov transition matrix, ?8 9 = the probability of

transition from State 8 in Session C to State 9 in Session C + 1.

A key assumption of a Markov process is that the transition

probabilities are constant for all C. The full Markov matrix

for the theoretically possible true preference patterns in a

three-choice study with replication is 8 by 8.

However, in the model of Figure 1 only 4 states are possi-

ble; i.e., all transitions to impossible states have probabilities

of 0; therefore, a 4 by 4 matrix can be used to summarize the

2This approach retains the original definition of transitivity in terms of

binary relations and avoids the "rabbit hole" created by early attempts to

address the problem of error by redefining "transitivity" in terms of averaged

behavior; i.e., in terms of binary response probabilities; for example, "weak

stochastic transitivity" and the "triangle inequality" are properties defined

on binary choice probabilities and not response patterns. Birnbaum and

Wan (2020) show that the analysis of binary response proportions cannot

be relied upon to correctly diagnose whether data were simulated from a

transitive or intransitive model.

Table 1: Markov Transition Matrix from Session C (rows) to

Session C + 1 (columns) used to generate Example 1.

Pattern 112 211 212 221

112 0.80 0.00 0.20 0.00

211 0.00 0.70 0.10 0.20

212 0.10 0.20 0.70 0.00

221 0.00 0.10 0.00 0.90

Transition matrix for model of Figure 1 with p = 0.1 and q

= 0.2 (Example 1). Steady state probabilities are .07, 0.27,

0.13, and 0.53 for 112, 211, 212, and 221, respectively.

model in Figure 1. If ? = 0.1 and @ = 0.2 in Figure 1, the 4

by 4 Markov transition matrix is as shown in Table 1.

Given such Markov transition matrix, as in Example 1 in

Table 1, one can calculate the steady state (long run average)

probabilities of each of the states (true preference patterns).

Fukuda (2004) has provided an Online calculator that imple-

ments standard Markov calculations. In Example 1 (Table 1

and Figure 1), these steady state probabilities are ?112, ?211,

?212, and ?221, and the other four patterns have probabilities

of 0. For the transition matrix in Table 1, the steady state

probabilities are calculated to be 0.07, 0.13, 0.27, and 0.53

for Patterns 112, 212, 221, and 221, respectively.

1.3 Example Simulation

Birnbaum and Wan (2020) presented a free, open-source,

Online program for simulating data, MARTER_sim.htm,

which is available in this journal’s Website as a supplement

to their paper and it is available on the Internet at URL:

http://psych.fullerton.edu/mbirnbaum/calculators/

MARTER_sim.htm

MARTER_sim.htm allows one to specify an 8 by 8 tran-

sition matrix and one can also specify an 8 by 8 matrix

of error probabilities, which are conditional probabilities of

each overt response pattern given each true pattern. The

program allows one to push a button to choose a simpler TE

model with 3 mutually independent errors, in which each

choice problem can have a different error rate.

To simulate the Example 1 dataset in MARTER_sim.htm,

we used the transition matrix of Table 1 (with all transitions to

impossible states set to 0), and selected mutually independent

TE errors with equal error rates, 41 = 42 = 43 = 0.10. These

settings implement the transitive generating model of Figure

1, with ? = 0.1 and @ = 0.2. The program generated 10,000

lines of simulated data by means of this model, representing

data of 10,000 hypothetical sessions with two replications

within each session. We constructed the crosstabulation fre-

quencies of response patterns and analyzed this matrix using

http://journal.sjdm.org/vol15.5.html
http://psych.fullerton.edu/mbirnbaum/calculators/MARTER_sim.htm
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the TE fitting model. (Procedures are more fully described

in Birnbaum & Wan, 2020).

1.4 Example Data Analysis

Table 2 shows the crosstabulation frequencies (counts) of

response patterns observed in the first (rows) and second

(columns) replications of 10,000 sessions simulated in this

example. Because there are 8 possible response patterns with

3 choices, there are 64 possible response patterns for the 6

choice items (3 choice problems with 2 replications). Note

that even though there are only 4 possible true preference

patterns, all 64 possible response patterns are observed, due

to error. Entries on the diagonal are cases where the same

response pattern was repeated on both replications within

a session. The "observed" data (simulated, in this case),

as in Table 2, are denoted $8 9 , where the indices for rows

and columns, 8 and 9 , respectively, range from 1 to 8, and

correspond to patterns 111, 112, 121, 122, 211, 212, 221,

and 222, respectively. These are the observed data to be fit

by the model.

The TE fitting model has 11 free parameters: The 8 prob-

abilities of the true states, ?111, ?112, ?121, ?122, ?211, ?212,

?221, and ?222, and the 3 error rates, 41, 42, and 43. Each

of the 64 theoretical, "expected" frequencies is the sum of 8

terms. For example, the theoretical frequency of repeating

the 111 pattern on both replications within a session (i.e.,

111111) is as follows:

�11 = =[?111 (1 − 41)
2(1 − 42)

2(1 − 43)
2

+ ?112 (1 − 41)
2(1 − 42)

2(43)
2

+ ?121 (1 − 41)
2(42)

2(1 − 43)
2

+ ?122 (1 − 41)
2(42)

2(43)
2

+ ?211 (41)
2(1 − 42)

2(1 − 43)
2

+ ?212 (41)
2(1 − 42)

2(43)
2

+ ?221 (41)
2(42)

2(1 − 43)
2

+ ?222 (41)
2(42)

2(43)
2]

where �11 is the calculated, "expected" or ’fitted" frequency

of showing this response pattern, 111111, and = is the num-

ber of sessions (in this case, 10,000).

Birnbaum and Wan (2020) fit the TE model to sim-

ulated data using Birnbaum’s (2013) Excel spreadsheet,

TE8x8_fit.xlsx. 3 This spreadsheet uses the Solver in Excel

to find best-fit estimates of parameters in the TE model to

fit frequencies (counts) of the response patterns observed on

the two replicates, as in Table 2. The Solver minimized�, an

index of fit similar to Chi-Square (Birnbaum & Wan, 2020).

When we use TE8x8_fit.xlsx to fit the data in Table 2, the

estimated parameters are 41 = 42 = 43 = 0.10, ?112 = 0.08,

3This program, TE8x8_fit.xlsx, is available from the journal’s Website

associated with Birnbaum and Wan (2020).

?212 = 0.13, ?211 = 0.26, and ?221 = 0.52, with the other

preference patterns having estimated probabilities of 0.00.

Thus, the estimated parameters from the TE fitting analysis

of this dataset are within 0.01 of the steady state probabilities

implied by the parameters used in the MARTER generating

model. The TE fitting model correctly recovers the steady

state probabilities implied by the Markov generating model.

The index of fit of the TE model was � = 55.0, which is not

significant (? > 0.05), indicating that the TE fitting model

is an acceptable description of the data.4

Birnbaum and Wan (2020) generated a number of simu-

lated datasets and found that the TE fitting model correctly

diagnosed whether the generating model used was a transi-

tive or intransitive model. Birnbaum and Wan (2020) noted

that the TE model has several advantages over other recently

advocated methods for data analysis, such as testing weak

stochastic transitivity or the triangle inequality, which can-

not be relied upon to correctly distinguish data generated

by transitive or intransitive processes, nor can these meth-

ods be used to accurately estimate the incidence of different

preference patterns.

1.5 Purposes of Present Study: Robustness to

Violations of Model Assumptions

In TE theory, at any given time, a person has a coherent

set of true preferences. However, over time true preferences

might change, and overt responses might be perturbed by

random errors. When fitting TE models, it is often assumed

that within a brief session, a person does not change true

preferences. This approximation (modelling assumption)

presumes that people are relatively consistent in their prefer-

ences and unlikely to change true preferences during a brief

span of time. That simplifying assumption allows one to use

preference reversals within sessions to estimate error rates.

However, suppose that this simplifying assumption is only

an approximation; suppose instead that people in fact change

might true preferences within sessions as likely as they do be-

tween successive sessions. One can ask three, related ques-

tions concerning the use of TE fitting models that employed

the approximation: First, would violations result in false

diagnosis of the substantive property under investigation?

For example, would violations of the TE model assumption

lead us to be unable to discriminate whether the generating

model was transitive or intransitive? Second, how would

violations of this assumption affect parameter estimates in

the TE model? That is, might estimates of the incidence of

intransitive behavior, for example, be biased? Third, would

an investigator using a TE fitting model be able to detect the

violations? The purpose of this paper is to explore these

questions by means of simulations.

4Although Birnbaum and Wan (2020) alluded to the model used here

as Example 1, they did not actually simulate or fit this case, using other

examples to illustrate the same points.
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Table 2: Crosstabulation. Frequencies of response patterns in Example 1 dataset, simulated from the model of Figure 1 with

@ = 0.2 and ? = 0.1

111 112 121 122 211 212 221 222

111 25 39 4 6 168 39 54 10

112 40 451 6 49 26 116 8 13

121 8 8 37 6 73 4 310 34

122 3 51 3 7 5 14 39 2

211 160 27 43 8 1444 239 450 61

212 40 133 6 14 223 743 40 78

221 55 10 288 34 460 71 2825 323

222 6 21 29 6 56 95 317 37

Total = = 10,000.

In MARTER_sim.htm, one can click a button labeled “Vio-

lation model”, which generates data in which the two “repli-

cations” within the same session are not true replicates, but

instead the Markov process has implemented one transition

step between "replications," using the same transition matrix

as specified between sessions. This feature of the program

was designed to facilitate exploring these questions about the

consequences of violations of this modelling assumption.

Exploring the effects of this type of violation is relevant

not only to address doubts about this important modelling

assumption, but also to the interpretation of applications

of the TE fitting model to older experiments that failed to

include replications within sessions. When using TE models

to reanalyze older experiments, in which the investigators did

not include replications within sessions, a practice has been

to take pairs of successive sessions and to combine them, as

if the second session in each pair is a replication.5

In addition, in order to explore the robustness of TE model

fitting and parameter estimation with unequal error rates,

we included cases in our first simulations in which error

rates varied over a 4:1 ratio. In Birnbaum and Wan (2020),

error rates for all choice problems were equal, so these new

simulations extend the scope of cases studied.

We also explored a second type of violation of the TE

fitting model’s assumptions in a second series of simulations.

The TE fitting model allows that each choice problem can

have a different error rate, but it assumes that the rate of error

is independent of a person’s true preferences. Suppose the

rate of error on a choice problem depends on whether the

person’s true preference pattern is transitive or intransitive?

The program, MARTER_sim.htm allows the user to change

the probability of an error on any item depending on the true

state. We again explored the effect of a 4:1 ratio of error

rates, confounded with transitive or intransitive preference

5Birnbaum’s (2020) reanalysis of Butler and Pogrebna (2020) used such

a method, for example, as did Müller-Trede’s (2020, personal communica-

tion) reanalysis of Müller-Trede et al. (2015).

states. Will an intransitive process appear transitive (or vice

versa) if the error terms in the generating model violate

the assumptions of the fitting model? Would the estimated

incidence of transitive or intransitive patterns be affected by

this type of violation?

One might ask, if we detect a significant violation of the

model, why would we examine the estimated parameters at

all? The answer is that all models are wrong, and yet some

can be useful because they are good approximations. For

example, it is well-known that magnetic north is not the

same as true north, and yet the magnetic compass can still be

useful for navigation. Knowing the kinds of local biases in

the readings given by a compass can be important in certain

cases, but in many cases, (as in finding one’s way in a desert),

one can assume the compass points true North and reach the

correct destination. The assumptions of ANOVA are often

violated, and yet people still use the ANOVA model to esti-

mate main effects and test their significance. If the TE model

is to be used as the standard for assessing whether a property

like transitivity holds, it seems important to learn about the

robustness of the model to violations of the model in which

the simplifying assumptions are only approximations.

2 Simulation Set 1: Violation of

Replication Assumption

We simulated 48 datasets using MARTER_sim.htm. The 48

datasets were constructed from a 6 by 4 by 2, factorial com-

bination of 6 Markov transition matrices, 3 of which were

transitive and 3 intransitive, combined with 4 Error patterns,

and with either the Standard Model or the “Violation” model.

The 6 Markov transition matrices had been constructed by

Birnbaum and Wan (2020) to represent plausible transitive

or intransitive RDM models. The Trans 1 generating model

allowed only patterns 112, 211, 212, and 221, as in Figure

1, except the transition probabilities were @ = ? = 0.1; these

http://journal.sjdm.org/vol15.5.html
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Table 3: Estimated probabilities of true preference patterns for Trans 1

Type Error

Pattern

?111 ?112 ?121 ?122 ?211 ?212 ?221 ?222

Standard E1 0.00 0.25 0.00 0.00 0.25 0.25 0.25 0.00

Standard E2 0.00 0.25 0.00 0.00 0.24 0.24 0.27 0.00

Standard E3 0.00 0.28 0.00 0.00 0.25 0.24 0.23 0.00

Standard E4 0.00 0.24 0.00 0.00 0.25 0.25 0.27 0.00

Violation E1 0.00 0.27 0.00 0.00 0.24 0.27 0.22 0.00

Violation E2 0.00 0.26 0.00 0.00 0.24 0.27 0.22 0.00

Violation E3 0.00 0.27 0.00 0.00 0.22 0.25 0.27 0.00

Violation E4 0.00 0.25 0.00 0.00 0.26 0.25 0.24 0.00

In Trans 1, the true patterns were 112, 211, 212 and 221.

Table 4: Estimated probabilities of true preference patterns for Trans 2

Type Error

Pattern

?111 ?112 ?121 ?122 ?211 ?212 ?221 ?222

Standard E1 0.00 0.32 0.00 0.00 0.00 0.00 0.68 0.00

Standard E2 0.00 0.30 0.00 0.00 0.00 0.00 0.69 0.00

Standard E3 0.00 0.34 0.00 0.00 0.00 0.00 0.66 0.00

Standard E4 0.00 0.34 0.00 0.00 0.01 0.00 0.65 0.00

Violation E1 0.00 0.33 0.00 0.00 0.00 0.00 0.67 0.00

Violation E2 0.00 0.32 0.00 0.00 0.00 0.00 0.68 0.00

Violation E3 0.00 0.32 0.00 0.00 0.00 0.00 0.68 0.00

Violation E4 0.00 0.29 0.00 0.00 0.00 0.00 0.71 0.00

In Trans 2, the true patterns were 112 and 221.

transitions imply steady state probabilities of ?112 = ?211 =

?212 = ?221 = 0.25. Trans 2 allowed only two patterns:

112 and 221, with steady state probabilities of ?112 = 0.67

and ?221 = 0.33, respectively. Trans 3 allowed patterns of

121, 122, 211, 212, and 221, with probabilities of 0.15, 0.15,

0.15, 0.15, and 0.40, respectively.

Intrans 1 allowed patterns of 111, 112, 221, and 222, with

equal steady state probabilities (i.e., 0.25 each). Intrans 2 and

Intrans 3 included patterns of 111, 221, and 222, with steady

state probabilities of 0.33, 0.33, and 0.33. Although Intrans 2

and Intrans 3 have the same steady state probabilities, Intrans

2 implemented a Markov process with gradual stochastic

transition among the true preference patterns, whereas in

Intrans 3 a new set of true preferences was chosen randomly

and independently in each session.

The 3 transitive models (Trans 1, Trans 2, and Trans 3)

allowed nonzero transition probabilities only to transitive

true preference patterns; the 3 intransitive models (Intrans 1,

Intrans 2, and Intrans 3) allowed intransitive patterns of 111

or 222, as well as transitive patterns, 112 and 221.

Trans 2, Trans 3, Intrans 2 and Intrans 3 all generate

approximately the same binary choice proportions, which

satisfy weak stochastic transitivity and the triangle inequal-

ity when error rates are equal (Birnbaum & Wan, 2020).

Thus, an investigator analyzing only binary choice propor-

tions would conclude that the data can be fit perfectly to a

mixture of linear orders, even in cases where an intransitive

model generated the data (Birnbaum & Wan, 2020). Thus,

an investigator who applied the procedures of Regenwetter,

Dana, & Stober (2010, 2011) might erroneously conclude

that data satisfied transitivity perfectly, even though they

were generated from an intransitive process.

There were 4 Error Patterns used, labeled E1, E2, E3,

and E4. In the E1 pattern, the error rates of the three vari-

ables were all equal and set to 0.1, as in Birnbaum and Wan

(2020). In E2, E3, and E4, the error rates for the three choice

problems (41, 42, 43) were set to (0.05, 0.10, 0.20), (0.20,

0.05, 0.10), and (0.10, 0.20, 0.05), respectively, which form

a Latin Square.
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Table 5: Estimated probabilities of true preference patterns for Trans 3

Type Error

Pattern

?111 ?112 ?121 ?122 ?211 ?212 ?221 ?222

Standard E1 0.00 0.00 0.15 0.14 0.14 0.16 0.40 0.00

Standard E2 0.00 0.00 0.16 0.14 0.14 0.15 0.40 0.00

Standard E3 0.00 0.00 0.20 0.18 0.15 0.15 0.32 0.00

Standard E4 0.00 0.00 0.14 0.15 0.16 0.16 0.40 0.00

Violation E1 0.00 0.00 0.16 0.13 0.16 0.14 0.41 0.00

Violation E2 0.00 0.00 0.18 0.15 0.14 0.16 0.37 0.00

Violation E3 0.00 0.00 0.16 0.14 0.15 0.16 0.40 0.00

Violation E4 0.00 0.00 0.16 0.14 0.16 0.12 0.42 0.00

In Trans 3, the true patterns were 121, 122, 211, 212, and 221.

Table 6: Estimated probabilities of true preference patterns for Intrans 1

Type Error

Pattern

?111 ?112 ?121 ?122 ?211 ?212 ?221 ?222

Standard E1 0.26 0.25 0.00 0.00 0.00 0.00 0.24 0.25

Standard E2 0.24 0.26 0.00 0.00 0.00 0.00 0.24 0.25

Standard E3 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25

Standard E4 0.24 0.24 0.00 0.00 0.00 0.00 0.26 0.25

Violation E1 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25

Violation E2 0.25 0.24 0.00 0.00 0.00 0.00 0.27 0.25

Violation E3 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25

Violation E4 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25

In Intrans 1, the true patterns were 111, 112, 221, and 222.

3 Results of Simulations Set 1

3.1 Estimates of True Preference Patterns

Tables 3-8 present parameter estimates from TE fitting mod-

els, representing estimated steady state probabilities of the 8

possible true preference patterns, with separate tables for dif-

ferent generating models and a separate row for each dataset

generated using each set of error rates. Within each table,

the first four rows show results with the Standard model (in

which the generating model satisfied the TE fitting model),

and the last four rows show the results for the Violation

model, in which the generating model allowed true prefer-

ences to change within sessions.

These tables give a clear answer to the first (most impor-

tant) question: Can TE analysis correctly diagnose transitive

versus intransitive models, even when assumption of the TE

fitting model are violated? The answer is "yes". In all 48

simulations, those preference patterns that were 0 in the gen-

erating model were estimated to be within 0.01 of 0. So, a

person using the TE fitting model would correctly conclude

that Trans 1, Trans 2, and Trans 3 do not contain evidence of

intransitive preference patterns, and that Intrans 1, Intrans 2,

and Intrans 3 do contain substantial evidence of intransitivity.

Tables 3−8 also show that the estimated probabilities of

the true preference patterns are very close to the steady state

values implied by the Markov generating models, even when

the model assumption is violated. The worst discrepan-

cies are in Table 8 for Intrans 3 with the violation model,

where the estimated probability of 221 is overestimated and

the other two (intransitive) true patterns are underestimated.

But even in this worst case, one would not reach the false

conclusion that the generating model was transitive. There-

fore, with respect to the second question, we see that the

estimates of the probabilities of the true preference patterns

are fairly accurate in the case of gradual Markov transition

matrices, though they do show some bias in the case where

a person can suddenly adopt new preferences randomly and

independently within a session.
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Table 7: Estimated probabilities of true preference patterns for Intrans 2

Type Error

Pattern

?111 ?112 ?121 ?122 ?211 ?212 ?221 ?222

Standard E1 0.34 0.00 0.00 0.00 0.00 0.00 0.32 0.33

Standard E2 0.30 0.00 0.00 0.00 0.00 0.00 0.34 0.36

Standard E3 0.33 0.00 0.00 0.00 0.00 0.00 0.34 0.32

Standard E4 0.38 0.00 0.00 0.00 0.00 0.00 0.33 0.28

Violation E1 0.35 0.00 0.00 0.00 0.00 0.00 0.33 0.32

Violation E2 0.35 0.00 0.00 0.00 0.00 0.00 0.33 0.32

Violation E3 0.33 0.00 0.00 0.00 0.00 0.00 0.34 0.32

Violation E4 0.34 0.00 0.00 0.00 0.00 0.00 0.33 0.33

In Intrans 2, the true patterns were 111, 221, and 222.

Table 8: Estimated probabilities of true preference patterns for Intrans 3

Type Error

Pattern

?111 ?112 ?121 ?122 ?211 ?212 ?221 ?222

Standard E1 0.33 0.00 0.00 0.00 0.00 0.00 0.34 0.33

Standard E2 0.33 0.00 0.00 0.00 0.00 0.00 0.34 0.33

Standard E3 0.34 0.00 0.00 0.00 0.00 0.00 0.33 0.33

Standard E4 0.34 0.00 0.00 0.00 0.00 0.00 0.33 0.32

Violation E1 0.23 0.00 0.00 0.00 0.00 0.00 0.57 0.20

Violation E2 0.23 0.00 0.00 0.00 0.00 0.00 0.53 0.25

Violation E3 0.23 0.00 0.00 0.00 0.00 0.00 0.56 0.21

Violation E4 0.25 0.00 0.00 0.00 0.00 0.00 0.58 0.17

In Intrans 3, the true patterns were 111, 221, and 222.

3.2 Estimates of Error Rates

Tables 9−12 show the estimated error rates, with a separate

table for each pattern of errors used in the generating mod-

els, and a separate row for each case of a different Markov

transition matrix. The last six rows in each table are for

the generating models based on Violation of the modeling

assumption.

The estimated error rates (in Tables 9-12) are quite accu-

rate for all cases of the Standard model. However, in the

Violation models, they show significant inflation. That is,

estimated error rates are larger in cases of the Violation mod-

els than the values used to simulate the data. The worst case

again is in the Violation model of Intrans 3, where errors are

not only large, but also more nearly equal compared with the

values used to generate the data.

Thus, Tables 9−12 address part of the second question;

namely, they indicate that violation of the TE fitting model

assumption that people do not change true preferences within

session resulted in larger estimated error rates. This conclu-

sion should not be surprising since the model assumes that

changes in response within sessions are due to error, but the

generating model allowed true changes of preference within

sessions, so the fitting model’s estimates contain two sources

of variation.

3.3 Detecting Violations of the Model

The last column in each of Tables 9−12 shows the index of fit,

� for the TE model with all 11 parameters free. One can see

that for the standard model, � ranges from 37.9 to 71.7. The

critical value with U = 0.05 is 71.0, and only 1 of 24 cases

of the Standard model exceeded that value. However, in all

24 cases of the Violation model, deviations are significant,

with � ranging from 229 to 9498. In each of these cases, a

person would be aware that the model is seriously violated.

These data give a clear answer to the third question: this type

of violation of the TE model can indeed be detected by the

test of fit.
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Table 9: Estimates of error rates in Error Pattern E1

Model Type 41 42 43 Fit (�)

Trans 1 Standard 0.10 0.10 0.10 47.2

Trans 2 Standard 0.10 0.10 0.10 51.9

Trans 3 Standard 0.10 0.09 0.10 57.9

Intrans 1 Standard 0.10 0.10 0.10 61.3

Intrans 2 Standard 0.10 0.10 0.10 64.9

Intrans 3 Standard 0.10 0.10 0.10 54.0

Trans 1 Violation 0.11 0.12 0.12 277.0

Trans 2 Violation 0.15 0.15 0.15 3925.7

Trans 3 Violation 0.11 0.13 0.15 720.4

Intrans 1 Violation 0.13 0.14 0.19 1009.2

Intrans 2 Violation 0.12 0.12 0.13 860.1

Intrans 3 Violation 0.26 0.26 0.30 8375.9

Values used to generate data were 0.10, 0.10, and 0.10.

Table 10: Estimates of error rates in Error Pattern E2

Model Type 41 42 43 Fit (�)

Trans 1 Standard 0.05 0.10 0.20 60.2

Trans 2 Standard 0.05 0.10 0.20 61.1

Trans 3 Standard 0.05 0.10 0.21 43.8

Intrans 1 Standard 0.05 0.10 0.21 67.7

Intrans 2 Standard 0.05 0.10 0.20 63.7

Intrans 3 Standard 0.05 0.10 0.20 51.0

Trans 1 Violation 0.07 0.11 0.21 244.2

Trans 2 Violation 0.10 0.15 0.22 3181.1

Trans 3 Violation 0.06 0.13 0.24 555.7

Intrans 1 Violation 0.10 0.13 0.27 1573.5

Intrans 2 Violation 0.08 0.12 0.21 1083.1

Intrans 3 Violation 0.25 0.25 0.32 9498.5

Values used to generate data were 0.05, 0.10, and 0.20.

3.4 Testing Transitivity: Significance Tests

Besides examination of parameter estimates to test transitiv-

ity, one can also use statistical tests of the hypothesis that

?111 = ?222 = 0. We fixed ?111 = ?222 = 0, and fit the TE

model with this restriction. The difference in � between the

fits of the TE model with all parameters free and with two

parameters fixed is theoretically Chi-Square distributed with

2 degrees of freedom.

We fit this transitive TE model to all 48 sets of data (with

?111 = ?222 = 0 fixed). We found that in no case did the

difference in � reach significance for the 24 datasets gener-

ated from transitive models, and in all 24 cases of datasets

Table 11: Estimates of error rates in Error Pattern E3

Model Type 41 42 43 Fit (�)

Trans 1 Standard 0.21 0.05 0.10 59.0

Trans 2 Standard 0.20 0.05 0.10 52.0

Trans 3 Standard 0.20 0.05 0.10 70.5

Intrans 1 Standard 0.20 0.05 0.10 71.7

Intrans 2 Standard 0.20 0.05 0.10 37.9

Intrans 3 Standard 0.19 0.05 0.10 67.1

Trans 1 Violation 0.21 0.07 0.12 229.2

Trans 2 Violation 0.22 0.11 0.14 3457.0

Trans 3 Violation 0.20 0.08 0.15 672.6

Intrans 1 Violation 0.21 0.09 0.19 645.2

Intrans 2 Violation 0.21 0.08 0.12 638.8

Intrans 3 Violation 0.29 0.26 0.30 7077.0

Generating values were 0.20, 0.05, and 0.10.

Table 12: Estimates of error rates in Error Pattern E4

Model Type 41 42 43 Fit (�)

Trans 1 Standard 0.09 0.20 0.05 57.1

Trans 2 Standard 0.10 0.19 0.05 52.1

Trans 3 Standard 0.11 0.20 0.05 51.9

Intrans 1 Standard 0.10 0.20 0.05 69.2

Intrans 2 Standard 0.10 0.20 0.05 63.3

Intrans 3 Standard 0.10 0.20 0.05 50.6

Trans 1 Violation 0.12 0.20 0.07 249.7

Trans 2 Violation 0.14 0.23 0.11 3323.4

Trans 3 Violation 0.11 0.20 0.11 611.8

Intrans 1 Violation 0.14 0.22 0.15 437.5

Intrans 2 Violation 0.12 0.21 0.08 451.4

Intrans 3 Violation 0.28 0.30 0.28 6531.8

Values used to generate data were 0.10, 0.20, and 0.05.

generated from intransitive models, the the difference was

large and significant (the smallest � (2) was 443.9). Note

that this perfect discrimination held not only for the datasets

generated from the standard TE models but also for the 24

violation cases (where the TE model did not fit). So, these

simulations indicate that even when the TE model assump-

tions were violated, and the TE fitting model did not achieve

adequate fit, the significance tests of the transitive special

case model were apparently "robust"; that is, they correctly

retained or rejected transitivity for the cases we examined.

As noted below, we nevertheless remain skeptical whether

one should decide scientific questions based on significance

tests alone, even when the framework model is satisfied.
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4 Simulation Set 2: Alternative Error

Model

In this section, we explore the robustness of estimates and

the detection of violation of the error model. The main

question explored is as follows: Is it possible that the true

and error model would lead to wrong conclusions regarding

transitivity if the error model in the TE fitting program does

not match the error model that generated the data. Suppose

that when a person is in the state of having an intransitive re-

sponse pattern that the error rates are systematically larger (or

smaller) than when in other states? This question is related to

TE models examined by Birnbaum and Quispe-Torreblanca

(2018) in which the error rates might be dependent on the

true preference states.

For example, in the Intrans 1 model, four true preference

patterns are possible (have probabilities greater than zero):

111, 112, 221, and 222. Suppose that error rates are different

when a person has a truly intransitive preference pattern (111

or 222) than when a person is in a transitive preference state

(112 or 221). Let 41, 42 and 43 represent the error rates when

a person has true preference states of 111 or 222 and let 51, 52
and 53 represent error rates when the person is in the true

preference state of 112 or 221.

The expected frequency of repeating the 111 pattern in

this model is then:

�11 = =[?111 (1 − 41)
2(1 − 42)

2(1 − 43)
2

+?112 (1 − 51)
2(1 − 52)

2( 53)
2

+?221 ( 51)
2( 52)

2(1 − 53)
2

+?222 (41)
2(42)

2(43)
2]

where �11 is the predicted frequency of the 111,111 response

pattern in this model, and = is the number of simulated

sessions, each with two replications. The questions are, if we

fit the data with a TE fitting model that assumes that 41 = 51,

42 = 52, and 43 = 53, would the parameter estimates be

misleading with respect to the issue of transitivity, and would

the analysis detect this source of violation of its assumptions?

And if we started with a transitive generating model with

unequal error rates for different true preference patterns,

would it be possible for transitive data to appear intransitive

if errors are mis-specified in the fitting model?

To examine these questions, we used the

MARTER_sim.htm program to simulate the Trans 1

and Intrans 1 MARTER models, except we entered different

error rates for different true states.

5 Design of Simulation Set 2

There were two MARTER models, Trans 1 and Intrans 1,

whose transition matrices are given in Birnbaum and Wan

(2020), except the error rates were not independent of true

preferences. Trans 1 allows only the patterns 112, 211, 212,

and 221, each with equal steady state probabilities of 0.25.

Intrans 1 allows only the patterns 111, 112, 221, and 222,

also with equal steady state probabilities of 0.25.

In the four "control" conditions, the generating model

matched the TE fitting model. The error rates (for Trans 1

and Intrans 1) were set to either 41 = 42 = 43 = 0.05 or

41 = 42 = 43 = 0.20; these are labeled E05 and E20 in Table

13, respectively.

The four "violation" conditions used different error rates

for different true preference patterns, as follows: In Trans 1

F05-20, the error rates for true patterns of 112 and 221 were

41 = 42 = 43 = 0.05 and for true patterns of 211 and 212,

error rates were 51 = 52 = 53 = 0.2. In Trans 1 G20-05, the

rates were reversed, so for true patterns of 112 and 221, error

rates were 41 = 42 = 43 = 0.2 and for true patterns of 211 and

212, the error rates were 51 = 52 = 53 = 0.05. In Intrans 1

F05-20, the transitive true patterns of 112 and 221 had errors

rates of 41 = 42 = 43 = 0.05 and the intransitive patterns of

111 and 222 had higher error rates of 51 = 52 = 53 = 0.2.

In Intrans 1 G20-05, these were reversed: the transitive true

patterns, 112 and 221, had higher error rates of 0.2 and the

intransitive patterns had the lower rates of 0.05.

6 Results of Simulation Set 2

Table 13 shows the estimated parameters of the TE fitting

model and the index of fit, applied to the crosstabulation

tables for the 8 simulated datasets. To save space in the

table, parameters are listed as percentages, so for example,

05 designates 0.05. The results for the four control conditions

are listed in the first four rows of the table, and the last four

rows show the results for the cases where the generating

model used an error structure that did not match the error

structure of the TE fitting model.

The indices of fit show that all of the "control" conditions

achieved acceptable fits, since the largest � value was 62.9,

well below the critical value. However, all four of the other

cases have indices of fit that are more than 100 times the

critical value. Thus, this source of violation of the fitting

model can be detected by the analysis.

The parameter estimates show that in all 8 datasets, includ-

ing those that violated the fitting model assumptions, those

preference patterns that were not possible in the generating

model had estimated probabilities of 0.01 or less. Thus, the

ability to discriminate between generating models that were

transitive versus intransitive was not much affected, even in

the cases where the error model was not correctly specified.

The estimated values of probabilities of true patterns were,

however, systematically biased by the mis-specified errors.

Those true patterns that were associated with lower error

rates had higher estimated probabilities relative to those with
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Table 13: Estimated parameters and index of fit for Simulations 2

Condition Error 41 42 43 ?111 ?112 ?121 ?122 ?211 ?212 ?221 ?222 Fit (�)

Trans1 E05 05 05 05 00 27 00 00 24 23 26 00 62.9

Trans1 E20 20 20 20 00 26 00 00 27 25 21 00 48.0

Intrans1 E05 05 05 05 25 25 00 00 00 00 26 24 58.6

Intrans1 E20 20 19 20 24 27 00 00 00 00 24 24 46.5

Trans1 F05-20 12 11 12 00 33 00 00 17 21 28 00 1241.9

Trans1 G20-05 12 12 12 01 18 01 01 31 32 17 00 1367.1

Intrans1 F05-20 12 13 12 17 32 00 01 00 00 33 18 949.9

Intrans1 G20-05 12 12 12 31 16 00 00 01 01 19 32 887.0

Error Conditions E05 and E20 used generating models with equal errors of 0.05 and 0.20, respectively. In F05-20,

the errors for true patterns 112 and 221 were 0.05 and all others were 0.20; in G20-05, true patterns of 112 and 221

had error rates of 0.20 and all others were 0.05. Parameter estimates of TE fitting model are expressed as percentages;

e.g., 05 indicates 0.05.

higher error rates. For example, the true patterns of 112 and

221 had lower error rates in the F05-20 conditions, and had

estimated incidences of 33 and 28 in Trans 1 and 32 and 33

in Intrans 1; however, in the G conditions, where error rates

for these true patterns were higher, the estimated incidences

were only 18 and 17 in Trans 1 and 16 and 19 in Intrans 1.

These figures can be compared with 25, which corresponds

to the generating models. Similarly, the estimated incidence

of intransitive behavior (111 or 222 patterns) is either exag-

gerated or diminished when the error rates in the generating

model were lower or higher than those for other patterns.

Note that in the control conditions, the error rates did not

produce any systematic bias in the estimates of probabilities

of preference patterns.

In sum, Simulation Set 2 shows that if the error model is

mis-specified, this source of violation of the TE fitting model

can be detected. But even with an oversimplified fitting

model, TE analysis can still easily discriminate whether the

generating model was transitive or intransitive (i.e., one can

discriminate which true preference patterns are zero or non-

zero in probability). However, the relative incidences of

the true preference patterns can be biased by using an over-

simplified error model to estimate parameters.

7 Discussion

These simulations give clear answers to the three main ques-

tions, at least for the cases we have studied so far: First, with

respect to the conclusions regarding the substantive property

(transitivity, in these cases), the TE fitting model appears to

be able to diagnose the process that had been used to generate

the data (transitive or intransitive), even when the generating

mechanism contained a violation of the assumption that true

preferences remain fixed within a session and even when

error rates were not equal or independent of true preference

state.

Second, with respect to the question of robustness of pa-

rameter estimates to violations of the model: The determi-

nation of the probabilities of true preference patterns of zero

were surprisingly accurate, in cases where the assumption

regarding replications was violated and even when the er-

ror model was violated. Those preference patterns that had

probabilities of 0 in the generating model were found to have

estimated values in the TE fitting model very close to 0.0.

The nonzero probabilities were also quite accurately es-

timated, even when the assumption concerning replications

was violated. However, the estimated incidence of a pat-

tern could be reduced when the error structure incorrectly

assumed error rates were independent of the true preference

patterns. The least accurate case occurred with the violation

case of Intrans 3, where the degree of intransitive behav-

ior was underestimated relative to the degree of transitive

behavior. The model of Intrans 3 is, of course, the theoreti-

cally worst case that seems plausible, because the generating

model allows a new preference pattern to be selected ran-

domly and independently in each replication, but the model

assumes that the true preferences are the same.6

In the first set of simulations, estimates of error rates

were inflated in the cases of generating models that violated

the TE fitting model’s assumption that true preferences do

not change within a session. The largest bias occurred in

the case of Intrans 3 with violations. Intrans 3 is the case

where a person adopts a new set of parameters randomly and

independently in each new session; in the violation model,

6A potentially worse case could be imagined but it seems very implau-

sible. In that case, there would be a negative correlation in the value of

parameters between replications within a session, as if a person exhibited

opposite behavior within short interval, thus appearing maximally incon-

sistent. Such behavior has not been observed.
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that means the person can randomly adopt new preference

patterns within the session as well. So the estimated error

term combines these true changes of preference with the

error rate.

Third, with respect to the question of whether violations of

the model might go undetected: The tests of fit correctly in-

dicated which sets of data had been generated with violations

of the fitting model. In all 24 cases of the Violation model

(replication assumption) in Tables 9 through 12, the index

of fit was very large, indicating one should reject the model.

In 23 of 24 cases of the Standard model, the index was not

significant (p < 0.05), and even in the one "significant" case,

the index was not large. In the case of mismatch between the

generating model and fitting model error specifications, the

index of fit was significant in all 4 cases in Table 13 where

it should be and was not significant in all 4 cases where it

should not.

A person might choose new preferences randomly at the

start of each session, as in the simulation of Intrans 3. This

case is not a violation of the TE model and should not be

confused with the "violation" models explored here. How-

ever, this is the situation in which the Violation model can

make the biggest difference because the person’s true prefer-

ences change by the most within a session because they are

randomly chosen.

The issue of mismatch in the error specifications is re-

lated to the kinds of error models explored in Birnbaum and

Quispe-Torreblanca (2018), in which error rates might differ

depending on a person’s true preference pattern. In the ex-

amples we have studied so far, we have not yet found a case

where this type of mismatch has confused the discrimina-

tion between transitive and intransitive generating models.

However, this type of violation produces a systematic under-

estimation of the probability of a preference pattern when

that pattern is associated with a greater error rate that is

assumed to be the same in the fitting model.

A reviewer of this paper asked a good question to which

we do not yet have a good answer: What are the limits of

our findings obtained with these particular simulations? Put

another way: Is it possible to construct an example in which

a mismatch between the generating model and the fitting

model would result in a case where an intransitive generat-

ing model would appear transitive or a transitive generating

model would appear transitive? We think that these conclu-

sions will hold as good approximations (will be "robust")

in a wide domain of cases, but have not as yet been able to

devise general equations to represent how the estimated pa-

rameters relate to the generating parameters in the situations

of different violations of the model.

MARTER models can be constructed to simulate extreme

cases, but we think that the "gradual" versions of MARTER

provide more accurate empirical descriptions of what peo-

ple actually do. Empirical evidence indicates that people

are more consistent within sessions than expected by in-

dependence, and people tend to be more consistent with

their recent choices than with choices that occurred farther

back in time (Birnbaum & Bahra, 2012a). The simulations

here show that, in addition to other "independence" tests de-

scribed by Birnbaum (2012, 2013) and Birnbaum and Wan

(2020), fitting and testing the Markov stochastic model itself

(rather than just the TE component of the model) can provide

diagnostic information to pinpoint the kind of process that

governs how true preferences change over time.7

We also found a tentative result that is promising but which

might be too good to hold true in general: The �-difference

test of transitivity (comparing the TE fitting model with all

parameters free versus the special case TE model with the

probabilities of true intransitive patterns fixed to zero) pro-

vided a perfect discrimination between data generated from

transitive and intransitive models, even when the Violation

model was used to generate the data. We remain skeptical

of significance testing as a sole criterion for making scien-

tific conclusions, even in the best of circumstances, so we

would not advise researchers to use this significance test to

decide the issue of transitivity. Nevertheless, this finding

might be one that should be analyzed analytically; perhaps

a theorem can be proven one way or the other as to whether

significance tests of transitivity (or other properties) might

hold asymptotically even in the face of this type of violation

of the model.

The particular violation in the generating model that we

studied in the first set of simulations tends to inflate esti-

mated error terms, and it should be clear why. The TE fitting

model uses preference reversals between replications within

sessions to estimate error rates. But the "Violation" gener-

ating model of MARTER_sim.htm, there are true changes of

preference within sessions, so the estimates of error repre-

sent a combination of both sources of variation. Note that the

more "gradual" the Markov process is, the smaller the mag-

nitude of bias of the error estimates. When true preferences

can change "suddenly", as in the violation model of Intrans

3, the errors are most inflated by this type of violation.

The particular mismatch we studied in the second set of

simulations tends to affect the estimates of the "true" in-

cidence of preference patterns, and this finding can also

be understood in the model: The probability of a repeated

pattern given it is true is the product of the true preference

pattern times the probability of not making errors. If a "true"

pattern is accompanied by large error rates when a person

is in that true state, then the incidence of repeated patterns

will be smaller, which if the model assumes the errors are

not larger means the model will underestimate the incidence

of the pattern.

7The sequential Markov model requires more data than required by the

TE fitting model because it has many more free parameters (see Birnbaum

& Wan, 2020), but one can, even with small amounts of data, assess if a

"gradual" process is at work by means of Birnbaum’s (2012) correlation

test of iid, which should be positive in the case of gradual processes.

http://journal.sjdm.org/vol15.5.html
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The fact that either of these types of violations can be

detected means that an investigator should, in principle, be

able to know that these biases in error rates or true preference

patterns exist, and by studying the patterns of deviation, the

investigator should be able to revise the model to get a better

description of the data. This situation is analogous to the

studies of local deviations between a compass reading and

True North.

In summary, to the extent that one can generalize from

these simulations, it appears that the TE fitting model can

do a good job for the purpose of testing critical properties

and estimating rates of violation of those properties, even

when the assumption concerning stability of true preferences

within sessions is violated. Further, the simulations show

that an investigator can detect cases where the modelling

assumptions are violated. If the error rates depend on the

true preference patterns, one should also be able to detect

the source of the violations.

These simulation results provide some comfort to those

who would apply the TE model to reanalyze studies that

did not include proper replications within sessions. These

studies have been re-analyzed under the simplifying assump-

tion that pairs of successive sessions can be combined and

treated as successive sessions are two replications. Birn-

baum’s (2020) reanalysis of Butler and Pogrebna (2018) is

an example. The present simulations suggest that the con-

clusions of that reanalysis (apparent evidence of intransitive

preferences by about 18% of participants) can be regarded

as credible despite the lack of proper replications within

sessions in that study.

In this study, we explored the consequences of violation

of two key assumptions of TE fitting models, namely, the

assumption that people do not change their true preference

patterns in the short time interval of a session and the as-

sumption that error rates are independent of true preference

patterns. In the cases studied so far, mismatch between the

generating mechanism and the TE fitting model error struc-

ture did not lead to incorrect conclusions regarding transi-

tivity. Caveats on the present findings to keep in mind are

that we have studied only these particular types of violation

of the TE fitting models for these particular cases, and we

have not yet been able to derive analytic expressions to state

the limits of these conclusions or lack thereof.
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