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Survey of time preference, delay discounting models

John R. Doyle∗

Abstract

The paper surveys over twenty models of delay discounting (also known as temporal discounting, time preference,
time discounting), that psychologists and economists have put forward to explain the way people actually trade off time
and money. Using little more than the basic algebra of powers and logarithms, I show how the models are derived,
what assumptions they are based upon, and how different models relate to each other. Rather than concentrate only on
discount functions themselves, I show how discount functions may be manipulated to isolate rate parameters for each
model. This approach, consistently applied, helps focus attention on the three main components in any discounting
model: subjectively perceived money; subjectively perceived time; and how these elements are combined. We group
models by the number of parameters that have to be estimated, which means our exposition follows a trajectory of
increasing complexity to the models. However, as the story unfolds it becomes clear that most models fall into a smaller
number of families. We also show how new models may be constructed by combining elements of different models.

The surveyed models are: Exponential; Hyperbolic; Arithmetic; Hyperboloid (Green & Myerson, Rachlin); Loewen-
stein and Prelec Generalized Hyperboloid; quasi-Hyperbolic (also known as β-δ discounting); Benhabib et al’s fixed
cost; Benhabib et al’s Exponential / Hyperbolic / quasi-Hyperbolic; Read’s discounting fractions; Roelofsma’s exponen-
tial time; Scholten and Read’s discounting-by-intervals (DBI); Ebert and Prelec’s constant sensitivity (CS); Bleichrodt et
al.’s constant absolute decreasing impatience (CADI); Bleichrodt et al.’s constant relative decreasing impatience (CRDI);
Green, Myerson, and Macaux’s hyperboloid over intervals models; Killeen’s additive utility; size-sensitive additive util-
ity; Yi, Landes, and Bickel’s memory trace models; McClure et al.’s two exponentials; and Scholten and Read’s trade-off
model.

For a convenient overview, a single “cheat sheet” table captures the notation and essential mathematics behind all but
one of the models.
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1 Introduction

1.1 Delay discounting, time preference, and
what this survey is and is not.

People are constantly making decisions that involve
whether they take gains (also losses) now or at some later
time(s). How people actually achieve this, either as in-
dividuals or collectively as a segment of an economy, is
an active area of research that straddles the boundaries
of psychology, economics, marketing, decision analy-
sis, and more recently neuroscience. It goes by several
names, some generally preferred by psychologists (de-
lay discounting), others by economists (time preference).
Although widely applicable, this survey will limit itself
to delay discounting for simple financial decisions, not
just because these are an important class of problems that
people face, but also for clarity of presentation. The same
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models may be used in non-financial applications.

The following are examples that illustrate this claim
in the context of consumer research. Estle, Green, My-
erson, and Holt (2007), for instance, compared mone-
tary with consumable rewards (candy, soda, beer), find-
ing that the latter were discounted more steeply. Chap-
man and Elstein (1995), used formal models of delay dis-
counting where rewards were presented as days on va-
cation (and years of health in another experiment). Oth-
ers have focused on impulsivity as a personality trait, a
theme particularly researched in the area of out-of-control
consumption behaviors such as drug addiction, smok-
ing, gambling, alcoholism, and so on (Madden & Bickel,
2009); but also in discounting’s more prosaic connec-
tion with numerical ability (Peters, Slovic, Västfjäll, &
Mertz, 2008). Focusing on the situation (i.e., the kind
of commodity being discounted) rather than the person,
other researchers have examined the extent to which dis-
counting is domain specific in normal (i.e., non-addicted)
people who nonetheless also experience the temptations
of consumption (Hardisty & Weber, 2009; Tsukayama &
Duckworth, 2010; Weatherly, Terrell, & Derenne, 2010).
Yet others have examined factors that lead people to
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behave more impulsively across disconnected domains:
e.g., Wilson and Daly (2004) found that seeing pictures
of the faces of attractive women induced men to discount
money more steeply than if the faces were unattractive.
Van den Bergh, Dewitte, and Warlop (2008) reached sim-
ilar conclusions for men who were asked to handle biki-
nis. However, the precision with which these diverse ex-
amples may be understood depends on the accuracy of the
models that are used to measure delay discounting. Be-
cause these models lie scattered in many different litera-
tures, even researchers who are active in the field may be
unaware of interesting new developments, which is one
value of this survey.

The most general principle in delay discounting is that
people prefer to be given money now rather than later,
so that in subjectively valuing timed rewards, future pay-
ments are described as being discounted (by the fact of
being delayed). This paper is a survey of delay discount-
ing models. It would have been a brief survey, in that
none of the models is examine in great depth, were it not
for the large number of models that exist in the literature.
Although presented from the perspective of gains, each
model may also be applied to losses. To keep the survey
slim I have generally not amplified where and how the
models have been used, nor with what success. Nor have
I surveyed empirical comparisons between models, be-
cause apart from comparisons between Hyperbolic and
Exponential, and between quasi-Hyperbolic and Expo-
nential, the literature contains few face-to-face compar-
isons.

Furthermore, whether a model is considered vi-
able often depends on the discipline of the researcher
(economists are much more likely to adhere to the Ex-
ponential model than psychologists). Viability may also
depend on any of the following: individual differences—
whether correlates of those difference are identifiable,
such as the level of numeracy of the person, or not ;
whether losses or gains are being considered; the method
of elicitation—sometimes the basis of economists’ argu-
ments against non-exponential models (e.g., Andersen,
Harrison, Lau, & Rutström, 2011); the culture in which
the problem is posed; the nature of the choices being of-
fered (money, bottles of beer, years of health); experi-
mental manipulations—for instance that might make dif-
ferences versus ratios salient.

Other interesting and important themes that I largely
ignore are: the cognitive processes that people would
need to achieve in order to discount in a particular
way; the efficacy of using multi-item choice question-
naires (Kirby & Marakovic, 1996) compared with sim-
ple matching (Smith & Hantula, 2008), a hybrid of the
two (Rachlin, Raineri & Cross, 1991), or even reaction
times (Chabris, Laibson, Morris, Schuldt & Taubinsky,
2008); the design of stimuli to improve statistical power

to detect differences between models (Doyle, Chen & Sa-
vani, 2011); measurement of model goodness-of-fit and
impulsivity (Myerson, Green & Warusawitharana, 2001;
Wileyto, Audrain-McGovern, Epstein & Lerman, 2004;
Doyle & Chen, 2012); how models should be compared
(Killeen, 2009; Doyle & Chen, 2012); the parallels be-
tween risky choice and intertemporal choice (Prelec &
Loewenstein, 1991; Green & Myerson, 2004; Rachlin,
2006). The paper escapes being a mere catalogue, in that
I have aimed to make the structure of the models trans-
parent, comparing them through their mathematics and
what implications each has if taken seriously as a model
of human behavior. Having disassembled the models into
their component parts, I emphasize their role as building
blocks by showing how it is possible to re-assemble the
components to create novel, speculative models: a pro-
cess that future researchers may continue.

The paper has the following structure. The introduc-
tion argues for a new focus in delay discounting in terms
of rate parameter (Section 1.2); describes power laws,
log laws, and related mathematical issues (Section 1.3);
and the conventions of notation to be adopted (Section
1.4). Sections 2 through 5 describe delay discounting
models with zero through three free parameters, respec-
tively. Section 6 describes models not easily classified
elsewhere. Section 7 provides a retrospective grouping
of models into families, and shows how speculative mod-
els may be generated. Conclusions are in Section 8.

1.2 Orientation: discount functions or rate
parameter?

There are two strategies for presenting discounting mod-
els. In one, a choice between P (present choice) now and
F (future choice) later, it is presumed that the F is dis-
counted to its net present value (NPV) and compared with
P, and people choose F if its discounted value is greater
than P. This is the usual view, from which “delay dis-
counting” “time discounting” or “temporal discounting”
take their name. It focuses attention on the discount func-
tion that maps an F into a P. In simple models F is mul-
tiplied by a discount factor, which is a particular realiza-
tion of the discount function for a given time delay, to
derive the notionally equivalent P that should make a de-
cision maker indifferent between F and P.

An alternative strategy is to rearrange the discounting
equation and focus on the rate parameter implied by a
given discounting model (e.g., in the exponential model,
the rate parameter is the continuously compounded inter-
est rate that would make a P now into an F at time T).
This survey adopts the rate parameter view. The advan-
tages are that the components of the discounting model
are now quite transparent: how the model treats money,
how the model treats time, and how the treated time and
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money are composed into the final formula. Discount
factors increase monotonically with rate parameters, so
there is no conflict between the two views in terms of the
preference ordering they compute for a set of choices. In
the rate parameter view, people are presumed to have, at
least during testing, a stable internally held rate that acts
as a decision criterion: people choose F if, relative to P, F
implies a higher rate than that criterion rate. Seen in this
way, rate parameters are also decision parameters. People
who are impulsive are identified by having high internal
criterion rates. One discounting model is preferred over
another as an account of behavior if it more correctly esti-
mates the preference order of the choices on offer. There
seems no prior reason to prefer the discounting view over
the rate parameter view, or vice versa. Therefore, one
task for future research is to determine whether people
adopt a discounting view or rate parameter view of in-
tertemporal problems, or indeed another view. Although
the views are mathematically equivalent, in bringing cer-
tain aspects of the problem to the fore while pushing other
aspects into the background, different views may not be
psychologically equivalent in terms of the kinds of men-
tal operations required to run a model, the heuristics that
might be used to short-cut full computation, and therefore
the typical kinds of deviations that people would produce
from their true intentions1.

In this survey I classify models somewhat superficially
by the number of additional free parameters that an exper-
imental design would need to estimate over and above the
rate parameter. I build up the complexity of the models.
In the end, however, I am able to show that most models
belong to a few families, from which simpler models are
special cases. I also speculate on future models.

1.3 Stevens, Weber, powers, logs, ratios,
differences, and started time

Most of the models described in this survey can be clas-
sified by their treatment of three main issues: (i) (how)
is the subjective perception of money to be treated; (ii)
(how) is the subjective perception of time to be treated;
and (iii) (how) is money to be traded-off against time? In
deciding these questions, I will be making repeated use of
a few psychological principles and related mathematical
relationships. Though they appear throughout the paper,
it is worth collecting them together before I begin.

1Analogously, although 8! = 1·2·3·4·5·6·7·8 = 8·7·6·5·4·3·2·1,
if someone adopts the former description (ascending sequence) they
tend to estimate smaller numbers than if they adopt the mathemati-
cally equivalent descending sequence description (Tversky & Kahne-
man, 1974). Hence, although delay discounting and rate parameter de-
scriptions are mathematically equivalent, they may not be equivalent in
their consequences.

1.3.1 Stevens versus Weber

A long-standing debate in psychology has been whether
basic psychophysical phenomena such as the subjective
brightness of light, heaviness, sound, pain are best mod-
eled by using logs or powers. The Weber-Fechner “law”
dates back to the 18th century and promotes a log treat-
ment. The law assumes that the subjective change in a
stimulus (∆S) has a constant relation with the change in
objective energy (∆E) of a stimulus relative to the exist-
ing energy (E).

∆S = k∆E / E (1)

As an example, many candles will be needed at noon on a
sunny day to give the same subjective increase in bright-
ness experienced by lighting a single candle at twilight.
Integrating, we have

S = k log(E) (2)

which is the Weber-Fechner law: Weber associated with
form (1), Fechner with form (2). (Log base e is assumed
throughout this paper.) Its main challenger is the power
“law”, which instead suggests that:

S = KEc (3)

where c depends on the context. For instance, Stevens
(1957; 1961) documented different power laws for dif-
ferent psychophysical phenomena. Subjective loud-
ness is proportional to (objective sound pressure).67,
whereas subjective pain is proportional to (electrical
shock to finger)3.5, and so on. It is worth noting that
in Wikipedia’s entry for Stevens’ Power Law, there is an
approximately even split between exponents > 1, and ex-
ponents < 1. The models surveyed in this paper assume
that the abstract concepts of time and money (and even
time intervals) may be treated in the same way as physical
stimuli, by using either Weber’s Law or Stevens’ Power
Law. Eisler’s (1976) comprehensive review of studies
spanning a hundred years settled on a Stevens power
exponent for time perception of c ' .9. Classical eco-
nomics, for instance, expects a decreasing marginal util-
ity of money and therefore that the exponent should be
< 1. Surveying his own and others’ work Stewart (2009)
noted a stable exponent for money that was just under .5,
i.e. approximately a square root law.2

1.3.2 Powers and logs (Stevens ⊇ Weber-Fechner?)

Undoubtedly Stevens’ power law is more flexible than the
Weber-Fechner log law, though at the expense of having

2Power law and log utility functions are but special cases of Hyper-
bolic Absolute Risk Aversion (HARA). Nonetheless, it is they rather
than the general HARA that have spawned most behavioral models in
intertemporal choice.
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to estimate an additional parameter. If c = 1 we are treat-
ing time or money as if objective. As c decreases towards
zero, Ec becomes more curved, in fact more logarithmic-
like. This follows from a mathematical result that is im-
portant for this paper, which is that if x > 0:

(xc − 1)/c → log(x), as c → 0 (4)

In many applications that compute relative differences
(including here) constant scaling factors do not matter
just as long as they are applied to all observations. Conse-
quently, the c in the denominator can usually be ignored.
Therefore for small c > 0, xc becomes log-like around
1, rather than around 0, as is normal. Therefore, by sub-
tracting 1 from xc, we can morph from linear through
fractional power to log, under the control of the parame-
ter c. This is very useful.

The equation y = (xc – 1 ) / c is none other than the
Box-Cox transformation, much used in statistics to find
suitable functional forms for the relationship between x
and y (Box & Cox, 1964). As Wakker (2008) has noted
in his useful tutorial on power functions, researchers of-
ten neglect to explore the space of c < 0, which gives rise
to reciprocal powers. For instance, c = –1 gives the func-
tional form: y = 1 – 1/x. In his Section 2.1 he gives a
cautionary example of failing to analyse c < 0.

Sometimes it doesn’t matter whether we subtract 1 or
not. For instance, often we are interested in difference
relationships such as v = (xc – yc). In this particular
case, the Stevens’ Power Law nests the Weber-Fechner
Log Law as a special case. This follows because we can
re-write the equations as:

v/c = (xc − 1)/c − (yc − 1)/c (5)

then using the mathematical result,

v/c → log(x)− log(y) = log(x/y), as c → 0, (6)

Therefore in order to build in modeling flexibility, rather
than forcing a relationship to be log(x/y) and thus fixing
on a Weber-Fechner law, we can let it be the more general
xc – yc and let an optimizing program determine which
c best fits the empirical data. If c is close to zero, then
a Weber-Fechner-like log law applies, if c is close to 1,
then x and y are linear, if c = .5, then we have a square-
root law, and so on.

Sometimes it does matter. For instance, when a single
variable is being considered, xc → 1 as c → 0, which
implies that the x variable is redundant. In order to avoid
this problem, and to be consistent with the log behavior
of (xc – yc), the form (xc – 1)/c is often used to express
powers, instead of xc.

1.3.3 Started values

Unfortunately, it may happen that x takes the value 0, ei-
ther always or sometimes. Typically this happens when

an amount of money is offered now (at t = 0) compared
with an amount offered later. This is then a problem, be-
cause log(0) is undefined. The problem also occurs for
any power law whose exponent is negative (e.g., t−1 = 1/t
is also undefined for t=0). So, any model that wants to
treat time as logarithmic, either explicitly or implicitly as
the limit of a power law, throws up an anomaly for t =
0, which is actually the most frequently used value of t.
One way out of this difficulty is to present t = 0 as a spe-
cial (sometimes absent) case. Another is to use “started
time” instead of time itself. Started counts, started re-
ciprocals, started logs, etc. were recommended by Tukey
(1977) and Mosteller and Tukey (1977) to overcome just
this kind of problem when dealing with troublesome ze-
ros. Started time translates all measurements t into t + ε,
where ε is small relative to the values that t will take.
Equivalently, in our calculations we can translate time
from days, as may have been stated in the questionnaire,
into hours (or even minutes), and just let ε = 1. Under
this translation, t = 0 would become t∗ = 1; t = 2 days
would become t∗ = 49; 7 days would become t∗ = 169 (all
started hours), and so on, with the * subscript emphasiz-
ing that we are dealing with started time. Although this
tweak is motivated by avoiding a mathematical problem,
started time may pragmatically reflect reality better than
the nominal time appearing on the questionnaire; because
when a reward is offered “now” participants would not
assume they would get the reward instantaneously, rather
that they would get it after the experiment was over—i.e.,
quite possibly about an hour later. This delay between
mathematical and actual now is even more apparent if the
amount is offered “today”.

Ainslie and Herrnstein (1981, p.480) make a similar
point, distinguishing between the nominal and effective
timing of reinforcements: “It could be argued that the
usual convention of measuring delay from a subject’s
[pigeon’s] peck to the elevation of the feeder should be
abandoned in favor of the interval from the peck until ac-
tual eating takes place, or even until the food enters the
subject’s bloodstream. The ‘true’ moment of reinforce-
ment is not known and might not even exist as a distinct
instant. . . “ However, researchers have not yet taken up
the challenge contained in the last sentence, which is to
model the timing of events fuzzily rather than as discrete
points.

Generally there should not be a parallel issue for mod-
eling money because in any realistic choice F and P will
both be non-zero. If it ever did become an issue, money
could similarly be “started” by adding one cent to both P
and F.
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1.3.4 Treatment of time and money.

In almost all models surveyed here money and time are
combined multiplicatively. A ratio is formed between
the subjective value of additional money and the subjec-
tive dis-value of additional delay: that ratio is the rate
parameter. We can distinguish two very general views
on time and money. In one, money and time are seen
as qualitatively distinct, which means that treating them
differently is not an issue. For instance, money can be
compounded or subject to inflation, which thus change its
face value and/or its real worth: time cannot. Money is
traded: time is generally not, and so on. In the other view
subjective perceptions of money and subjective time are
modeled as if they were standard psychophysical stimuli
(pain, brightness, loudness, etc.). Now if psychophysics
itself treats its stimuli via consistent functional forms, for
instance by Stevens’ power law (or the Weber-Fechner
law), it sets a strong precedent for treating time and
money via similar functional forms. Accordingly, if a
model treats subjective time and money inconsistently,
the burden of proof should be on the model’s creator to
justify why it does so.

Using the convention that F is offered at time T, and f is
offered at time t, with T > t (see Section 1.4: f is known
as P as the special case when t = 0), also that a, b, A and
B are exponents of the model, used in different ways, the
following pairs do not have similar functional forms:

(F – f)a Tb – tb (power on a money difference:
difference of times to a power)

F/f T – t (money is ratio: times are differenced)

whereas the following do:

F/t T/t (money and time are both ratios)
(Fa - fa)A (Tb - tb)B (both have same functional form)

This is not to suppose that the parameters need match up
(e.g. that A = B, and a = b in these examples). We pro-
pose that a useful characteristic to observe in a model is
whether it treats time and money symmetrically or not. If
it does not, has any special justification been given why
not?

1.4 A note on notation.
In defining parameters for the different models, I have
tried to obey the following guidelines. I obey common
usage where it is standard in general algebra (e.g., r is the
common ratio of a Geometric Progression, d the common
difference of an Arithmetic Progression). I have tried to
use mnemonic devices (e.g., h for hyperbolic, m for the
exponent on money), and use capital letters for the mod-
els themselves (e.g. E for the exponential model, H for
the simple hyperbolic). Generally speaking the rate pa-
rameter is lowercase of the uppercase model: e.g., H, h.

I have also respected past literature where terminology is
widely and standardly used so that it would be confusing
to do otherwise (β-δ of the quasi-hyperbolic model). I
have tried to use Roman letters (but not e, l, o, or p), rather
than Greek. Because of the sheer number of parameters
used in this survey, inevitably I have failed. I have used
the convention that F is a future gain, and P is the present
gain, which follows standard practice in accounting and
finance, though not elsewhere. Where I wish to contrast
two gains in the future, I have used the symbol f to re-
fer to the less distant one. Thus, because of the premise
that people discount delays, generally F > f. To carry
the capitalization mnemonic into time, I have used T to
refer to more distant time than t (T > t). So, a typical
choice might be to ask which alternative is preferred: (f
at time t) or (F at time T). Although that may seem quite
natural, one awkward consequence of this usage is that,
since most models are based around the special case of
t=0, the standard symbol for time becomes T, rather than
the more natural t. Also, because both t and T are now in
use, to maintain mnemonic value I have resorted to using
the Greek τ (tau) to subscript parameters and models that
focus on a time issue, as well as for exponents used to de-
form objective time into subjective time. Consequently,
we have the presbyopic nightmare of: Tτ and tτ . Old
eyes be warned!

Table 1 is provided to help with the many symbols.
Note also the legend.

2 Simple rate parameter models

In accounting and finance, discounting can be described
either as a method of valuing a future cash flow (F) as
a present value (P); or in terms of the Internal Rate of
Return (IRR) that would generate F from P. Present val-
ues may be used in preference to IRR to consolidate
several future cash flows at different times into a sin-
gle net present value (NPV). However, for simpler prob-
lems IRR is often used as a threshold or “hurdle rate” to
make investment appraisals (Ryan, 2007), and it is the
IRR view of the problem which turns out to be more use-
ful for this survey. The very reasons that organizations
use an IRR hurdle rate (because it is a single, unambigu-
ous decision criterion that is easy to understand and apply
organization-wide by its decision makers), are the same
arguments to suggest why lay-people may spontaneously
adopt a similar view of intertemporal choice (ITC). Typ-
ical ITC problems in the psychological literature do not
require people to consolidate several future cash flows,
for which NPV comes into its own, so both IRR and NPV
are candidates. Note, however, that NPV is a relatively
recent invention in accounting, and not one that people in
business spontaneously and repeatedly re-invented as a
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Table 1: Model names, notation used throughout this article, and rate parameter equations.

Model name Model Recovered Rate parameter eqnuation
symbol parameters

Exponential E r = [log(F/P)] / T
Hyperbolic H h = (F/P – 1) / T
Arithmetic A d = (F – P) / T
Hyperboloid (G&M) Hm m hm = ( (F/P)m – 1) / T
Hyperboloid (Rachlin) Hτ t hτ = ( (F/P) – 1) / Tτ

quasi-Hyperbolic (T>0) qH β (= 1/γ) q = [ ln(βF / P) ] / T
Fixed cost (T>0) X χ x = log((F – χ)/P) / T
Read B θ b = log(F/f) / (T – t)θ

Roelofsma V υ v = log(F/P) / [log(υ)+log(T)]
Constant sensitivity C b a = [log(F/P)]1/b / T
CRDI (ψ>0) M+ β(=1), ψ ρ = log(βF / P) / Tψ

CRDI (ψ=0) M= ρ = log(βF / P) / log(T)
CRDI (ψ<0) M− ρ = log(βF / P) / -Tψ

CADI (η>0) N+ β(=1), η σ = log(βF / P) / eηT

CADI (η=0) N= σ = log(βF / P) / T
CADI (η<0) N− σ = log(βF / P) / (-eηT )
Hyperboloid on intervals Hmω m, ω hmω = ((F/P)m–1) / [(T-t)-((F/P)m–

1) ωt]
Size-sensitive Arithmetic Az z dz = P−z (F – P) / T
Killeen K m, τ k = (Fm – Pm) / Tτ

Killeen intervals & t∗ Kτ m, τ kτ = (Fm – fm) / (T∗τ – t∗τ )
Generalized H Hmτ m, τ hmτ = ((F/P)m – 1) / Tτ

Generalized E, H, qH, X G β, χ g = log(βF/ (P + χ)) / T
Size-sensitive K J m, τ , z j = P−z(Fm – Pm) / (T∗τ – t∗τ )
Discounting by intervals I m, τ , θ i = ((F / f)m – 1) / (Tτ – tτ )θ

Tradeoff Y (see text) γ, τ , εm, ετ , a1, a2, b1, b2

Two exponentials Eβδ w P/F = w.e−rβT + (1–w).e−rδT

Notes: m is the money exponent.
τ (tau) is the time exponent.
β is the quasi-hyperbolic non-present scaling parameter, and γ = 1/ β is the present-
premium.
z is the size exponent in J.
θ is the interval exponent in I (DBI).
F (future value) is the more distant future amount delivered at time T.
f is the less distant amount delivered at time t. If t= 0, f = P, the present value.
T∗ and t∗ are “started” times (Tukey).
W and w are weights placed on different processes.
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kind of common sense, despite centuries of dealing with
relevant problems (Rubinstein, 2003). The non-obvious
nature of NPV therefore suggests that lay people might be
more likely to adopt an IRR view of ITC problems than
an NPV one, a hypothesis that deserves empirical inves-
tigation. We generalize the concept of IRR from r, the
interest rate in E, to cover model rate parameters which
capture the intensity of discount operating in each of the
other models we consider.

2.1 Exponential discounting (E, r)
The standard financial method of summarizing growth
rates by which to translate present values into future val-
ues and vice versa is by a geometric mean taken on the
ratio of increase. Thus, the compounding growth model
for discrete time is:

F = P (1 + r)T (7)

with F (future value), P (present value), r (growth rate)
and T (compounding periods) taking their usual mean-
ings, so that

r = (F/P )(1/T ) − 1 (8)

As an example, if $200 (P) becomes $400 (F) over a pe-
riod of 4 years (T), then r = (400/200)(1/4) – 1 = .19, or a
19% increase per annum. We can also compute P as:

P = F [1/(1 + r)]T , (9)

where [1 / (1 + r)]T is known as the discounting factor:
it allows us to translate a future cash flow into its present
value. When faced with a choice between:

(1) P, an instantaneous payoff now, and
(2) F at time T,

the decision maker, operating normatively as an exponen-
tial discounter, would apply the discounting factor to F
using a given r, and choose the larger of P and the dis-
counted F. Another way of describing this process is to
focus on equation (8) and compute r for a given choice
of P, F, and T. This is equivalent to the internal rate of re-
turn (IRR) as used by accountants, for instance to judge
whether a planned project will meet a criterion level of
return. If r exceeds a given criterion rate r0, then the ac-
countant would accept F. We posit that r0 is not a com-
mercially available rate of return, but a person-specific
one. Each person uses their own r0 as a criterion rate
of return by which to judge whether r, computed from
choice {P, F, T}, exceeds criterion (hence choose F) or
not (hence choose P). We do not, however, claim that r0
is impervious to context, manipulation, and simple fluc-
tuation with time.

If we increase the number of compounding periods to
be n per annum, equation (9) becomes:

F = P (1 + r/n)nT (10)

and if n increases without limit so that compounding is
continuous, this becomes

F = PerT . (11)

The discount factor therefore becomes e−rT , hence the
name “exponential discounting”, though the geometric
form in (10) is often still used. The growth rate parameter
r is determined from (11) as:

r = [log(F/P )] / T. (12)

In practice, the exponential and geometric view of growth
and discounting do not differ much in their computed val-
ues of r. In the above example, equation (12) gives r
= 17%, rather than the previously calculated 19% from
equation (8).

2.2 Hyperbolic discounting (H, h)
Accountants also frequently calculate the (arithmetic) av-
erage rate of return (Ryan, 2007, p. 12). Similarly, if a
quantity increases by x% over T years, then the arithmetic
average of the rate of return should be (x/T)%. In the ex-
ample cited above there was a 100% increase, which av-
erages out to 25% per annum. Although frequently used
to appraise investments and set a benchmark figure for
project acceptance, this figure cannot be used in the com-
pound growth formula. Instead of doubling the original
as required by a 100% increase, its use would lead to a
calculated increase of (1.254 = 2.44) times the original.
These arithmetic calculations are equivalent, in algebra,
to computing a growth rate of h by:

h = (F/P − 1) / T. (13)

In the example given in 2.1, h = (2 – 1) / 4 = .25. Equation
(13) also implies:

P = F [1/(1 + hT )]. (14)

According to equation (14), the discount factor [1 / (1 +
hT)] has a hyperbolic form, hence the name “hyperbolic
discounting.” Also, whereas E is underpinned by a model
of compound interest, H is underpinned by a model of
simple interest, with no compounding (Rachlin, 2006).
This is also apparent if we let n → 1/T in equation (10)
for a single compounding period, which reduces to the
hyperbolic model. Thus discrete-time compounding is a
half-way house between the extremes of E and H under
the control of the frequency of compounding, n. When n
is extremely large, the compounding periods become very
small, until in the limit we have continuous compounding
(therefore E). When n=1, the interest is accrued at the
end of the investment period, so in effect we have simple
interest (therefore H).
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The fact that the 2.44 exceeds 2 (and 25% exceeds
19%) in the above example is no accident, and is due to
the mathematical relationship that the arithmetic mean ≥
geometric mean for positive numbers. It follows that, in
the period up to T, hyperbolic discounting (which uses
the arithmetic mean) will always make a higher estimate
of future growth than exponential discounting: therefore,
the immediate future will be discounted more heavily in
the hyperbolic model. After T, the situation reverses.

We can also use equation (13) to determine the hyper-
bolic discounting rate parameter h, implicit in any choice
{P, F, T}, which we then use to compare against some-
one’s internal h0. As with exponential discounting, if
people apply a hyperbolic model, then if h > h0 they will
choose F; if h < h0 they will choose P.

Although the hyperbolic discounting model in equa-
tion (14), given in Mazur (1987), is the one most widely
used in current research, it is founded on models that pre-
date this formulation. As reviewed in Ainslie (1975),
Chung and Herrnstein’s (1967) found that the rate at
which pigeons would peck was proportional to the re-
ciprocal of the time delay, as an instance of the “match-
ing law”. This led Ainslie to propose the first hyperbolic
model, presented in Mazur (1987) as: P = F / kT, where
k is a constant of proportionality. The problem with this
formulation is that as T → 0, the present value of any re-
ward becomes infinite, but can be remedied by adding a
constant to the denominator (Herrnstein, 1981), and it is
then a short step to fix that constant as the value 1.

Finally, note that the word “hyperbolic” is often used
loosely to cover any discounting in which the discount
rate is higher at shorter delays than it is at longer delays.
We use the term more precisely to refer to the particular
model described in (13) and (14).

2.3 Arithmetic discounting (A, d)
In arithmetic discounting, future and present values are
compared by constant increments d, exactly as in an arith-
metic progression:

d = (F − P )/T (15)

P = F − Td (16)

Instead of multiplying F by a discount factor to yield P,
we subtract a discount decrement (Td). In one choice
people are offered P: in the second they are offered P +
(F – P). If the participant decomposes the choice in this
way, then the decision is whether it is worth waiting for
the excess (F – P). If they feel their time is worth d0 per
day to wait, then if (F – P)> Td0 they chooses F. Whereas
r and h are dimensionless, being essentially expressions
of interest rates, d is measured in units of money per time
(e.g. dollars per day).

There is another justification for equations (15) and
(16). Killeen (2009) started from the assumption that the
marginal change in utility with respect to time follows a
power law; also, that utility and value are themselves re-
lated by a power law. Taken together these were shown
to yield an equation of the form: P = (Fm – Tτd)1/m

(Killeen, 2009, equation 6, p.605). We examine the gen-
eral form of this equation in a later section (4.1). But
for now, notice that if c = 1, subjective time is objective
time; and that if k = 1, the utility of money is just its
face value, giving equation (16). Doyle and Chen (2012)
found empirical support for A, relative to E and H, both
in other researchers’ past data, and in their own. They
surmised that people were treating delay discounting by
analogy with “wages for waiting” rather than by analogy
with “investment growth” as implied by E and H.

3 Rate parameter + 1 models

Each of the models in this section has one additional
(free) parameter that must be estimated (“recovered”)
from the data. The next sub-section 3.1.1, for instance,
models utility of money with a power law. An additional
parameter offers the possibility of more accurately mod-
eling behavioral discounting, and of also “recovering” ad-
ditional information, such as how money is subjectively
perceived, as captured in the exponent used in Section
3.1.1. But additional parameters also need additional data
to avoid the problems of over-fitting; and this data must
be distributed to provide sufficient variety in order to es-
timate the additional parameter.

3.1 Hyperboloid models

3.1.1 Green and Myerson (Hm, hm; m)

Myerson and Green (1995) proposed a model which gen-
eralizes the hyperbolic. Whereas in this and other pub-
lications these authors consistently use the symbol s for
the exponent, we use 1/m for consistency with the rest of
this article. Their model is:

P = F/(1 + hmT )1/m (17)

This model is a special case of Loewenstein and Pr-
elec’s (1992) generalized hyperbola formulation. Further
simplifying, if m = 1, we have the hyperbolic. When 1/m
(=s) < 1 the tendency of H to discount more steeply than
E at short durations (but less so over longer durations) is
exaggerated. Equation (17) may be re-arranged to give a
rate parameter that is the equivalent of r, h, or d:

hm = ((F/P )m − 1)/T (18)
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The subscript m on the rate parameter emphasizes that
money may be treated subjectively, and requires the re-
searcher to estimate m (=1/s) empirically. Typical val-
ues that are reported in the literature for s (=1/m) are in
the range [.45, .78] (McKerchar, Green, Myerson, Pick-
ford, Hill, & Stout, 2009; McKerchar, Green & Myerson,
2010), and these authors find that modeling the additional
parameter leads to statistically significant improvements
in fit over the hyperbolic. Notably, s is typically less than
1, which means that the ratio (F/R) in equation (18) is
being raised to a power greater than 1, thus acting to ex-
aggerate the relative difference between F and P in calcu-
lating hm. At the other extreme, when s becomes large,
the exponent acts to shrink the ratio (F/R) towards 1, and
in so doing (18) begins to approximate the exponential
model.

To see why, we use the mathematical relationship that
(xc – 1)/c → log(x) as c → 0. Here x is (F/P) and c is
m. The smaller m becomes, the closer (F/P)m -1 comes
to m.log(F/P). Once the value of m is fixed at some small
value, all calculations in (18) are multiplied by the same
m, which in this way just acts as a scaling constant, and
can be ignored. It follows that the exponential model is
a special case of (18) when s gets to be very large. The
take-home point is that since m > 1 in empirical data, ac-
tual behavioral discounting is not a compromise between
E and H, but lies even further from E than H had sug-
gested.

3.1.2 Rachlin (Hτ , hτ ; τ )

An alternative way to generalize the hyperbolic was pro-
posed by Rachlin (2006), and also presented in Mazur
(1987):

P = F/(1 + hτT
τ ) (19)

Here, the exponent τ applies specifically to T rather than
the whole brackets. This minor modification leads to a
subtly different model. Rearranging (19) to isolate the
rate parameter, we get:

hτ = ( (F/P )− 1) / T τ (20)

In this version of the hyperboloid, the numerator (the
treatment of money) is the same as for the hyperbolic.
However, unlike in the previous four models, time may
be treated subjectively by means of a Stevens-like power
law. Similar to before, if τ=1 we have the hyperbolic.
But once again, τ < 1 in empirical data. Thus, subjective
time is increasingly compressed at longer periods. The
typical range for τ is [.67, .90] (McKerchar et al. 2009,
McKerchar et al. 2010) which is just slightly lower than
other estimates of the subjective time exponent (Eisler,
1976). This is the first model we have considered in
which the rate parameter cannot be expressed in straight-
forward units of measurement.

3.1.3 m, τ , or m relative to τ?

Comparing models the money and time parameters from
Hm and Hτ , in 3.1.1 and 3.1.2 we cited typical (m, τ ) ex-
ponents as being, very approximately (1.5, 1) when Hm
was the model, and (1, .7) when Hτ was the model. The
utility of money is generally conceded to be m < 1. This
may lead us to believe one of two things. Either the esti-
mates of m and τ are discrepant with each other, and in
the case of m, highly discrepant with past research. Al-
ternatively, that what may count behaviorally, over and
above the absolute values of m and τ , is their sizes rela-
tive to each other. Suppose it is a psychological fact that
m > τ , i.e. that subjective money is less concave (more
convex) than subjective time, then in fitting m and τ rela-
tive to each other, both models are consistent. But if one
model constrains τ = 1 (as Hm does), then the behavioral
requirement that m > τ will force m to be greater than
1. Likewise if the other model constrains m = 1 (as Hτ
does), the behavioral requirement m > τ will force τ to
be less than 1. This is what we find.

The requirement m > τ is consistent with Zauberman,
Kim, Malkoc and Bettman’s (2009) conclusion that per-
ception of time are more labile than perception of money,
but it is not consistent with exponential discounting for
which m ¿ τ .

3.2 Present bias / present premium models
3.2.1 Quasi-hyperbolic (β-δ) discounting (qH, q; β)

Quasi-hyperbolic discounting (qH) is rarely used in psy-
chological research, though it is used extensively by
economists hoping to preserve as much of the exponential
model as possible. In the discrete time version of the ex-
ponential model each factor discounts the previous one by
δ (= 1/(1+r)) to form a geometric progression of discount
factors: {1, δ, δ2, δ3, . . . δn} for t = 0, 1, 2, 3. . . n, respec-
tively, with δ < 1. As explained in Section 2.1, when the
compounding periods become very small, and n becomes
correspondingly large, we have continuous compound-
ing, and therefore E itself. Contrasting with discrete-time
E, the quasi-hyperbolic model posits discount factors: {1,
βδ, βδ2, βδ3, . . .βδn} for t = 0, 1, 2, 3. . . n, respectively,
with 0 < β, δ < 1 (Laibson, 1997). If β = 1 we would
have a straightforward compounding model, as described
in equation (9). But if instead, β < 1, this parameter
acts to give a one-off boost to discounting over the first
compounding period. The purpose of β is to help tick
the box of unexpectedly steep discounting at short du-
rations, which is the hallmark of actual behavioral data,
and which first motivated the use of hyperbolic discount-
ing. Thereafter, the model assumes that discounting fol-
lows the standard normative model. Paralleling the devel-
opment in Section 2.1, the quasi-hyperbolic can also be
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used for continuous discounting (e.g., Benhabib, Bisin, &
Schotter, 2010). The discount factor D is:

D = 1 if T = 0; D = βe−qT if T > 0 (21)

The rate parameter for quasi-hyperbolic discounting is
therefore:

q = [log(βF/P )] / T for T > 0 (22)

All F first get scaled by the additional parameter β before
being treated by the exponential model. Obviously, if β
= 1, then q = r as in equation (12). It is thus clear that qH
discounting is hyperbolic only in its intent to mimic the
steep initial discounting of the hyperbolic model, but in
every other sense it is an exponential model.

The qH model may have been motivated pragmatically
to preserve exponential discounting and all the useful
mathematics that goes with it, while also modeling initial
steep discounting. Nonetheless, the idea that F (but not P)
gets a special “tax” simply because it is not received right
now does have a more constructive justification. There
is a qualitative difference between now and any time to
come, which we all appreciate intuitively, and which lan-
guage mirrors in verb tenses. From this perspective, the
discontinuity in qH between t = 0 and t > 0 is not an ugly
kludge to workaround bothersome behavioral evidence,
but a clever modeling device that allows what happens
now (P) to be treated differently from all future events
(F). In this way qH, a model devised by economists for
economists, has the capacity to capture a psychological
distinction that the other models cannot.

To help rescue this insight from the limitation of being
identified exclusively with the exponential model, let γ =
1 / β. Whereas β captures the idea that F is less than it
should be, γ captures the idea that P is more than it should
be, and we call γ the present premium. Analogous ideas
are met in risky decision, where a certain reward (p = 1)
are valued at a premium over rewards with p< 1; and also
in the premium due to mere possession or the endowment
effect (Thaler, 1980; Sen & Johnson, 1997). Rewards
that are certain, mine, and now are all over-valued. Po-
tentially, the models we have considered or are about to
consider, could incorporate a present-premium parameter
by simply replacing P with γP (or F with βF) in all calcu-
lations. Benhabib, Bisin and Schotter (2004) formulate
exactly such a hybrid between Hm and qH in this way
(see also Section 4.4, and Tanaka, Camerer & Nguyen,
2010).

Nonetheless, there are still issues to be confronted with
qH. In particular, if β < P/F in a particular choice, the
model predicts P should always be preferred to F, no
matter how short the delay in F—unless someone’s in-
ternal rate parameter is negative. Laibson (2003) sug-
gested “calibrating” qH with β ' .5, meaning that 21

of Kirby, Petry, and Bickel’s (1999) 27 choice questions
would be in the negative rate parameter category. Even
β = .90 would put 8 questions into that category. Sum-
marizing several empirical studies in economics, van de
Ven and Weale (2010) noted βs of .296, .308, .674, .687,
.846, .942; and .825 in their own work; and in Albrecht,
Volz, Sutter, Laibson and von Cramon (2011) the median
β from individual experimental data was .86, with 24 of
27 participants having β < 1. If these estimates are close
to what individuals use in binary choice, then β < P/F
would occur more than just occasionally in typical data.

The quasi-hyperbolic is popular with behavioral
economists. It lends itself to convenient testing against
the normative model E, by testing whether β is signifi-
cantly different from (less than) 1. Unfortunately, in the
literature qH has rarely been tested against the kinds of
models surveyed here which are more potent challengers
in that they themselves have consistently proven better
than E. Furthermore, Kable and Glimcher (2010) argued
that the present bias is more strictly a soon-as-possible
bias, implying that a deflationary β should be applied to
all f (t > 0), and not just P (t = 0). Finally, as has already
been pointed out in Section 1.3.3, nothing ever actually
happens at t = 0, in that a reward offered “now” is actu-
ally received at t > 0. Therefore, the special status of t
= 0 in qH can be questioned on the grounds that it may
never occur in practice.

3.2.2 Benhabib et al.’s fixed cost model (X, x; χ)

As an alternative to the percentage decrement for non-
present rewards, Benhabib, Bisin and Schottter (2010)
suggested using a fixed cost to model present bias—that
is, an absolute decrement: use (F – χ) in place of F.
Thereafter use the exponential model, exactly as in qH.

x = log((F − χ)/P ) / T, for T > 0 (23)

They found a present bias / present premium of about
$4 among amounts of $10 through $100. The fixed cost
model better fitted their data than the qH model. A
different, though very similar model is obtained if χ is
added to P rather than subtracted from F (see Section
4.4). Hardisty, Appelt, and Weber (2012) found that χ
was positive for both gains and losses, suggesting a gen-
eral “want-it-now” bias.

3.3 Read’s interval model (B, b; θ)
Read (2001) presented his model in terms of a discount
fraction D that occurs within the time window [t, T]. D is
the fraction by which F is reduced by being at the end of
the interval (T), rather than the start (t): namely, f / F. The
exponent θ applies to the time interval, rather than time
itself (as would be the case with the exponent τ , which

http://journal.sjdm.org


Judgment and Decision Making, Vol. 8, No. 2, March 2013 Survey of discounting models 126

is not used here). The algebraic steps to isolate the rate
parameter b are:

D = [1 / exp((T – t)θ)]b

D = 1 / [exp((T – t)θ)]b = f / F
[exp((T – t)θ)]b = F/f
b(T – t)θ = log(F/f)

b = log(F/f)/(T − t)θ (24)

From equation (24) we see that Read’s is an exponential
model performed on the subjectively (because θ 6= 1) per-
ceived time interval (T – t). It nests the standard exponen-
tial model E when the interval of inspection starts from
t=0 (at which point f is to be known as P), and when sub-
jective time is assumed to be linear with objective time (θ
= 1).

While this model seeks to understand cognitive pro-
cesses through the use of interval data (t> 0), it still must
compete with other models at the particular case of t = 0,
even if a given competitor model has not (yet) been gen-
eralized to the case of t > 0.

3.4 Roelofsma—exponential time (V, v; υ)
Arguing from the Weber-Fechner Law of logarithmic
sensitivity to psychophysical stimuli, Roelofsma (1996)
presented his model as:

P = U(F )/(1 + v)υlog(T ) (25)

If we take U(F), the utility of F, as itself being loga-
rithmic as in the exponential model E, and move from
discrete to continuous time, we derive the rate parameter:

v = log(F/P ) / [log(υ) + log(T )] (26)

Whether log(υ) is an intrinsic part of this model is not
really discussed by the author. If it is not, the obvious
choice is to set υ = 1, so that this model becomes a sim-
ple rate parameter model in log money and log time, with
no additional parameters to be estimated. In treating both
money and time logarithmically, among the models I have
surveyed, Roelofsma’s is the most enthusiastic adherent
of the Weber-Fechner law. Assuming υ = 1, and writ-
ing (26) as: v = [log(F) – log(P) ] / log(T), we see that
Roelofsma is structurally similar to the arithmetic model
except that, instead of using raw values of F, P, and T
in the rate parameter equation, each is replaced with its
logged equivalent.

3.5 Synopsis of the models so far
E is the normatively correct model to value investments.
It assumes a continuously compounding interest model of
growth. But E fails to capture important aspects of how

laypeople actually evaluate intertemporal choices. qH ex-
tends E by making a distinction between present choices
and future choices. In qH, all choices in the future are de-
valued by a constant scalar β before treating them as in E,
which itself is the special case of qH when β = 1. Model
X, like qH, maintains that there is a special difference be-
tween P and all future values F, but whereas qH treats the
present premium multiplicatively, X does so additively.

For over two decades, H has been the psychologists’
default alternative to E in that it consistently estimates
people’s actual discounting behaviors better than E. H is
equivalent to a simple interest model of growth. The hy-
perboloid models are extensions of H that treat money
(Hm) and time (Hτ ) as non-linear. Hm is equivalent to
H when its additional parameter m = 1, and E when 1/m
→ 0. But past evidence estimates m to be less than 1,
which might imply increasing utility to money, contrary
to classical theory and common intuition. Also, Hτ is
equivalent to H when its additional parameter τ = 1. The
mental operations involved in A are simpler than those in
all other models, which all start by forming a ratio be-
tween (possibly transformed) F and P. Model A starts by
forming a difference between F and P.

The special case of t = 0 in Read’s model B (all time
intervals start from now; hence f = P) presents as a hybrid
between E and Hτ . It is an exponential model (logarith-
mic money) calculated on subjective (power law) time.
Of course, in modeling time intervals in general, not
just ones that start from the present, Read’s model aims
to examine phenomena that the others cannot. Roelef-
sma’s model V treats both money and time logarithmi-
cally, which makes it equivalent to A, where all monies
and times have first been logged.

Finally, because of the reciprocal T in calculations of
r, h, d, hm, q, and x for a given P and F, all of these
rate parameters decline hyperbolically with time. In fact,
one might distinguish models E, H, A, Hm, qH, and X
from each other only by their treatment of money, and
once that is determined in the numerators of their respec-
tive rate parameter equations, r, h, d, hm, q, and x all
decline identically with objective time. This neglected
perspective suggests the essential difference between the
five models of intertemporal choice, A, Az , H, E, Hτ , qH,
and X has nothing to do with time per se, and could even
be tested against each other by considering a single fixed
time gap between P and F.

3.6 Time (im)patience models

From the point of view of modeling rate parameters, most
of the above models have focused on their treatment of
money, making few inroads into modeling the subjectiv-
ity of time. In this Section we collect together research
that takes a serious look at how time is perceived—while
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incidentally accepting the log(F/P) of model E as a given.

3.6.1 Ebert & Prelec’s constant sensitivity (CS)
function (C, a; b)

“Given that unit elasticity defines compounding discount-
ing [E], it is natural to interpret lower-than-unit elas-
ticities as indicating insufficient time-sensitivity relative
to compound discounting. If elasticity is constant and
equal to b > 0, the discount function has the constant-
sensitivity form” (Ebert & Prelec, 2007, p.1425), which
is:

P/F = exp(−(aT )b) = e−(aT )b

(27)

As b→ 0 we have diminishing time sensitivity. If bÀ 1,
then the CS function begins to appear as a step function,
meaning that time is ever more clearly dichotomized into
“near future” and “far future” (at the boundary 1/α). See
their Figure 1. We can isolate the rate parameter associ-
ated with the CS model from equation (27) as:

a = [log(F/P )]1/b / T (28)

Clearly, when b = 1 (unit elasticity), we have model E
as the special case. Ebert and Prelec note, but avoid, the
similar discount function:

P/F = exp(−(axT b)), (29)

leading to the rate parameter:

ax = log(F/P ) / T b (30)

which is a special case of the generalized hyperboloid to
be examined in Section 4.3, with m → 0.

3.6.2 Bleichrodt et al. Constant Relative Decreasing
Impatience (CRDI) functions (M, ρ;ψ, (β =
1))

CRDI is explicitly described as an analog of constant ab-
solute risk averse functions (CARA) that appear in risky
choice models. Bleichrodt, Rhode, and Wakker (2009)
observed that hyperbolic discount functions were devel-
oped to account for decreasing impatience. That is, rela-
tive to exponential discounting, people consistently show
greater impatience (for P) in the short term, but greater
patience in the longer term. They also noted that such
models failed to accommodate “increasing impatience
or strongly decreasing impatience” (p. 27), particularly
given the attempt to model individuals’ discounting be-
havior: hence their search for discounting functions to
fulfill this need. Let D(T) be the discount function (i.e.,
D(T) = P/F). Then their CRDI function is / are:

(i) D(T) = β.exp(-ρTψ) for ψ > 0
(ii) D(T) = β.T−ρ for ψ = 0, and T 6= 0

(iii) D(T) = β.exp(ρTψ) for ψ < 0, and T 6= 0
Examining each in turn, we have for ψ > 0,

log(P/ βF) = -ρTψ , thus:

ρ = log(βF/P ) / Tψ (31)

The following points should be noted. First, money is
treated as in qH, with β fulfilling the same role in both
models. Second, there is a power law on time; if β = 1,
the model is exactly the route not taken by Ebert and Pr-
elec (2007), as in equation (30). Third, if ψ = 1, we have
objective clock time, and thus “constant impatience”; if
0 < ψ < 1, we have the conventional view that time be-
comes increasingly contracted the more distant in the fu-
ture it is, and thus we have “decreasing impatience”; but
if ψ > 1, the more distant the time, the more stretched
it becomes, which therefore models “increasing impa-
tience”.

Examining ψ = 0, we have:

ρ = log(βF/P )/log(T ) (32)

If β = 1, we have Roelofsma’s model (presuming υ =1),
described in Section 3.4.

Finally, if ψ < 0, we have:

ρ = log(βF/P ) / (−Tψ) (33)

In this case the denominator asymptotes to zero, but from
below. It is designed to model impatience that decreases
more rapidly than for the first part with 0 < ψ < 1. In
order for ρ to be positive (Bleichrot et al, 2009, Definition
4.1, p. 31), we must have that β < P/F so that the log
in the numerator is negative allowing the minus signs to
cancel.

As ψ moves through zero from above, for a given T >
0, the denominators in parts (31), (32) and (33) become 1,
logT and –1, respectively. This means that any algorithm
that hopes to recover the impatience parameter ψ from
data has a discontinuity to negotiate at ψ = 0. It may
therefore be better to think of (i), (ii) and (iii), or equa-
tions (31), (32) and (33), as three distinct sub-models,
rather than a single model.

3.6.3 Bleichrodt et al. Constant Absolute Decreasing
Impatience (CADI) functions (N, σ; η, (β = 1))

Their analog of a CARA Constant Relative Risk Averse
function is the CADI function given by:

D(T) = β.exp(-σeηT ) for η > 0
D(T) = β.exp(-σT) for η = 0
D(T) = β.exp(σeηT ) for η < 0

“[β] is a scaling factor without empirical meaning in the
sense that it does not affect preferences”; “[η] is the con-
stant that indicates the convexity of log(D)”; and the rate
parameter σ “determines the degree of discounting.”
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Looking first at the η > 0 part:

σ = log(βF/P ) / eηT (34)

The denominator eηT is a convex function, indicating in-
creasing impatience. It is the analogous equation to the
first part of 3.6.2, in the region ψ > 1.

For η = 0, we have:

σ = log(βF/P ) / T (35)

which is the Exponential model, and for η < 0 we have:

σ = log(βF/P ) / (−eηT ) (36)

eηT is a decaying function with time if η < 0, but because
of the negative sign, the denominator becomes a concave
increasing term, and is therefore analogous with 3.6.2,
part(iii) and equation (33).

The same kind of remarks made for the CRDI func-
tions, concerning algorithms and betas can be repeated
here.

3.7 Size-sensitivity in the arithmetic model
(Az, dz; z)

Returning to the arithmetic model, one shortcoming is its
insensitivity to size. That is, if someone prefers to re-
ceive $11 in 2 days rather than $1 today, model A as-
sumes that person would also prefer $1,000,011 in 2 days
to $1,000,001 today. Both imply d = 5 so that if d ex-
ceeds the internal d0 in the first scenario, implying that
F should be preferred to P, d will also exceed d0 in the
second. However, in the second scenario, just contem-
plating the impact of becoming a millionaire right now
is likely to affect the internal criterion d0 in the sense of
requiring greater “wages for waiting.” A more flexible
model is therefore to suggest that the rate parameter may
vary with the size of P. For instance, d may be given by a
power law scaling of a rate parameter dz which is stable
and does not vary depending on the size of the choices
offered,. Hence, d = Pzdz . Therefore, we have:

dz = P−z(F − P ) / T (37)

If z = 0, dz is not size-sensitive at all, and we have model
A. If z = 1, dz is highly size-sensitive and in fact we have
the simple hyperbolic model H. Thus the size parameter
z links A with H.

An alternative is to scale d by F−z (Kirby, 1997),
though see Section 5.1 for arguments why P is preferred
to F.

4 Rate parameter + 2 models

4.1 Killeen’s additive utility model (K, k;
m, τ )

Killeen (2009) started from the assumption that the
marginal change in utility with respect to time follows
a power law; also, that utility and value are themselves
related by a power law. Taken together these were shown
to yield an equation of the form: P = (Fm − kT τ )1/m

(Killeen, 2009, equation 6, p. 605), where his vt, v, α,
β, t, and λ are respectively our P, F, m, τ , T,and k. He
explained as follows: “this additive utility discount func-
tion is the central contribution of this article. It is ad-
ditive because the (negative) utility of a delay is added
to the nominal utility of the deferred good.” (p. 605).
Some rearrangement isolates the rate parameter to give
our canonical form:

k = (Fm − Pm) / T τ (38)

Clearly, when both m = 1 and τ = 1, we have the simple
arithmetic model. The numerator can be written as:

(Fm – 1) – (Pm – 1) = mFm−1
m – mPm−1

m
So that as m → 0, it becomes:

m.log(F) – m.log(P) = m.log(F/P)
But since m is a common factor, it can be treated as a
scaling constant, meaning that K nests E when m → 0
and τ = 1. It also nests the particular t = 0 case of Read’s
model, which occurs in K when m → 0 and τ is a free
parameter. Killeen’s used his model to survey aggregated
data from past research, finding that m ' .15, and τ '
.53. Both parameters are smaller than other researchers
have estimated, and in particular m< τ , which is contrary
to evidence collected by researchers in connection with
Hm and Hτ . Note, however, that within the datasets that
Killeen examined, the number of observations used to fit
the model was never greater than eight, which is rather
small for non-linear estimation.

4.2 Killeen, intervals, and started time (Kτ ,
kτ ; m, τ )

Killeen’s additive utility model can be generalized to time
intervals that start in the future (at time t 6= 0), either with
a power law on the interval, as modeled in Read (2001)
and Section 3.3:

kθ = (Fm − fm) / (T − t)θ (39)

or with a power on each point in time itself:

kθ = (Fm − fm) / (T θ − tθ) (40)

There is an important distinction between these models
for time exponents θ or τ if they are¿ 1, which exagger-
atedly condense distant time. In our first generalization of
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Killeen, as θ→ 0, the denominator (T − t)θ → 1, which
means that people would be completely time-insensitive,
and therefore presumably always choose F over f. How-
ever, in the second generalization, as τ → 0, the denomi-
nator (Tτ – tτ )→ τ .log(T/t), meaning that at this extreme
people become only logarithmically (in)sensitive to time.
Started time does not affect (39) since the start is added
to both T and t, which cancel out.

Because of the symmetry in the treatment of money
and time in the kτ generalization3, and to allow the pos-
sibility that subjective time is logarithmic, as argued in
recent research (Zaubermann et al, 2009), we now fo-
cus attention on kτ . But immediately we hit a problem,
which is that if t = 0 (as it usually is in intertemporal
choice questionnaires), equation (39) cannot be distin-
guished from (40), so that we end up with the same time
insensitivity as in kθ when τ → 0. Persisting with the log-
arithmic limit idea doesn’t help either because of divide-
by-zero problems.

As argued earlier, because of log(0) problems a useful
generalization of Killeen is to use started time4:

kτ = (Fm − fm) / (T τ∗ − tτ∗) (41)

where T∗ = T + ε, and t∗ = t + ε, and ε is small. This form
is flexible enough to capture many possible states of the
world, as reflected in the recovered exponents m and τ .
If m → 0, subjective money (F, f) would be logarithmic.
If τ → 0 started time (T∗, t∗) would be logarithmic. If m
and τ were close to 1, money and (started) time would be
linear (objective), while intermediate values of m and τ
would indicate that subjective time and money have less-
than-logarithmic curvature. It is also possible that both m
and / or τ could be > 1.

4.3 Dual hyperboloid with subjective
money and time (Hmτ , hmτ ; m, τ )

As a robustness analysis, Doyle and Chen (2012) used
power exponents to model time and money for A, which
then becomes model K, and for the hyperbolic, which
then becomes:

hmτ = ((F/P )m − 1) / T τ (42)

This nests a number of models already considered. The
rate parameter hm for Green and Myerson’s hyperboloid
model is the special case when τ = 1. The rate parameter
hτ for Rachlin’s hyperboloid occurs when m = 1; and the

3If power laws govern the subjective perception of all simple psy-
chophysical quantities, and by extension time and money, then the bur-
den of proof is surely on justifying that time and money should not be
treated symmetrically.

4Money never needs to be “started”, because f = 0 is not a realistic
scenario, though in principle money could be “started” too.

hyperbolic rate parameter h occurs when both m = 1 and
τ = 1. Furthermore, when m → 0 we have:

hmτ = log(F/P ) / T τ (43)

Which is model B (Read), and b = hmτ . Note also that
the subjective-time exponential only has one additional
parameter, because any attempt to introduce a new ex-
ponent for money results in log(Fm/Pm) = log((F/P)m)
= mlog(F/P), so that m just becomes a scaling constant.
The model Ebert and Prelec (2007) reject, equation (30),
occurs when m → 0.

In conclusion, most of the models considered so far can
be generated from equation (42) as special cases. How-
ever, the CS model that Elbert and Prelec do propose,
equation (28), has the exponent acting on all of log(F/P),
not just what is in the brackets. Therefore, CS cannot be
derived.

Similarly, the general hyperbola (Harvey, 1986) cannot
be derived as a special case of equation (42). It has the
form P = F / (1 + αT)β/α. As Loewenstein and Prelec
(1992) state: “The α-coefficient determines how much
the function departs from constant discounting; the lim-
iting case, as α goes to zero, is the exponential discount
function, e−βT .” When β=α, it is the simple hyperbolic,
which we can write as P = F / (1 + βT), as in Section
2.2. Therefore β may be treated as a rate parameter for
the special case of both hyperbolic and exponential, and
in the more general case, β = log(F/P) / log(1 + αT)1/α.
Finally, as α becomes large, the discounting function be-
comes increasingly step-like.

4.4 Benhabib et al.’s generalization of E, H,
qH, and X (G, g; β, χ)

Benhabib, Bisin and Schotter (2004) presented their
model as a discount function:

D = β(1−ngT )1/n+χ/F for T > 0; D = 1 for T = 0
(44)

Substituting D = P/F and re-arranging, we have:
(P + χ) / (βF) = (1 – ngT)1/n

When n → 0, we have:
(P + χ) / (βF) = e−gT

Thus:

g = log(βF/(P + χ)) / T, for T > 0 (45)

which is E if the quasi-hyperbolic multiplier β = 1, and
the analogous additive term χ = 0. If β = 1, and χ = 0,
and n = –1, we have H, the simple hyperbolic.

We begin to see here how elements of different mod-
els may be combined to good effect. In this example the
authors were able to test whether the multiplier β or addi-
tive element χ was more predictive of behavior. In their

http://journal.sjdm.org


Judgment and Decision Making, Vol. 8, No. 2, March 2013 Survey of discounting models 130

analyses, it was the latter. They also noted that their par-
ticular data had little power to distinguish between func-
tional forms H (n = -1) and E (n = 0), though the main
point to note here is that their generalization model does
allow for testing this possibility.

4.5 Hyperboloid over intervals (Hmω, hmω;
m, ω)

Green, Myerson and Macaux (2005) extended Green and
Myerson’s model described in Section 3.1.1 to include
time intervals that do not begin at t=0. Starting from their
statement of the model in their equation A16, we derive
the following equation for the rate parameter hmw. Let-
ting M = (F/f)m – 1 be the numerator, exactly as in Sec-
tion 3.1.1, then:

hmω = M / [(T − t)− ωtM ] (46)

Clearly, when t = 0, this model reduces to Hm. But when
t> 0, the authors identified different models according to
the values of ω and m.

Equation (46)a: ω = 0 is their elimination by aspects
model. One aspect that is common to the two choices
(f, t) and (F, T) is the wait to the first choice, and so it
is eliminated, reducing the time component to (T – t).
We should also note that f is common to the monetary
choices, but this aspect is left untouched in 37a.

Equation (46)b: m = ω = 1 is their present value com-
parison model. In this model, people are assumed to dis-
count both F and f to present values, using the simple
hyperbolic model in Section 2.2 (i.e., m = 1).

Equation (46)c: m = 1 is their common aspect attenu-
ation model. Once again, F and f are assumed to be hy-
perbolically discounted to a present value, but this model
assumes that an extra attenuation factor, operationalized
by the weight ω, may act on f.

One point to note from the general statement in (46) is
that although a money-only component can be identified
in the numerator, the subjective time component in the
denominator is not independent of money, because the
denominator in (46) has the additional term ωtM, and M
has terms involving F and f. This contrasts with all other
models presented thus far. Finally, equation (46) implies
that if (F À f), M could become large enough so that (T
– t) < ωtM, thus turning the rate parameter negative.

5 Rate parameter + 3 models

5.1 Size-sensitive J model (J, j; z, m, τ )
If we combine the size-sensitivity component described
in 3.7 with the started-time version of Killeen’s model
extended in Section 4.2 to cope with discounting over

non-present time intervals, we get a general model that
generates many of the above as special cases:

j = P−z(Fm − Pm) / (T τ∗ − tτ∗) (47)

First, we use the triplet (z, m, τ ), each taking values of
0 or 1 to describe whether money and time are modeled
as linear (m = 1, τ = 1) or logarithmic (m → 0, τ →
0); and whether there is size-sensitivity (if z = 0 there
is not). J nests the following simpler models: Exponen-
tial is (0,0,1); Hyperbolic is (1,1,1); Arithmetic is (0,1,1);
Roelofsma, if υ is take to be 1, is (0, 0, 0). Moreover,
other models can be stated as partially constrained ver-
sions of J: Green and Myerson is (m, m, 1), i.e. z =
m; Rachlin is (1, 1, τ ); Read with t = 0 and t∗ = 1 is
(0, 0, τ ); Size-sensitive Arithmetic is (z, 1, 1); the gen-
eral hyperboloid Hmτ in 4.3 is (m, m, τ ); and Killeen
is (0, m, τ ). Also nested in J are several of the memory
trace models described in Yi, Landes, and Bickel (2009),
namely “power” (0, 0, 0)—see also Roelofsma; “expo-
nential power” (0, 0, .5), and “hyperbolic power” (1, 1,
.5).

In being able to generate these alternative models, J
has a number of useful properties. First, there is the sim-
ple matter of parsimony. We need hold in mind a sin-
gle equation from which many others may be generated.
Second, the generation process encourages us to consider
and investigate other models that could be generated from
the triplets, but have not. For instance, there are eight
possible fully-constrained, simple rate parameter models.
Each is a combination of the 0 or 1 for each of the triplet
values z, m, and τ . Only four of these models have been
considered: what of the other four? Similarly, though less
mechanically, new models may be considered with par-
tial constraints. Last, but not least, one may use model J
with no constraints to recover parameters for z, m, and τ .
The fact that so many models may be generated from this
form hints that the best fitting model may be a compro-
mise between of all of them, as should be evident if the
parameters z, m, and τ were all to fall between 0 and 1.

This model scales by P−z rather than F−z because the
latter is less productive in generating other models as spe-
cial cases, and also because it is more likely that P, will be
used as the given situation, against which F will be com-
pared, rather than vice versa. After all, P is mentioned
first in the typical question frame (e.g. “Would you pre-
fer to receive $70 now, or $100 in 20 days?”), and is on
offer right now. Thus F will be evaluated in terms of P.
Nonetheless, it may be possible to prime F to fulfill the
role of given information, as in the question frame: “As-
suming you can receive $100 in 20 days’ time, would you
accept $70 now instead?” Thus biasing P to be evaluated
in terms of F. Manipulating the salience of P relative F,
or vice versa, can be taken a stage further in matching
tasks where people estimate their indifference points be-
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tween P and F. Thus if people are required to adjust P
for a fixed F they will be biased towards scaling by F−z;
whereas if they adjust F for a given P, they will be biased
towards scaling by P−z . Using F−z gives rise to a parallel
set of models to those presented here. But the degree to
which P−z outperforms F−z as a scaling component, or
vice versa, and their susceptibility to manipulation are all
matters for future empirical investigation.

5.2 Discounting by intervals, DBI (I, I; m,
τ , θ)

Like Read’s model, Scholten and Read’s (2006) discount-
ing by intervals (DBI) model is designed to highlight
phenomena which occur over several intervals that do
not necessarily include the special one bounded at t=0.
Nonetheless, as a viable model it must be able to stand
comparison with other models when t=0. The rate pa-
rameter for DBI is:

i = ((F/f)m − 1) / (T τ − tτ )θ (48)

This model extends Read’s in two ways. First, money is
modeled as in Green and Myerson with a to-be-estimated
exponent m, rather than with log(F/f), as in Read. This
is more flexible because the power form nests the loga-
rithmic money form. Second, although there is still an
exponent on the time interval, the times in the interval are
themselves subjective. Therefore, Read’s model is nested
in DBI as the special case where m → 0, and τ = 1. Note
that if t = 0, the denominator becomes Tτ θ. Given that
τθ only occur together, they can be treated as a single pa-
rameter, and DBI becomes the generalized hyperboloid
Hmτ . Also, if θ = 1, we approximate J (m, m, τ ) if τ is
sufficiently far from 0 so that started and objective time
are effectively equivalent.

Finally, the nesting of time and time-interval exponents
in the denominator (Tτ – tτ )θ means that care must be
taken in experimentally estimating the separate parame-
ters.

6 Discounting models with no
closed-form rate parameter

6.1 Two rate parameters—two exponen-
tials discounting (Eβδ, rβ , rδ; w)

This model is related to the quasi-hyperbolic model in its
intent to separate short-term from long-term processes.
But, whereas qH separates events at t=0 into a quali-
tatively distinct category from those at t>0, this model
deals with the same short/long-term issue in a more
graded manner. Carrying over the same terminology as

used in qH, McClure, Laibson, Loewenstein, and Cohen
(2007) suggested a β-system associated with limbic ar-
eas of the brain, that is impulsive, myopic, and discounts
at a high rate; and a δ-system, associated with prefrontal
and parietal cortical regions (“higher man”), which dis-
counts at lower rates. Each of these sub-systems is as-
sumed to discount according to the exponential model,
with the overall discount rate being a weighted sum of
each sub-system:

P/F = w.exp(−rβT ) + (1− w).exp(−rδT ), (49)

where if the first term represents the β-system, then rβ >
rδ . Quite explicitly, there are two rate parameters.

6.2 Scholten and Read’s intertemporal
tradeoff model—7 parameters (Y, γ, τ ,
εm, ετ , and three of {a1, a2, b1, b2})

Scholten and Read (2010) provide a densely argued justi-
fication for a complex model which they present in terms
of an indifference point between the perk of additional
compensation, and the irk of waiting for it. They define
the money value function on a future payment F to be:

v(F ) = (1/γ)log(1 + γF ) (50)

and a time-weighting function to be:

w(T ) = (1/τ)log(1 + τT ). (51)

They define an “effective compensation” to be:

Vm = (v(F )− v(f)), where F > f (52)

and an “effective interval” between t and T to be:

Wτ = (w(T )− w(t)), where T > t. (53)

The point of indifference is when:

Qτ (Wτ ) = Qm(Vm) (54)

such that if Qτ (Wτ ) > Qm(Vm) then the irk of waiting
is greater than the perk of compensation, so DM chooses
f at t, rather than F at T, and vice versa if Qτ (Wτ ) <
Qm(Vm). However, Qτ and Qm are not simple scaling
factors, but two-part linear functions:

Qτ (x) = a1x if x < ετ

Qτ (x) = a2x if x ≥ ετ , with a1 > a2. (55)

ετ is a threshold below which effective time intervals
(here just x) are weighted more steeply than above-
threshold. Note the similarity of intent with the two ex-
ponentials model. Similarly,
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Qm(x) = b1x if x < εm
Qm(x) = b2x if x ≥ εm, with b1 > b2 > 0. (56)

If the indifference equation is written out in full, it is
possible to see that a discount function of the form f/F
cannot be extracted: nor does limiting analysis to t=0
overcome the problem. Similarly, no simple rate param-
eter emerges from this model. It follows that the indif-
ference equation is the only simple way to present the
model. The model requires three parameters to specify
the two-part linear function for time (a1, a2, ετ ), three
more to specify the equivalent parameters for money (b1,
b2, εm), as well as τ and γ to specify the time-weighting
and value functions, respectively. However, the authors
note that “if only the relative magnitude of scaled effec-
tive differences is of interest, one of these scaling con-
stants {a1, a2, b1, b2} can be set to unity.” (p. 934).
This model therefore requires seven parameters to be es-
timated. So clearly, one of the biggest problems in testing
this model is the number of parameters to be recovered,
which means designing choice problems over which the
parameters are sufficiently independent of each other, and
the number of observations sufficiently large in order to
estimate the parameters adequately.

The tradeoff model treats time and money symmetri-
cally, which we argued in 1.3.4 should be the default
position for a quasi-psychophysical theory of time and
money. Indeed, the authors explicitly deny that people are
discounting in any way that an accountant would recog-
nize, espousing instead a thoroughly psychological per-
spective on intertemporal choice.

7 Model families and newborns

7.1 Models have similar forms
The world is simpler than a list of twenty or so models
might suggest. Our presentation of models via their rate
parameters emphasizes the following common structure:

Rate = s(money) ⊗ S(time), (57)

where s(.) and S(.) are functions that return subjective
perceptions of the money and time aspects, respectively,
and ⊗ is an operation by which these become combined.
According to this view, if someone operates according
to the exponential model it is because his/her subjective
perception of money is logarithmic, while his/her subjec-
tive perception of time is linear. In (57), subjective per-
ceptions then get combined by the operation ⊗. In most
cases, ⊗ is arithmetic division, but can be subtraction, or
conceivably something else. The separability of s and S
in the mathematics implies that subjective perceptions of
time and money should take place independently of each
other. In most models, objective time and money are

transformed into subjective equivalents by power laws,
or logs, but other transformations are possible.

To further simplify the map of the models surveyed
here, note that half are special cases of model J, and the
present-bias models of qH and X could also easily be in-
corporated into J. Two further themes that lie outside J
are: the time impatience models of Section 3.6 that go
to town on the modeling of time itself; and models that
place power laws on time intervals rather than on points
of time—Sections 3.3 and 5.2. Finally, we are left with
just four models that are not captured by these themes.
First there is the two-exponentials model—which is just
a doubling up of the reference model E, as if we had
two normative discounters in the same head: one pa-
tient (δ), the other impatient (β). Then there is Schot-
ten and Read’s (2010) trade-off model I, which for all
its complexity is still recognisable as an assemblage of
parameter-based treatments of subjective money, time,
and intervals. Hmω , although an innocuous extension of
the hyperboloid to time intervals turns out to be the one
model for which time and money cannot be cleanly sepa-
rated.

7.2 Speculative models
We end with a sample of speculative models (newborns)
that have clearly been assembled from the components of
existing models. Being able to mix and match almost in-
definitely emphasizes the family resemblances that exist
between models, and helps to compare and contrast treat-
ments of time and money. Some of these examples are
semi-serious; others are intended to provoke thought.

7.2.1 Arithmetic interval model

One of the innovations in B and I is that intervals and
subjective intervals are treated as if psychophysical ele-
ments in their own right, which may then be investigated
using power laws, and so on. We cross this with Killeen
(extended) to give the hybrid:

r = (Fm − fm)µ / (T τ − tτ )θ (58)

For mnemonic value note that µ is “mu” Greek m; and θ
“theta” sounds vaguely like T.

7.2.2 Fully additive model

Instead of treating⊗ as a division in 7.2.1, we could treat
it as a subtraction, echoing the difference models exam-
ined in Stevenson (1986):

r = (Fm − fm)µ − w(T τ − tτ )θ (59)

The weighting coefficient w cannot simply be interpreted
as the perceived relative importance of time, because it
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also rescales for m, µ, τ , θ, and units of time and money.
However, Stevenson found little support for this way of
combining time and money, compared with multiplica-
tive (ratio) forms.

7.2.3 Fully multiplicative hyperbolic model

Analogously, if H treats money as a percentage increase
(that gets averaged over time), then a model that also
treated time as a percentage increase would look like:

r = [(F/f)m − 1] / [(T∗/t∗)τ − 1] (60)

This example highlights the point that the default setting
in models is to treat time as additive, whereas money
is treated as multiplicative. From the point of view of
Stevens’ (1946) levels of measurement, both are ratio
scale measurement, with properly defined zeros. So if in
theory we can treat time and money symmetrically, what
is to stop the naïve behavioral theorist thinking likewise?

7.2.4 Time-size and money-size sensitive model

Model J only treated money as size-sensitive. A symmet-
rical treatment of time and money is instead:

r = tg∗(F
m − fm)µ / [fz(T τ∗ − tτ∗)

θ], (61)

where g is the time analog of z for money, implying
that someone’s criterion rate parameter may vary, not just
with the size of f, but also how far in the future f is of-
fered.

7.2.5 Arithmetic present premium model

A present premium can be incorporated into other mod-
els. Using both the multiplicative and additive compo-
nents of Benhabib et al’s (2004) generalizing model in
Section 4.4, the arithmetic model would become, for in-
stance:

r = (βF − (P + χ)) / T. (62)

8 Conclusions
This paper has surveyed delay discounting models that
have appeared in several literatures. Our presentation em-
phasizes that models have a clearly separable time com-
ponent, a separable money component, and a method of
combining these components into a rate parameter / de-
cision parameter. Within the components that transform
objective monies and times and intervals into subjective
equivalents, we have seen that the power law occupies
a special place in delay discounting models, particularly
given that log laws may be derived as special cases. How-
ever, despite the many models presented in this survey,

it may turn out that none of them portrays ITC behavior
particularly accurately—the door must always be left ajar
to improvements. Although researchers have been inven-
tive in their modeling of the time and money components,
there has been less interest shown in exploring alterna-
tives to power laws (which have been taken as the basic
nuts and bolts of discounting models), or how the time
and money components should be combined. Whereas
past research has favored power laws over log laws or
the negative exponential to represent the utility function,
nonetheless even it may be flawed. For instance, Kirby
(2011) has shown that power laws depart significantly
from utility, as incidentally do the other standard forms
considered. Kirby’s findings have yet to be extended from
utility in risky choice to utility in intertemporal choice.
Even more radically, the Decision-by-Sampling model
(Stewart, 2009) foregoes the parameterisation of utility
and time in favor of a memory-based approach. Another
possible direction for future research in individual deci-
sion making is to more explicitly model the “fuzzy math”
(Stango & Zinman, 2009) of the typical insufficiently
competent mathematician who is required to think about
financial and other numerically presented choices. But
given the large numbers of models and variants that have
appeared in the literature, the re-usability of components,
and the ease with which speculative models can be as-
sembled from them, a chief problem for future research
is to heed Occam’s razor by limiting the number of pa-
rameters a model employs to only those that are strictly
necessary. Finally, by gathering these models into one
place and thereby shining a light on them, it is hoped that
future research will be more proactive in testing models
against each other, and in manipulating choice behavior
through selectively manipulating the parameters that are
supposed to drive those behaviors.
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