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Reanalysis of Butler and Pogrebna (2018) using true and error model

Michael H. Birnbaum∗

Abstract

Butler and Pogrebna (2018) devised triples of three-branch gambles theorized to violate transitivity of preference according

to a most probable winner model. According to this model, a person chooses the option that has the higher probability to yield

a better outcome than the other alternative. They tested 11 triples with 100 participants and found cases that appeared to violate

weak stochastic transitivity and the triangle inequality. But tests of weak stochastic transitivity and the triangle inequality

do not provide a proper method to compare transitive and intransitive models that allow mixtures of preference patterns and

random errors. Those older methods can yield false conclusions regarding transitivity, for example, if different participants

have different true preferences or if different choice problems have different rates of error. This paper reanalyzes their data

using a true and error (TE) model, which does not require these unrealistic assumptions, and which provides estimates of the

incidence of transitive and intransitive behavior in a mixture. Reanalysis indicated that 3 of the 11 triples showed convincing

evidence of violations of transitivity in the opposite direction of the predictions of the most probable winner model. Further,

these and other triples showed other significant violations of the most probable winner model. Despite some violations of the

true and error model, the data of Butler and Pogrebna appear to contradict not only transitive utility models but they also refute

the most probable winner model as a descriptive theory of choice behavior.
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1 Introduction

If preferences are transitive, then if X is preferred to Y and

Y is preferred to Z, then X is preferred to Z. Many people

consider transitivity to be both rational and also descriptive

of risky decision making. But there are some who argue that

transitivity is neither rational nor descriptive (e.g., Fishburn,

1991; Butler & Blavatskyy, 2020; McNemara, et al., 2014).

Butler and Pogrebna (2018) theorized that if a person fol-

lows a binary decision rule of choosing the alternative that

has a higher probability of yielding a better outcome, then

that person would show systematic violations of transitiv-

ity of preference in specially constructed choice problems.

This decision strategy is known as the most probable winner

(MPW) model, and is sometimes known as majority rule.

For example, consider gambles with three equally likely

consequences, X = (G1, G2, G3), denoting equal chances to

win $G1, $G2, or $G3. Suppose X = (15, 15, 3), Y = (10, 10,

10), and Z = (27, 5, 5). If the prizes received under X, Y,

Z are statistically independent, then the probability that X

gives a higher outcome than Y is 2/3; the probability that Y

gives a higher outcome than Z is 2/3; and the probability that

Z gives a higher outcome than X is 5/9. So, if people choose
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by MPW, their choices would be intransitive with this triple.

The MPW model is an extreme special case of the additive

difference models, a class of models investigated by Birn-

baum and Diecidue (2015) that also includes regret theory

(Loomes & Sugden, 1982) as a special case. Regret theory

implies the opposite pattern of intransitivity (See Appendix)

from that of MPW. Birnbaum and Diecidue (2015) found

very few individuals whose data showed either type of in-

transitive response patterns; they also found that the data

showed systematic violations of restricted branch indepen-

dence, a property implied by the additive difference models.

Butler and Pogrebna (2018) conjectured that intransitive

behavior might be observed when there are no more than

two distinct outcome values in each gamble, and when riskier

gambles have slightly higher expected values (EV) than safer

ones. In this example, the most risky gamble, / has an EV

of 12.33, medium risky gamble, - , has an EV = 11, and the

safest gamble,. , has the lowest EV, 10. There were a total of

11 triples with similar values constructed from this recipe.

For each triple of gambles, X, Y, and Z, there are three bi-

nary choice problems, -. , ./ , and /- . In -. the response

can be coded as 1 if the X is chosen, and 2 if Y; in ./ , code

2 or 3 if Y or Z was chosen; in /- , code 1 or 3 if X or Z

was preferred, respectively. There are 8 possible preference

patterns: 121, 123, 131, 133, 221, 223, 231, or 233, two of

which are intransitive, 123 and 231. For these X, Y, and Z,

the MPW model implies 123. Other theories are discussed

in the Appendix.

Butler and Pogrebna used these three gambles (in pounds
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Table 1: Crosstabulation. Frequencies of response patterns in first repetition (rows) and second repetition (columns) of Triple

4 in Butler and Pogrebna (2018). This triple showed the higest incidence of intransitive behavior.

121 123 131 133 221 223 231 233

121 2 3 0 0 0 1 4 1

123 0 0 0 0 0 0 0 0

131 0 0 2 0 0 0 4 0

133 1 0 1 1 0 0 2 1

221 0 3 0 0 1 4 1 0

223 0 2 1 1 1 0 0 0

231 5 8 1 1 5 12 26 1

233 0 2 0 0 0 0 2 0

Total = = 100. The most probable winner model implies the intransitive pattern 123; the opposite

pattern, 231, is also intransitive.

rather than dollars) and 10 other, similar triples of gambles;

they obtained three binary choices in each triple, which were

presented twice to each of 100 participants. In between the

two repetitions of the binary choice task, participants were

asked to rank the three gambles in each triple, which forces

a transitive order. Because the intervening task of ranking

may have affected preferences, I use the term "repetitions"

rather than "replications" for the two presentations of the

binary choices.1

1.1 Problems with Previous Analyses

In previous research, there has been a long standing problem

of how to test transitivity when there might be random errors

in the data, when the error rates in different choice problems

might be unequal, and when data might include a mixture of

true preference patterns, either because different people have

different true preferences or because the same person may

change preferences over time. It turns out that methods of

analysis used in the past cannot be relied upon in such cases

to properly evaluate the issue of transitivity; those methods

can easily fail to correctly diagnose whether data arose from

a transitive or intransitive true preference structure.

Sopher and Giglioti (1993) noted that if different choice

problems have different rates of error, then tests of transitivity

based on inequality of response patterns (once considered

evidence of intransitivity) might easily signal "intransitivity"

when the data are actually perfectly transitive. Birnbaum

and Schmidt (2008) gave clear examples to illustrate that

one cannot properly address the issue of transitivity without

measuring error rates in the choice problems used to measure

1This distinction may be important because the fitting model used here

assumes that true preferences are the same in both repetitions (Birnbaum

& Wan, 2020). Nevertheless, Birnbaum and Quan (2020) found in a series

of simulations that TE analysis was robust with respect to violations of this

assumption.

preferences and test transitivity. They noted that with proper

experimental designs, the true and error model can be used

to estimate error rates and can resolve this problem.

Regenwetter, Dana, and Davis-Stober (2011) developed

statistical tests of weak stochastic transitivity and the triangle

inequality based on the assumptions that choice responses

satisfy independence and identical distribution (iid). How-

ever, Birnbaum (2012), Birnbaum and Bahra (2012) and

others have reported evidence that iid is systematically vi-

olated by empirical data, so these new statistical tests are

dubious.

But there are even more fundamental problems with test-

ing these properties of binary choice probabilities (than is-

sues with the statistical assumptions): Tests of the triangle

inequality and weak stochastic transitivity cannot properly

diagnose the issue of transitivity when the data might arise

from a mixture of true preferences. The triangle inequality

and weak stochastic transitivity can both be perfectly satis-

fied in cases where the vast majority of participants system-

atically violated transitivity, and weak stochastic transitivity

can be significantly violated in a group of data in which every

individual was perfectly transitive but different participants

had different true preferences.2

2For example, suppose 1/3 of participants have the transitive preference

pattern, 121, 1/3 have the transitive pattern 223, and 1/3 have the transitive

order 133; then weak stochastic transitivity is violated because X is preferred

to Y 2/3 of the time, Y is preferred to Z 2/3 of the time, and Z is preferred

to X 2/3 of the time. So, by weak stochastic transitivity, an investigator

might be fooled into thinking some participant had an intransitive pattern,

when in fact, every participant was transitive. Similarly, suppose 1/3 of

the participants have the intransitive preference pattern 123, 1/3 have the

intransitive pattern 231, and 1/3 have the transitive pattern, 121; in this case,

the binary proportions of preferring X over Y, Y over Z, and X over Z are all

2/3, satisfying both weak and strong stochastic transitivity and the triangle

inequality. In this case, an investigator might consider transitivity to be

satisfied even though 2/3 of the participants had intransitive preferences.

These same problems arise in the analysis of a single individual’s data if

a person can change true preferences over time (Birnbaum & Wan, 2020).
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Furthermore, statistical tests (of properties like weak

stochastic transitivity) give only a "reject" or "retain" an-

swer. They do not provide estimates of the incidences of

different transitive and intransitive response patterns, which

one needs in order to evaluate models of decision making.

Birnbaum and Wan (2020) simulated data from transitive or

intransitive processes and illustrated that those older meth-

ods of analysis simply cannot correctly identify whether a

transitive or intransitive model had been used to create the

data. They also showed that the true and error model cor-

rectly identified whether a transitive or intransitive model

had been used to generate the data in these cases where the

older methods fail.

Because the data analyses presented in Butler and

Pogrebna (2018) were based on these older methods, a skep-

tic could remain unconvinced that their data actually con-

tained any real evidence against transitivity, once errors and

differences in true preferences are allowed. Fortunately, be-

cause their study included two presentations of each choice

problem, it is possible to apply the true and error (TE) model

to reanalyze their data in order to estimate error rates and the

incidence of intransitive and transitive behavior (Birnbaum,

2013; Birnbaum, Navarro-Martinez, Ungemach, Stewart, &

Quispe-Torreblanca, 2016; Birnbaum & Wan, 2020)

1.2 True and Error Fitting Model

The numbers of participants who showed each of the re-

sponse patterns on first and second repetitions for Triple #4

of Butler and Pogrebna (2018) are shown in Table 1. This

triple appeared to have the strongest evidence of intransitiv-

ity. Rows represent the response pattern on the first repeti-

tion of the binary choice problems, and the columns show

the response pattern on the second repetition. There were 26

people out of 100 participants who showed intransitive cycle

(231) on both repetitions. There were 33 others who showed

the 231 response pattern on the first repetition and switched

to other patterns on the second repetition, including 12 who

switched to 223 and 8 who reversed all three preferences to

123. However, not even one participant responded on both

occasions with this intransitive pattern (123) implied by the

MPW model. Although Table 1 did not appear in the pub-

lished version of Butler and Pogrebna (2018), this table and

those for the other triples are included in the journal’s Online

supplement to their paper.

The TE model can be fit to Table 1 and the corresponding

tables for the other triples. There are two sets of parameters

in a group TE model: the probabilities of making errors in

each of the three choice problems, denoted 41, 42, and 43; and

the probabilities of the 8 possible true preference patterns,

?121, ?123, ?131, ?133, ?221, ?223, ?231, and ?233, which

represent the distribution in the mixture of true preference

These old-fashioned methods should be set aside in favor of methods capable

of testing transitivity, like the true and error model.

patterns among the individuals. According to the TE fitting

model used here, the predicted frequency that people will

show the response pattern 123 (implied by MPW) on two

replications (of three choice problems) is given as follows:

%123,123 = =[?121 (1 − 41)
2(1 − 42)

2(43)
2

+?123 (1 − 41)
2(1 − 42)

2(1 − 43)
2

+?131 (1 − 41)
2(42)

2(43)
2

+?133 (1 − 41)
2(42)

2(1 − 43)
2

+?221 (41)
2(1 − 42)

2(43)
2

+?223 (41)
2(1 − 42)

2(1 − 43)
2

+?231 (41)
2(42)

2(43)
2

+?233 (41)
2(42)

2(1 − 43)
2]

where %123,123 is the predicted frequency (count) of the 123

response pattern in both repetitions of the task (i.e., six sep-

arate binary choice responses on different trials), and = is

the number of participants. Note that if a person has the

true preference pattern of 123, then she or he would have to

make no errors on six separate choice problems to exhibit

this response pattern, and if the true pattern were 121, then

she or he made an error on the third choice problem twice.

This expression is one of the 64 equations for the predicted

frequencies of the 64 possible response patterns, as in Table

1. The "predicted" (or "fitted") frequencies corresponding

to the data in Table 1 are simply = times the theoretical

probabilities, using parameter estimates best-fit to the data.

Birnbaum’s (2013) Excel spreadsheet, TE8x8_fit.xlsx,

[available from the journal’s website supplement to Birn-

baum and Wan (2020)] can be used to select parameters to

minimize either j2 or � indices of fit. Minimizing � is

equivalent to a maximum likelihood solution. The index �,

sometimes denoted �2, is defined as follows:

� = 2
∑∑

$8 9 ln ($8 9/%8 9 ) (1)

where the summation is over the 64 cells (8 rows by 8

columns), $8 9 is the observed frequency in the cell (as in

Table 1), %8 9 is the "predicted", or "fitted" frequency. The

indices, 8 and 9 , represent the 8 response patterns for the

rows and columns of tables (as in Table 1), respectively; i.e.,

8 = 1, 2, 3, . . . , 8 correspond to 121, 123, 131, . . . , 233,

respectively. The j2, is similar:

j2
=

∑∑
($8 9 − %8 9 )

2/%8 9 (2)

These indices usually take on similar values, and both are

asymptotically Chi-Square distributed.

There are 64 data values in the 8 by 8 tables, which sum

to the number of participants, and thus have 63 degrees of

freedom (df). The 11 parameters to be estimated use 10

degrees of freedom because the eight probabilities of true

preference patterns sum to 1, so the Chi-Squares have 53 df.

http://journal.sjdm.org/vol15.6.html
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Table 2: Parameter estimates in TE fitting models with 95% confidence intervals.

Triple ?121 ?123 ?131 ?133 ?221 ?223 ?231 ?233 41 42 43

1 00

(00−11)

03

(00−10)

00

(00−08)

05

(00−18)

44

(30−58)

08

(00−16)

20

(02−31)

20

(06−32)

28

(13−35)

16

(00−32)

00

(00−22)

2 33

(00−67)

21

(00−34)

25

(00−56)

00

(00−16)

00

(00−00)

21

(00−33)

00

(00−13)

00

(00−34)

20

(00−29)

41

(19−46)

11

(00−36)

3 15

(00−26)

20

(06−32)

00

(00−01)

00

(00−13)

37

(21−56)

10

(00−21)

09

(00−26)

09

(00−23)

13

(00−31)

28

(11−36)

08

(00−30)

4 04

(00−12)

37

(00−52)

00

(00−02)

01

(00−06)

00

(00−00)

07

(00−39)

51

(40−62)

00

(00−00)

26

(17−33)

10

(00−20)

12

(03−21)

5 06

(00−18)

04

(00−11)

00

(00−07)

19

(07−29)

46

(32−60)

03

(00−13)

21

(02−32)

01

(00−11)

23

(02−33)

09

(00−30)

14

(00−27)

6 07

(00−20)

01

(00−08)

00

(00−00)

09

(00−23)

52

(33−67)

02

(00−11)

17

(06−26)

13

(01−25)

26

(13−35)

00

(00−21)

22

(02−31)

7 00

(00−02)

00

(00−00)

18

(00−45)

19

(00−39)

18

(00−33)

11

(00−22)

34

(19−52)

00

(00−12)

20

(01−33)

12

(00−28)

27

(04−40)

8 09

(00−20)

08

(01−16)

04

(00−11)

11

(04−21)

57

(45−69)

02

(00−08)

09

(00−17)

00

(00−00)

14

(00−28)

06

(00−21)

10

(00−23)

9 17

(05−25)

00

(00−05)

00

(00−08)

02

(00−08)

81

(66−89)

01

(00−12)

00

(00−00)

00

(00−07)

05

(00−17)

06

(00−12)

24

(12−31)

10 02

(00−07)

00

(00−00)

12

(00−29)

10

(00−23)

13

(00−28)

07

(00−17)

38

(24−59)

18

(00−40)

10

(00−29)

11

(00−26)

24

(00−41)

11 00

(00−20)

25

(00−41)

14

(00−29)

00

(00−15)

28

(00−49)

01

(00−61)

00

(00−33)

33

(00−52)

20

(00−50)

29

(21−50)

30

(18−47)

The patterns 123 and 231 are intransitive. Values are expressed as percentages, so 01 indicates 0.01. Numbers in

parentheses show 95% bootstrapped confidence intervals. The most probable winner model allows only the 123

pattern in all triples except #5, 8, and 9; in Triple 8, it implies only 121, and it allows either 121 or 123 in #5 and 9.

The transitive model is a special case of the TE model in

which ?123 and ?231 are both fixed to zero. One can therefore

test transitivity by computing the difference between the fits

of the TE model and the transitive special case, which is also

Chi-Squared distributed with 2 df.

A program in R (Birnbaum, et al., 2016), )�8G2_ 5 8C.',

is available from this journal’s website supplement to Birn-

baum and Wan (2020). This program can be used to analyze

the TE model when sample sizes are relatively small. This

program is applied to an 8 by 2 simplification of Table 1,

which partitions the data into the 8 diagonal entries and the

8 column sums minus the diagonal entries). It uses Monte

Carlo simulations to estimate distributions of the test statistic

and it employs bootstrapping to estimate sampling distribu-

tions of parameter estimates.3

3One can also use Bayesian methods to analyze TE models to calculate

posterior distributions of the parameters, given suitable priors. Although

arguments can be made for possible advantages or disadvantages of these

various techniques, analyses of empirical examples so far have yielded very

similar solutions and conclusions from the different methods (Lee, 2018;

Birnbaum, 2019; Birnbaum & Quispe-Torreblanca, 2018; Schramm, 2020).

In this paper, both TE8x8_fit.xlsx and TE8x2_fit.R were applied, minimizing

The TE fitting model allows that different participants

may have different true preference patterns, but it assumes

that each person maintains the same true preferences in both

replications, and it allows that a person might make differ-

ent responses on two replications due to random errors. The

errors are assumed to be mutually independent. The assump-

tion that errors are mutually independent does not imply that

responses are independent, except in special cases such as

when all persons have the same true preferences (Birnbaum,

2013).

2 Results

Table 2 shows estimated parameters of the TE fitting model

applied to the data of Butler and Pogrebna (2018). To save

space, numbers are presented as percentages (e.g., 04 in-

dicates 0.04). The ranges in parentheses represent boot-

strapped 95% confidence intervals, based on 10,000 boot-

strapped samples. Three of 11 triples (#4, 7, and 10) have

� and j2, which gave very similar solutions.

http://journal.sjdm.org/vol15.6.html
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convincing evidence of the 231 intransitive pattern. In these

three triples, 26, 12, and 17 people (out of 100) showed this

same pattern on both repetitions, and the TE fitting model

gave estimated probabilities of ?231 = 0.51, 0.34, and 0.38,

respectively. The lower bounds of the confidence intervals

are 0.40, 0.19, and 0.24, respectively, giving confidence that

the incidence of intransitive behavior is more than trivial in

these three triples.

In Triple # 4, X = (15, 15, 3), Y = (10, 10, 10), and

Z = (27, 5, 5); in Triple #7, X = (9, 9, 3), Y = (6, 6, 6),

Z = (16, 4, 4); in Triple #10, X = (14, 14, 2), Y = (8, 8,

8), Z = (21, 6, 6). According to the MPW model, these

three triples should have shown only the 123 true preference

pattern. Instead, there is systematic evidence of the opposite

pattern of intransitive behavior and of transitive patterns not

allowed by MPW.4

There is also evidence of small incidence of the 231 pat-

tern in Triples 1, 5, and 6. Averaged over all triples, the

estimated incidence of the 231 cycle was 0.18, meaning that

on average, 18% of participants appear to manifest this in-

transitive true preference pattern with the triples generated

with this recipe. Although 18% does not represent the major-

ity of participants, this rate of intransitive behavior is higher

than that reported in previous studies with similar choice

tasks (Birnbaum & Diecidue, 2015).

Evidence of the intransitive pattern implied by the MPW

model, however, appears to be weaker and less convincing

than evidence of the opposite. The best case for the 123

pattern implied by MPW is in Triple #3, where only 7 of 100

participants repeated the 123 pattern in both repetitions; the

lower limit of the confidence interval for pattern 123 is only

0.06.

The argument that the 123 pattern may result from use

of the MPW is thus weak and is made even less compelling

because MPW implies that these same people should have

only the 123 pattern, not only for Triple # 3 but also for

all other triples in the study except #5, 8, and 9, including

Triples # 4, #7, and #10, where no one repeated the 123

pattern. Using the TE model, one can reject the hypothesis

that the incidence of pattern 123 exceeds 0.05 in Triples #7

and #10, � = 51.51 and 8.85, ? < 0.01.

The fit of the TE model can be tested by conventional

maximum likelihood tests of the 8 by 8 matrices (as in Table

1). The � tests for each triple are shown in Table 3; these are

theoretically Chi-Square distributed with 53 df. Two cases

(Triples #4 and 11) have large � values (156.33 and 128.44,

respectively). Because sample size is relatively small (= =

100), Monte Carlo simulations were applied to j2 index in

the 8 by 2 partition, using TE8x2_fit.R. The same two triples

4The values of X, Y, and Z for all 11 triples are given in Butler and

Pogrebna (2018, p. 227). Their Online supplement lists the numbers of

participants who repeated the 123 pattern on both repetitions: 2, 5, 7, 0,

2, 1, 0, 5, 1, 0, and 7, for Triples # 1−11, respectively. The numbers

who repeated the 231 pattern were 8, 0, 5, 26, 7, 8, 12, 5, 0, 17, and 0,

respectively.

Table 3: Indices of fit of TE model, tests of significance of

the 123 pattern, and tests of of transitivity (both 123 and 231)

l

Triple TE fit Test 123 Test Trans

1 67.0 1.8 12.4

2 69.3 0.3 2.0

3 69.8 15.7 15.7

4 156.3 1.1 24.8

5 80.9 2.0 21.2

6 67.3 0.6 11.0

7 67.9 0.0 12.8

8 74.5 12.2 21.4

9 55.6 0.0 0.0

10 66.3 0.0 43.5

11 128.4 0.0 6.9

"TE fit" is � value for true and error model; "Test

123" is a test of the increase in � when ?123 is

fixed to zero; "Test Trans" is the increase when both

intransitive patterns, ?123 and ?231, are fixed to zero.

Critical values with U = 0.01 for 53, 1, and 2 df are

79.8, 6.63, and 9.21, respectively.

(#4 and 11) were found to have significant deviations by both

conservative and refit Monte Carlo methods (see Birnbaum,

et al., 2016), but Triple 5 (which had the third largest � in

Table 3) was not significant by either conservative or refit

methods.

Table l shows the nature of the violations of the TE model

in Triple #4. The model implies that the matrix should

be symmetric; however, 33 people who displayed the 231

response pattern on the first repetition switched to other re-

sponse patterns on the second repetition (Row 231), but only

13 changed from other patterns to 231 in the second repeti-

tion (Column 231). Thus, this intransitive 231 pattern occurs

less often in the second repetition, following the ranking task.

Because Triple #4 had the strongest evidence for violations

of transitivity, one might be concerned that evidence of in-

transitivity might somehow be an artifact of violations of

the TE model. Nevertheless, Triples #3, 7, and 10, which

showed evidence of intransitive behavior, all had � tests of

fit less than 70 (not significant) and the TE model appeared

to approximate their data fairly well.

The column labeled "Test 123" in Table 3 shows � tests

of the hypothesis that ?123 = 0. To construct these tests, one

computes the fit of TE with all parameters free and the fit to

the same data with ?123 fixed to zero. The difference in �

between these fits is then theoretically Chi-Square distributed

with one degree of freedom. Only two cases show significant

evidence to reject ?123 = 0: Triples 3 and 8, which are also

http://journal.sjdm.org/vol15.6.html
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the only cases where bootstrapped confidence intervals for

?123 have lower limits that exceed zero (Table 2).

In Triple #3, X=(12, 12, 2), Y=(8, 8, 8), and Z=(20, 4,

4), whereas in Triple 8, Triple # 8, X=(15, 15, 5), Y=(10,

10, 10), and Z=(30, 3, 3). The MPW implies the intransi-

tive preference pattern 123 for Triple 3, but it implies the

transitive preference pattern 121 in Triple 8, so evidence of

the 123 pattern is evidence against MPW in this case. The

frequency of the 121 pattern implied by MPW in Triple 8

is not significantly different from zero, whereas the 221 pat-

tern appears to be most common for Triple 8, contrary to the

MPW model.

There are two ways to examine the predictions of a model:

One way is to look for what a model predicts and ask if there

is any significant trace of evidence "for" (consistent with)

what that model predicts; the other is to look for what the

model cannot predict and ask if the deviations are signifi-

cant. Although there is a significant trace of evidence "for"

the intransitive pattern predicted by MPW in Triple #3, the

MPW model cannot account for any other response patterns,

including transitive ones, in this triple. In fact, MPW im-

plies only the 123 preference pattern in all triples except #5,

8, and 9.5 As one can see in Table 2, there is substantial

evidence of transitive patterns, especially 221, that cannot

be reconciled with the MPW model. Therefore, if we treat

MPW as a candidate descriptive model, we must reject it

because of significant violations of MPW that occur in all

11 triples.

The third column in Table 3 labeled "Test Trans" shows

� tests of the transitive special case of the TE model; that

is, tests of the hypothesis that ?123 = ?231 = 0. These have

2 degrees of freedom. All except Triples 2, 9, and 11 show

significant violations of transitivity, and these cases all cor-

respond to cases where the bootstrapped confidence intervals

in Table 2 exclude zero for at least one intransitive pattern.

3 Discussion

In summary, reanalysis of Butler and Pogrebna (2018) via

the TE model reveals evidence of small but systematic vio-

lations of transitivity of preference. However, the majority

of violations of transitivity in Table 2 occur in the opposite

direction from that predicted by MPW. Those violations of

transitivity are more consistent with the concept of regret

(Loomes & Sugden, 1982; see also Appendix). Further, the

data show significant violations of the MPW model and one

can reject the hypothesis that more than a very tiny fraction

of people might have used a MPW strategy. Of two cases

where significant evidence of nonzero 123 violations was

found, one case was consistent with MPW and the other was

5In Triple 8, the predicted pattern of MPW is 121, whereas Triples 5

and 9 allow either patterns 121 or 123. In Triple 5, X = (15, 15, 6), Y = (11,

11, 11), and Z = (28, 6, 6). In Triple 9, X = (12, 12, 0), Y = (7, 7, 7), and Z

= (28, 0, 0).

Table 4: Preference Patterns and Compatible Models for

Triple 4 of Butler and Pogrebna (2018)

Preference

Pattern

Compatible Decision Rules/Models

121 MEDIAN outcome

123 MPW, ADM dependent and independent

131 Number "sufficing" (> $12) outcomes

133 HIGHEST outcome; EV, EU, ADM

dependent and independent

221 ADM dependent; prior TAX

223 LOWEST outcome; EU, ADM

dependent and independent

231 ADM dependent

233 EU, ADM dependent and independent

X = (15, 15, 3), Y = (10, 10, 10), Z = (27, 5, 5);

1, 2, 3 denote preference for X, Y, or Z in choices

-.,./ , and /- , respectively. Patterns 123 and 231

are intransitive.

a violation of MPW, so it seems hard to argue that the small

trace of evidence in the one case actually resulted from use

of this strategy.

To describe these data, one could argue they are com-

patible with a mixture of transitive and intransitive true pat-

terns generated by individual differences and parameters that

change over time within a person, as in the MARTER models

of Birnbaum and Wan (2020).

Other recent studies using TE models to evaluate viola-

tions of transitivity reported significant but small incidences

(Birnbaum & Gutierrez, 2007; Birnbaum & Bahra, 2012;

Birnbaum & Diecidue, 2015; Birnbaum, et al., 2016; Birn-

baum & Schmidt, 2008). The rates of violation of transitivity

estimated here in the Butler and Pogrebna (2018) data are

small, but they are higher than those reported in previous

studies, so the recipe for constructing triples presented by

Butler and Pogrebna (2018) may indeed show promise, even

if the MPW theory that motivated this design can be rejected.

Appendix: Theoretical Analysis

Table 4 lists certain theoretical decision rules or models that

are compatible with different response patterns in Triple 4 of

Butler and Pogrebna (2018). The codings 1, 2, and 3 indicate

preferences for X, Y, or Z in choice problems, -. , ./ ,

and /- , respectively. For Triple 4 of Butler and Pogrebna

(2018), X = (15, 15, 3), Y = (10, 10, 10), and Z = (27, 5,

5). Table 4 notes, for example, that the preference pattern

121 would be consistent with a decision rule to choose the

gamble with the higher median value (X has a median of 15,

http://journal.sjdm.org/vol15.6.html


Judgment and Decision Making, Vol. 15, No. 6, November, 2020 Reanalysis of Butler and Pogrebna (2018) 1050

!"#

$

!"%

!"&

!"'

!"#

!"(

!")

!"*

!"+

!"$

!

!"' !"&

$**

$+*

++*

+**

+*$

++$

!"% $

!"#"$%&%#'t

!
"
#
"
$
%
&
%
#
'r

$"$ $"+ $"* $")

Figure 1: Preference patterns in relation to parameters of

the additive difference model for dependent gambles. This

model allows six preference patterns for Triple 4 of Butler and

Pogrebna (2018), including the intransitive patterns 123 and

231, depending on the power function exponents in Equation

3.

higher than the median of Y, 10, which is higher than the

median of Z, 5).

If a person chose the gamble with the larger highest out-

come, the pattern would be 133, which in this case is also

the pattern implied by mean outcome; i.e., expected value

(EV). Choosing the gamble with the better lowest outcome

would lead to the preference pattern 223.

The response pattern, 123, is intransitive, and is consistent

with the most probable winner (MPW) model under either

the assumption that the gambles are treated as independent,

or under the assumption that the outcomes are completely

dependent events (e.g., if 27 were the outcome of Z, then the

outcome of X must be 15).

If a person chose by higher expected utility (EU), and

if utility is a power function of money, then the prefer-

ence pattern depends on the exponent of the utility func-

tion, D(G) = GU. For three, equally likely consequences,

�* = (1/3)
∑
GU
8

. For U < 0.4, the pattern is 223, for

0.4 ≤ U ≤ 0.5, the pattern is 233, and it is 133 for U > 0.5.

Birnbaum’s (2008) TAX model with its "prior" parameters

(Birnbaum & Bailey, 1998) implies the pattern 221, but like

EU, which is a special case of TAX, it can also imply other

patterns. But the TAX model and EU are transitive, so they

cannot imply true preference patterns of 123 or 321.

The additive difference model (ADM), with power func-

tions (Birnbaum & Diecidue, 2015, Equations 10 and

13), for gambles X = (G1, ?1; G2, ?2; G3, ?3) and Y =

(H1, @1; H2, @2; H3, @3), can be written:

k(-,. ) =
∑

f(G8 , H 9 )?8@ 9 |G
U
8 − HU9 |

V (3)

where k(-,. ) is the decision function such that if it is

positive, prefer X; if it is negative, prefer Y; U and V are

parameters. f(G8 , H 9 ) is the sign function (−1, 0, 1) that

retains the sign of G8 − H 9 . The summation in the depen-

dent case includes only corresponding event-consequence

branches (only where 8 = 9), and the product of probabilities

is replaced by the branch probabilities. In the independent

case, one must sum over all possible contrasts and weight

them by the appropriate product of the branch probabilities.

This model is fairly general (Birnbaum & Diecidue, 2015)

and can be used to represent regret theory (Loomes & Sug-

den, 1982) as well as advantage-seeking models, like most

probable winner.

The ADM model, assuming independence, can imply the

intransitive pattern, 123, as well as the patterns 133, 233,

and 223. To test between the independent and dependent

interpretations of these regret-type models experimentally,

one could manipulate permutations of the consequences

over events: the dependent model implies intransitive cy-

cles should be reversible, an implication called "recycling"

by Birnbaum and Diecidue (2015), whereas the independent

model implies no effects of permuting the consequences

over equally likely events or positions. If I understand their

method, Butler and Pogrebna (2018) always presented the

consequences in in the same positions, so no tests of permu-

tation or recycling were provided in their study.

As shown in Figure 1, the ADM model for dependent gam-

bles can handle six preference patterns (123, 133, 233, 231,

221, and 223). The intransitive pattern of 123 occurs, for ex-

ample, when U = 0.4, V = 0.7, and the opposite intransitive

cycle, 231, is implied by parameters with a "regret" interpre-

tation (Loomes & Sugden, 1982); that is, when V > 1; e.g.,

U = 0.4, V = 1.3. This model can also handle the transi-

tive, 221 pattern that is the most probable preference pattern

overall in the study (Table 2). This model is quite flexible,

allowing so many possible patterns; it rules out only the 121

and 131 response patterns. The strongest evidence against

it in these data appears in Triple 9, where 8 people showed

the 121 pattern on both repetitions, and 17% are estimated

(Table 2) to have this true preference pattern.

The additive difference model implies the property of re-

stricted branch independence, which was significantly vio-

lated in Birnbaum and Diecidue (2015) and other studies,

but was not tested in Butler and Pogrebna (2018). Thus, a

skeptic might not be impressed by the fact that this model,

which can handle so many different preference orders, re-

mains compatible with these data.

Many other theories could be (or have been) devised to

make predictions for this study, besides those listed in Table

4. Therefore, I prefer to say that evidence of any subset

of preference patterns is "consistent with" rather than "sup-

ports" a theory. Some theories are more flexible (allow more

possible preference patterns) than others. Although some

people like to compare models by statistical computations

http://journal.sjdm.org/vol15.6.html
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of fit adjusted for a model’s complexity in a single study, I

do not favor that approach. I prefer to compare theories by

their success in predicting the results of new tests of diag-

nostic properties, where the rival theories make qualitatively

different predictions. Further comments on testing and com-

parison of models like these are in Birnbaum (2019).
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