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Applying the decision moving window to risky choice: Comparison
of eye-tracking and mouse-tracing methods

Ana M. Franco-Watkins∗ Joseph G. Johnson†

Abstract

Currently, a disparity exists between the process-level models decision researchers use to describe and predict de-
cision behavior and the methods implemented and metrics collected to test these models. The current work seeks to
remedy this disparity by combining the advantages of work in decision research (mouse-tracing paradigms with con-
tingent information display) and cognitive psychology (eye-tracking paradigms from reading and scene perception). In
particular, we introduce a new decision moving-window paradigm that presents stimulus information contingent on eye
fixations. We provide data from the first application of this method to risky decision making, and show how it compares
to basic eye-tracking and mouse-tracing methods. We also enumerate the practical, theoretical, and analytic advantages
this method offers above and beyond both mouse-tracing with occlusion and basic eye tracking of information without
occlusion. We include the use of new metrics that offer more precision than those typically calculated on mouse-tracing
data as well as those not possible or feasible within the mouse-tracing paradigm.

Keywords: decision making, eye tracking, process tracing, metrics.

1 Introduction

Decision researchers must often rely on outcome mea-
sures (i.e., choice, preference, etc.) to infer how decisions
are made by individuals. The advent of increased com-
puting power, availability, and usability has allowed de-
cision researchers to develop methods to examine under-
lying processes (attention, information acquisition, de-
liberation, etc.) rather than relying solely on observ-
able outcomes. Process-tracing paradigms such as infor-
mation boards and mouse-tracing methods (e.g., Payne,
Bettman, & Johnson, 1988, 1993), eye-tracking methods
(e.g., Franco-Watkins & Johnson, 2011; Glöckner & Her-
bold, 2011; Horstmann, Ahlgrimm, & Glöckner, 2009;
Russo & Rosen, 1975), and verbal protocols (see Ran-
yard & Svenson, 2011, for review) have been utilized in
decision research as mechanisms for capturing the de-
cision process. The need to verify theoretical advances
that specify how (i.e., process) in addition to what (i.e.,
outcome) has produced a great interest in tracing meth-
ods (see Schulte-Mecklenbeck, Kuehberger, & Ranyard,
2010 for an overview).
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1.1 Process-tracing methods

In the ubiquitous mouse-tracing paradigm, information
on a computer screen is occluded from the decision maker
until the individual places a mouse cursor over a specific
region to reveal the corresponding information. By oc-
cluding the information, researchers are able to determine
how, when, and which information is acquired (revealed)
during the decision process. Mouse-tracing paradigms
have been successfully applied to different types of de-
cisions such as probabilistic inference, probability, and
marketing (see Norman & Schulte-Mecklenbeck, 2010
for a review). This technique was revolutionary given the
Zeitgeist in which it was developed and has provided a
precedent and recognition of the importance of process-
tracing as an additional tool for the decision researcher.
However, several decision researchers have noted theo-
retical and methodological limitations with the mouse-
tracing paradigm (e.g., Glöckner & Betsch, 2008b; John-
son & Koop, 2010; Koop & Johnson, 2011; Norman &
Schulte-Mecklenbeck, 2010). For example, recent re-
search has shown that the mouse-tracing paradigm itself
may affect the information search process, possibly intro-
ducing experimental artifacts and/or confounding mea-
surement of attention (Glöckner&Betsch, 2008b).

Fortunately, some of the limitations inherent in mouse-
tracing paradigms can be improved upon with eye-
tracking technology. If one assumes that visual at-
tention and eye movements are coupled (cf., Hoffman,
1998; Rayner, 1998), attentional shifts can be cap-
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tured by changes and patterns associated with eye move-
ments. Converging evidence between mouse-tracing and
eye-tracking methods were initially established to sup-
port the mouse-tracing methodology (Lohse & John-
son, 1996), however, recent successful applications of
eye tracking have examined decision-making processes
across a variety of decision tasks: probabilistic infer-
ence (Horstmann et al., 2009), risky decisions (Glöckner
& Herbold, 2011), consumer decisions (Rayner, Rotello,
Stewart, Keir, & Duffy, 200l), and advertisements (Wedel
& Pieters, 2000). Here, we extend the use of eye-tracking
via a new methodology, the decision moving window, that
combines the advantages of work in decision research
(occlusion with contingent information display) and cog-
nitive psychology (eye-tracking paradigms from reading
and scene perception).

1.2 Decision moving window

The decision moving-window (DMW) paradigm presents
stimulus information contingent on eye fixations rather
than cursor placements. Specifically, information is
masked from the user until the decision maker fixates on
a given area to reveal the corresponding information, one
at a time. As soon as the eye (fovea) moves away from
the area, the mask returns, and the previously viewed in-
formation is hidden again. The primary advantage of this
paradigm is that the researcher has a more direct and re-
liable measure of overt attentional processing (i.e., selec-
tive attention) during decision making while allowing the
subject to effortlessly determine how the information is
revealed. In Franco-Watkins and Johnson (2011), we in-
troduced the DMW methodology in greater detail as well
as made comparisons to standard eye-tracking (ET) and
mouse-tracing (MT) paradigms in a probabilistic infer-
ence task. We found that both eye-tracking methodolo-
gies appeared to have an advantage over MT by produc-
ing a greater number of fixations, of shorter duration,
and were less susceptible to significant variability over
the course of an experiment. Additionally, the DMW al-
lows for more direct comparisons with MT paradigms
often used in decision research. The current work rep-
resents the first application of the DMW to a risky deci-
sion making task and comparison to existing methods to
further examine how attentional processing affects the ac-
quisition of information. Additionally, it introduces new
analyses (involving transition matrices and pupil dilation)
for understanding dynamic processes in decision making.
These important extensions serve to establish the robust-
ness of the method across the most common experimen-
tal tasks in decision research and to augment the standard
repertoire of analytic methods on process-tracing data in
general, and eye-tracking data in particular.

2 Method
Subjects and Design. Seventy-eight undergraduate
students participated in the experiment in exchange for
extra credit towards a psychology course. Subjects were
assigned to either the DMW (n = 26), ET (n = 26), or MT
(n = 26) paradigm.

Materials, Apparatus, and Procedure. The decision
task consisted of 40 pairs of gambles previously used
with MT and ET paradigms (Glöckner & Betsch, 2008a;
Glöckner & Herbold, 2011). The gambles reflected
five decision task categories, abbreviated as: CERTPRO,
CERTCON, SIM, MEDALM_CERT , and MEDCERT . The
CERTPRO category favored gamble A because of the zero
outcome for gamble B and conversely CERTCON category
favored gamble B because of the zero outcome for gam-
ble A. The SIM category reflects similar outcomes and
values between both gambles. The MEDALM_CERT and
MEDCERT categories reflect medium outcomes that are al-
most certain (gamble B) and certain (gamble A), respec-
tively. Each decision task category consisted of 8 trials
(see Table 1 and Appendix of Glöckner & Herbold, 2011,
for complete stimuli). We counterbalanced left-right pre-
sentation of Gamble within a pair and top-bottom pre-
sentation of Outcome within a gamble per category, and
randomized presentation of all 40 trials for each subject.

Eye movements were recorded using the binocular
tracking of the Tobii 1750 eye tracker (17" monitor with
1280 x 1024 pixels, sampling rate: 50Hz, spatial resolu-
tion: 0.5°; and calibration accuracy: 0.5°). To develop
the DMW program, we used E-prime extensions for To-
bii (Psychology Software Tools). Figure 1 (top panel)
presents a sample decision task. For all paradigms, an
area of interest (AOI) is a cell associated with each piece
of gamble information (i.e., value or probability). We
created a black mask (Figure 1, middle panel) that cov-
ered each AOI for the DMW and MT paradigms. When
the subject placed their eye or mouse cursor on a specific
AOI, the black mask immediately became transparent re-
vealing the gamble information (Figure 1, bottom panel).
Whenever, the subject’s eye or cursor moved away from
the AOI, the gamble information was immediately hid-
den. Hence, eye and cursor movements to a specific AOI
revealed the corresponding information and all other in-
formation remained occluded. Furthermore, the labels
Gamble 1 and Gamble 2 and the center cross were AOIs,
however, this information remained visible on the screen.
All AOIs were 150 x 100 pixels and positioned equally
distant from the center cross.

Upon arrival to the laboratory, subjects in the eye-
tracking paradigms completed the eye-tracking calibra-
tion using Tobii Studio software. All subjects received
onscreen instructions detailing how to complete the deci-
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Figure 1: Sample screen shot of decision task: basic eye
tracking (a) moving window or mouse tracing starting
state where information is occluded (b) until the individ-
ual moves their eyes or cursor to specific AOI (c).
a

b

c

sion task (derived from Glöckner & Herbold, 2011). Next
subjects practiced two trials of the decision task without
occlusion. Subjects in the DMW and MT paradigms had
two additional practice trials where they practiced mov-
ing their eyes or cursor to reveal gamble information.
Practice stimuli were novel from experiment stimuli. The
sequence for each trial consisted of a 1000ms screen with

Figure 2: Average (standard error) gamble A choices per
decision category across paradigms.

the center cross alone, followed by gathering gamble in-
formation and making a choice (using the “1” and “2”
keys) which terminated the trial. A rest screen was placed
between trials and subjects initiated advancement to the
next trial.

3 Results
We conducted a 3 (paradigm: DMW, ET, and MT)
x 5 (decision category) mixed factorial ANOVA with
paradigm as the between-subjects factor and decision cat-
egory as the within-subject factor for all dependent vari-
ables (choice, RT, and process variables).

Choice. Figure 2 presents the average proportion of
gamble A choices per decision category per paradigm.
Glöckner and Herbold’s (2011) results are depicted for
comparison purposes. Analyses revealed a significant
main effect of decision category, F (4, 300) = 36.30, p
< .01, η2

p = .33 demonstrating the subjects were sensitive
to different gambles and outcomes associated with each
category. The main effect of paradigm was not statisti-
cally significant (p = .56, η2

p = .01), however, the inter-
action effect was approaching significance F (8, 300) =
1.74, p =.09, η2

p = .04. The data in Figure 2 suggests this
interaction is most likely due to differences in the latter
two decision categories (MEDCERT and MEDALM_CERT)
between MT and DMW paradigms. Notably, post-hoc
analyses revealed differences between MT and DMW for
MEDALM_CERT (t = 2.31, p = .02, d =.59) and MEDCERT
(t = 2.41, p =.02, d = .68) decision categories. Inspec-
tion of Figure 2 indicates that the DMW subjects ap-
peared to prefer the riskier option (59 % for Gamble
A) relative to the MT subjects (39% for Gamble A) in
the MEDALM_CERT decision category where Gamble B
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Figure 3: Mean (standard error) decision reaction times
per decision task category across paradigms.

is the safer option because the medium outcome is al-
most certain. Post-hoc comparisons did not reveal sig-
nificant differences for the MEDALM_CERT decision cate-
gory between the two eye-tracking paradigms (p = .29).
In the MEDCERT decision category where gamble A is
the safer option (medium gamble with certainty), DMW
subjects (37% for Gamble B) again selected the riskier
choice more often than the MT subjects (21% for Gam-
ble B). Additionally, post-hoc analyses revealed a trend
approaching significance for the DMW subjects to se-
lect the riskier choice more often than those using ba-
sic eye-tracking (25% for Gamble B) subjects (p = .08, d
=.46). In sum, it appears that risk preferences may differ
between the two occlusion paradigms (DMW and MT)
for some stimulus configurations (here, when gambles
had two nonzero outcomes and were dissimilar), and to
a lesser extent perhaps also between the two eye-tracking
paradigms (DMW and ET). We did not anticipate a pri-
ori that different choice patterns would emerge between
the two occlusion methods and refrain from speculating
on these further. Our focus was on how these different
methods reveal search behavior; we turn now to analyses
of process measures.

Decision Time. Figure 3 presents mean decision times
per decision task category across the different paradigms.
The MT method resulted in longer decision latencies than
the two eye-tracking-based methods leading to a signif-
icant effect of paradigm, F (2, 75) = 17.56, p < .01,
η2

p = .32. We again replicated the significant main ef-
fect of category from Glöckner and Herbold (2011), F
(4, 300) = 17.40, p < .01, η2

p = .19. The interaction was
approaching statistical significance, F (8, 300) = 1.86, p =
.07, η2

p = .05. The SIM category resulted in the longest
latencies compared to the other decision category con-

ditions, and the difference between SIM and other cat-
egories was more prominent in the MT paradigm com-
pared to the two eye-tracking paradigms. Post-hoc anal-
yses revealed that the mouse-tracing paradigm took sig-
nificantly longer than the two eye-tracking paradigms for
all decision categories (ps < .01), however, the two eye-
tracking paradigms did not differ from one another. This
replicates our previous findings (Franco-Watkins & John-
son, 2011) where the mouse-tracing paradigm resulted in
longer times.

Process Measures. For comparisons with prior work,
we examined summary process measures such as fixa-
tions (total number of AOI acquisitions), average AOI
duration (time per acquisition), the proportion of AOIs
acquired, AOI reacquisition rate, and search index (de-
scribed in Payne et al., 1988); Table 1 presents these
measures. To simplify presentation, we focus on the
methodological comparison central to the current work
by presenting main effects of paradigm (collapsing deci-
sion categories) and planned contrasts between the three
paradigms (DMW vs. ET, DMW vs. MT, and ET vs. MT).
We reserve additional statistics and accompanying graphs
separated by decision task category for the Appendix.

Fixations. We computed an AOI acquisition (fixation)
from the raw eye-tracking or cursor-placement data gen-
erated in the experiment by first removing out-of-area
(non-AOI) acquisitions and then sequencing the eye or
cursor placement to each AOI associated with the gam-
bles, from the onset of eye movement or cursor placement
to a single AOI until the eye movement or cursor place-
ment was displaced from the given AOI. Fixations to the
center cross or labels were included in sequencing but are
not included in the reported statistics. The fewer num-
ber of fixations observed in the DMW was significantly
different from both the ET, t (50) = 3.30, p <. 01, d =
0.92, and MT, t (50) = 2.15, p =.04, d = 0.60, paradigms.
The ET and MT paradigms did not differ from one an-
other (n.s.). Focusing only on fixations alone might not
indicate why such differences were observed; thus, we
also examine how the paradigms differ in terms of fixa-
tion duration, as well as proportions of cells accessed and
reacquired.

Duration. The average fixation duration, in millisec-
onds, is based on AOI fixations associated with gam-
ble information. An overall pattern emerged where the
longest fixation durations were observed in the MT, fol-
lowed by the DMW and then ET paradigms. The MT
paradigm was different from both the DMW, t (50) = 2.71
p <. 01, d = 0.75, and ET, t (50) = 9.52, p <. 01, d
= 2.64, paradigms. Additionally, a significant difference
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Table 1: Comparison across paradigms: Average (standard deviation) aggregate AOI processing variables.

AOI Processing Variables Moving window Eye tracking Mouse tracing F η2
p

AOI fixations 12.98 (3.35)ac 18.25 (7.43) a 16.02 (6.38) c 5.09* .12
Avg. AOI duration, in ms 474.56 (99.54) ac 271.47 (36.92) ab 573.65 (157.53) bc 51.29* .58
Proportion of AOIs acquired 0.987 (.025) a 0.912 (.166) ab .996 (.007) b 5.85* .14
AOI reacquisition rate 0.312 (.139) a 0.492 (.171) ab 0.377 (.185) b 7.77* .17
Search index 0.724 (.131) 0.775 (.143) 0799 (.106) 2.35 .06

Note: Within each row, indices denote: a statistically significant comparison between DMW and ET, b statis-
tically significant comparison between ET and MT, and c statistically significant comparison between DMW
& ET. F-ratios represent main effect of paradigm: df = (2, 75 and * denotes p-values < 0.05.

was present between the two eye-tracking-based meth-
ods, t (50) = 9.75, p <. 01, d = 2.71. The fact that we
observed longer fixation durations in DMW compared to
ET can shed light as to why there are differences in total
number of fixations. Perhaps spending more time per cell
allows users more time to consider the information in a
given cell and therefore they are less apt to have to visit
the cells again. We next turn to an analysis of acquisition
and reacquisition rates to explore this possibility.

AOI Acquisition and Reacquisition Rate. Recall that
there were a total of eight AOIs that pertain to gamble in-
formation. We calculated the proportion out of the total
eight AOIs acquired on each trial, as well as the reacqui-
sition of AOIs. Although, on average, subjects examined
almost all the cells, the ET paradigm resulted in a slightly
lower acquisition rate than the MT paradigm, t (50) =
2.57, p =.02, d = 0.71 and the DMW paradigm, t (50) =
2.27, p =.03, d = 0.63. This is most likely due to the fact
that in the ET paradigm all information is visible to the
subjects such that they can acquire additional information
via peripheral vision. It could also be clearer in this con-
dition, relative to when information is occluded, that the
probabilities sum to one in each gamble, rendering acqui-
sition of the complementary probability redundant.

Additionally, the ET paradigm produced more reacqui-
sition of AOIs (resampled proportion of total fixations)
than the MT paradigm, t (50) = 2.32, p =.02, d = 1.15 and
the DMW paradigm, t (50) = 4.15, p < .01, d = 0.64. As
suggested earlier, although people may spend more time
on average on each AOI in the DMW (as indicated by the
average fixation durations), once they gather the informa-
tion, they are less apt to reacquire information. Further-
more, this may also qualify the result concerning total fix-
ations, where the DMW showed significantly fewer fixa-
tions than ET—it seems this difference can be attributed
to increased reacquisitions in the ET paradigm.

It is also interesting to consider the differences above
relative to previous work employing all three methods in

a probabilistic inference task (Franco-Watkins & John-
son, 2011). The number of fixations observed by Franco-
Watkins and Johnson (2011) showed the DMW was more
comparable to ET, with MT resulting in fewer fixations.
Across both eye-tracking paradigms (ET and DMW), our
risky pairwise choices resulted in far fewer (less than
half) fixations than the previous study’s probabilistic in-
ference among three options with four binary attributes,
while the number of fixations for MT was relatively con-
stant across tasks. Franco-Watkins and Johnson (2011)
also found much larger reacquisition rates for the eye-
tracking methods (DMW and ET), whereas the overall
pattern of fixation durations is consistent with the current
work (although the absolute magnitudes were somewhat
shorter in the previous work).

The lower number of fixations—primarily due to a de-
crease in reacquisitions—for the eye-tracking paradigms
(ET and DMW) in our experiment might be simply due
to task differences between the current work and Franco-
Watkins and Johnson (2011). Namely, the lower demands
associated with a preferential choice, especially given the
redundancy in probability information of the current task
due to complementarity, might not require as many cell
fixations compared to an inferential task. Furthermore,
perhaps searching for an objectively correct answer in
an inferential task promotes more “double-checking” of
information when search costs are low (i.e., when us-
ing eye-tracking methods). However, it appears that MT
might not be as sensitive to attentional processing, and/or
may not allow for an increase in low-cost reacquisitions
for verification, given the consistency of fixations across
different decision task demands. These potential expla-
nations should be subject to more rigorous empirical ver-
ification in future work.

Attentional dynamics. Beyond the summary statistics
presented above, sophisticated analyses of attentional dy-
namics are being explored in eye-tracking research (e.g.,
Hacisalihzade, Stark, &Allen, 1992; see Day, 2010, for
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Table 2: Transition matrices by paradigm.

Notes. Row and column headers give AOI labels. Val-
ues indicate relative frequency of total transitions, aver-
aged across subjects between the associated row and col-
umn header AOIs. For example, in the “Moving window”
condition, 7.5% of total transitions occurred between out-
come A1 and outcome A2. Values are aggregated regard-
less of transition direction (i.e., across the main diago-
nal; transition from A1 to A2 is aggregated with transi-
tions from A2 to A1). Greater depth of shading corre-
sponds to greater proportions. Dashed outlines indicate
cells contributing to “alternative-wise” shifts in attention
among attributes within an option. Matrices sum to ap-
proximately 100% (due to rounding).

a related application to decision making). Many addi-
tional comparisons are possible such as the analysis of
specific transition frequencies, although they are rarely
considered in decision research (see Johnson, Schulte-
Mecklenbeck, & Willemsen, 2008; and Ball, 1997 for
notable exceptions). In particular, we advocate the novel
use of the entire transition matrix (Table 2) in decision
research to present the dynamic information lost in sum-
mary statistics. For each subject, we calculated the per-
centage of transitions between each AOI (row) and ev-
ery other AOI (column); these percentages were aver-

aged across subjects to produce Table 2. It is clear that
the vast majority of transitions were between an out-
come value and its associated probability, which is con-
sistent with previous results and supports previous inter-
pretations of an integrative process over a lexicographic
heuristic (from Glöckner &Herbold, 2011). Moreover,
the transition proportions were very similar across meth-
ods (in z-tests on proportions, all p-values > 0.50). If de-
sired, the typical (but coarser) indices such as the search
index developed by Payne et al. (1988) can easily be
calculated using the information in Table 2—this crude
search index is reported in Table 1 as well to ease com-
parison with previous research.

More importantly, with the complete transition ma-
trix given in Table 2, one can also derive more precise,
theoretically-driven metrics that are not possible with the
search index. Researchers can develop exact predictions
for the transition matrix based on decision making the-
ories, and then compare these predictions with the em-
pirical matrices (e.g., presented in Table 2). For exam-
ple, many different lexicographic strategies might suggest
“attribute-wise” processing and a search index value less
than one—and perhaps even the same value—making
them difficult to differentiate. However, these strategic
variations could be captured in the transition matrix by
highlighting exactly which information is predicted to re-
ceive attention, and in which order. Johnson and Koop
(2010) have also used this approach by training subjects
to use specific, popular strategies in order to develop em-
pirical estimates of their application error. Furthermore,
the raw frequencies used to create Table 2 could be used
for more sophisticated (e.g., Markov, sequential) analyses
which are not easily obtainable with summary mouse-
tracing data, such as the order of search dependencies,
lag, homogeneity, or stationarity (see Gottman & Roy,
1990; Stark & Ellis, 1981).

Pupil Diameter and Processing. Another mea-
surement made uniquely possible by the eye-tracking
methods ET and DMW—and underutilized in decision
research—is the task-evoked pupillary responses (i.e.,
pupil dilations). These faithfully reflect variations in
processing load between qualitatively different cognitive
tasks (e.g., short-term memory, language processing, per-
ception, and reasoning: Beatty, 1982). Changes in pupil
dilation can reflect mental effort involved in a task (Beatty
& Kahneman, 1966)—as the task increases in difficulty,
so does the amplitude of the pupil dilation (Beatty &
Wagoner, 1978; Kahneman, Beatty, Pollack, 1967). In
Figure 4, we present an illustration of the richness of us-
ing pupillary measures for the DMW and ET paradigms
by plotting changes in pupil dilation over the course of
a trial as a finer-grain analysis to better capture pupillary
changes across the decision process. Because each indi-
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vidual had different trial lengths depending on when they
executed their decision, we standardized the time course
of each trial of each subject by dividing the total trial into
20 approximately equally-sized bins. In each bin, we av-
eraged all measurements from both pupils for each sub-
ject. By expressing these pupillary measures relative to
the baseline established at trial onset (first bin), we see the
increase/decrease in pupillary diameter over the course of
each trial. These trajectories were averaged across trials
and then subjects to produce Figure 4. Note that pupil
diameter reliably increases throughout the trial and am-
plitudes towards the end of the trial when the subject is
ready to execute a response for the DMW paradigm. The
pattern for pupillary changes is more constant across trial
for the ET paradigm. A 2 (paradigm: ET vs. DMW) x 20
(trial increments) mixed factorial ANOVA revealed that
the differences between paradigms across the trial pro-
duced a significant interaction, F (19, 950) = 30.99, p <
.01, η2

p = .38. Additionally the main effects of paradigm
and trial increment were statistically significant, F (1, 50)
= 43.62, p < .01, η2

p = .47 and F (19, 950) = 39.89, p <
.01, η2

p = .44, respectively. Although the changes in lu-
minance (e.g., shifts from dark boxes to grey information
cells) might slightly affect pupillary measures, we found
reliable changes in pupil diameter across time even in a
pilot condition using seven subjects, controlling for lumi-
nance (using grey boxes instead of the black boxes shown
in Figure 1).

The richness of this pupil information can potentially
aid in the development of new dynamic measures of
attention—beyond simply location-based measures—that
capture the processing sequence. In addition to pupillary
measures, Horstmann et al., (2009) found reliable differ-
ences using fixation durations as an index of effort pro-
cessing between automatic and deliberate decision mak-
ing in a more complex task. Thus, eye-tracking variables
provide additional mechanisms for exploring the level of
cognitive effort associated with decision processes that
cannot be observed by examining only outcome data.
Furthermore, eye-tracking measures can be used to ex-
amine individual differences (e.g., working memory, se-
lective attention) in dynamic processes during decision
making.

4 Discussion

We concur with the general arguments of others for the
benefit, if not necessity, in using process measures for de-
cision research, and believe our new DMW paradigm can
contribute to such efforts. Researchers should be aware
of how differences in process measures might arise, de-
pending on the paradigm. The DMW produced fewer fix-
ations and reacquisitions than basic ET; however, fixation

Figure 4: Changes in pupil diameter during decision pro-
cess for eye-tracking paradigms.

duration was longer than basic ET. This pattern indicates
differences at the process level between occlusion and
non-occlusion methods in eye-tracking paradigms. The
DMW also shows fewer fixations, of shorter duration,
than MT, showing effects also of the user interface, hold-
ing constant occlusion of information. Moving beyond
these summary statistics, however, our novel (to JDM re-
search) analyses of the complete transition matrix sug-
gest no differences across paradigms in terms of the spe-
cific information acquisition streams. Just as others have
found (Glöckner & Betsch, 2008b), our results do sug-
gest that different paradigms might even influence result-
ing choice behavior, regardless of similarities or differ-
ences in information search. For example, choice of the
risker gamble in a pair seemed to increase for the DMW
relative to MT, and to some degree also compared to ba-
sic ET. Thus, examining both choice level and process
level measures are important to fully understand how the
different methodologies might affect subsequent behav-
ior. Moving forward, there may be a need to build new
metrics that can begin to better elucidate the differences
between paradigms.

An intriguing possibility for applying and extend-
ing our results is to develop metrics of covert attention
that move beyond the “correspondence assumption” that
equates visual attention with exclusive processing. We
contend that the benefits of using eye-tracking methods
allow for better tests of theoretical and/or model assump-
tions, especially when attention during the decision pro-
cess is factored into theories and models. Given the es-
tablished link between pupillary response and mental ef-
fort (Beatty & Kahneman, 1966), one could develop a
graded attention metric that incorporates this important
pupillary information. Furthermore, results such as the
apparent increase in effort over the course of a trial in the
DMW but not ET could reveal systematic effects of work-
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ing memory on decision making. The DMW uniquely al-
lows the researcher to manipulate working memory load
(i.e., number of cells, items to hold in working mem-
ory, etc.) relative to when all information is available.
We propose the DMW can have some additional benefits
over ET. Specifically, the DMW paradigm allows greater
internal validity by removing peripheral acquisition; the
ability to guide information search and/or strategies by
only revealing specific cells (e.g., to test assumptions re-
garding framing and/or order effects); and the ability to
control the latency before the mask is removed to insure
fixations are meaningful.

There are always potential concerns or challenges as-
sociated with any new method. For one, implementing
the DMW requires additional programming than the typ-
ical MT and ET paradigms to employ an interactive gaze-
contingent methodology. The DMW has been examined
in two decision making tasks (risky choice and proba-
bilistic inference) and has not been extended to other
decision domains, thus, it is uncertain whether poten-
tial paradigm by task interactions will be observed in
other types of decisions. The increase in internal validity
comes at a cost of decreased external validity: namely,
the inability to use peripheral information can be con-
strued as a less natural accrual of information. However,
the use of a template such as in the current task (Fig-
ure 1), with identified information locations, allows one
to use peripheral vision to plan subsequent eye move-
ments, while the mask allows one to retain a stronger
inference regarding current visual attention and informa-
tion processing. Lastly, the use of eye-tracking paradigms
requires more resources in that the eye-tracking appara-
tuses are costly and limit data collection to one subject
at a time in comparison to MT where several subjects
can be collected simultaneously (limited to the number
of computers). In terms of eye-tracking paradigms in
comparison to MT, the most notable advantage is a more
natural interface when using one’s eyes to reveal and
process information with DMW, which allows freedom
from the psychological tether of the mouse. Others have
shown that requiring additional physical exertion (over
eye-tracking)—even simply head movements—can affect
strategies and behavior (Ballard, Hayhoe, & Pelz, 1995),
and that the requirement of moving the mouse to reveal
information increases errors and slows learning (Gray &
Fu, 2004). In prior work comparing all three methods in
a probabilistic inference task, we noted that MT, but nei-
ther eye-tracking paradigm, was susceptible to significant
variability over the course of an experiment, perhaps due
to fatigue (Franco-Watkins & Johnson, 2011). Given that
all the paradigms have advantages and disadvantages, and
can even produce differences in choice and process mea-
sures, one should take into consideration all aspects asso-
ciated with a paradigm when selecting a method to test a

specific theory.
We presented the DMW paradigm as a complemen-

tary integration of two successful paradigms (basic eye-
tracking and mouse-tracing methods) important for un-
derstanding decision processes. All three methods are
valuable to decision researchers and which method is ap-
plicable will depend on the theoretical aspects of the de-
cision theory being tested. The advances put forth herein
add to the measurement and inferential tools we use to
accompany the sophistication of modern process-based
theories of decision making.
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Appendix

Figure A1. Average (standard error) fixations per deci-
sion category across paradigms.

Fixations. Figure A1 presents the fixation data by
paradigm and decision task. In addition to the main effect
of condition presented in Table 1 of the manuscript, The
mixed factorial ANOVA also revealed a main effect of de-
cision task category, F (4, 300) = 19.48, p < .01, η2

p = .21,
however, the interaction effect was not statistically sig-
nificant (p =.71). The SIM category overall resulted in
a greater number of fixations than the other categories,
replicating Glöckner and Herbold (2011). Post-hoc anal-
yses revealed differences between the two eye-tracking
paradigms for all categories. None of the other post-hoc
comparisons were statistically significant.
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Figure A2. Average (standard error) fixation duration per
decision category across paradigms.

Duration. Figure A2 presents the average fixation du-
ration by paradigm and decision task. The mixed fac-
torial ANOVA revealed a main effect of decision cate-
gory, F (4, 300) = 2.85, p =.02, η2

p = .04. The interaction
of paradigm by category was not significant (p = .27).
Post-hoc analyses revealed differences between all three
paradigms for all categories.

AOIs acquired and reacquisition rate. Figure A3
presents the average proportion of cells examined (lines)
and reacquisitions (bars) per paradigm and decision task.
Two mixed factorial ANOVAs were conducted, one per
dependent measure. In terms of AOIs examined, a main
effect of decision category was present, F (4, 300) = 5.66,
p <.01, η2

p = .07 and an interaction of paradigm by cate-
gory, F (8, 300) = 2.34, p =.02, η2

p = .06. Post-hoc anal-
yses revealed differences between ET compared to MT
and DMW for all categories, except for the SIM category
between the two eye-tracking paradigms. These differ-
ences are most likely due to the fact that the ET paradigm
can rely on peripheral vision; direct AOI examination is
not necessary unlike the DMW and MT paradigms.

In terms of AOI reacquisitions, the main effect of deci-
sion category was significant, F (8, 300) = 20.90, p <.01,
η2

p = .22. Consistent with the other process measures,
the SIM category has more reacquisitions which are in-
dicative of the difficulty of making choices between two
similar gambles. Post-hoc analyses indicated that the ET
differed from DMW (all categories) and MT (CERTPRO
,CERTCON , and MEDCERT). Coupled with the fixation
duration data above, this pattern suggests that subjects
with occluded information required more time per AOI
and therefore might not need to return to the AOI infor-
mation as often as the basic ET, where subjects might
initially (quickly) scan the AOIs and then revisit to po-
tentially solidify information gathering.

Figure A3. Proportion (standard error) of AOIs exam-
ined (lines) and reacquisitions (bars) per decision cate-
gory across paradigms

In sum, the decision categories did affect the pro-
cess variables such that the categories that appeared to
be more difficult (e.g., SIM) resulted in more fixations,
fixation durations, and reacquisitions than decision cate-
gories that favored one outcome with greater certainty.
The global differences between paradigms observed in
the manuscript were replicated at the decision category
level.


