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Pair-wise comparisons of multiple models

Stephen B. Broomell∗ David V. Budescu† Han-Hui Por†

Abstract

Often research in judgment and decision making requires comparison of multiple competing models. Researchers
invoke global measures such as the rate of correct predictions or the sum of squared (or absolute) deviations of the
various models as part of this evaluation process. Reliance on such measures hides the (often very high) level of
agreement between the predictions of the various models and does not highlight properly the relative performance of
the competing models in those critical cases where they make distinct predictions. To address this important problem
we propose the use of pair-wise comparisons of models to produce more informative and targeted comparisons of their
performance, and we illustrate this procedure with data from two recently published papers. We use Multidimensional
Scaling of these comparisons to map the competing models. We also demonstrate how intransitive cycles of pair-wise
model performance can signal that certain models perform better for a given subset of decision problems.
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1 Introduction
The field of behavioral decision making is, to a large de-
gree, phenomena driven. After a certain empirical regu-
larity is discovered and validated, researchers test multi-
ple models (some old, and some new) to explain the re-
sult. For example, every model of decision making under
risk is expected to account for the classical Allais para-
dox. When new models are proposed, researchers often
justify them by a series of comparisons against the older
models in the field. There are several approaches for test-
ing decision models. In the context of axiomatic models,
there is a focus on small subsets of problems judiciously
chosen to be diagnostic and differentiate optimally be-
tween certain models (e.g., Birnbaum, 2008b; Cavagnaro,
Myung, Pitt, & Kujala, 2010; Glöckner & Betsch, 2008).
Others seek data from multiple published studies involv-
ing decision problems selected by different researchers
by various (often, unspecified) criteria and compare how
well the models predict them (e.g., Brandstätter, Gigeren-
zer, & Hertwig, 2006; González-Vallejo, 2002). An alter-
native approach is to compare the models’ ability to pre-
dict decision behavior in a sample of problems that are
sampled randomly from a well defined universe of prob-
lems (e.g., Erev, Roth, Slonim, Barron, 2002).

In all these methods the researcher assembles a data
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set consisting of an array of N decision problems and
M models. For each problem there is one empirical re-
sponse (decision), Di(i = 1 . . . N), which can take one
of many forms such as a binary choice, a probability of
a choice pattern, a numerical value such as a probability
estimate, a certainty equivalent, etc., and a set of predic-
tions D̂i(i = 1 . . . N), generated by the various models.
There are numerous ways to evaluate the fit of the mod-
els (see for example the special issue of the Journal of
Mathematical Psychology, 2000, vol. 44, issue 1) and a
full review is well beyond the scope of this note. For
our purposes it is sufficient to say that most of them are
based on some discrepancy function f(Di, D̂i) between
the responses and the predictions that summarizes dis-
crepancies across all N decisions, and can be formulated
to take its optimal (desirable) value in the case of N per-
fect predictions. Thus, one can always rank (and in some
cases also scale) models according to how close or dis-
tant they are from a perfect fit. Some simple examples of
such functions are (a) proportion of correct predictions,
or of predictions corrected for chance; (b) mean (or me-
dian) f(Di, D̂i) where f could rely on squared devia-
tions (Di − D̂i)2, absolute deviations |Di − D̂i|, ratios
Di/D̂i, or their logarithms log(Di/D̂i); (c) relative mea-
sures such as relative squared deviations (Di− D̂i)2/Di;
(d) measures based on the likelihood function of the data
under a certain model, etc.

To illustrate the approach, we review in some detail a
few such studies: Brandstätter, Gigerenzer, and Hertwig
(2006) report results of four model contests using differ-
ent data sets with a total of N = 260 decision problems
(N1 = 14; N2 = 90; N3 = 56; N4 = 100). They
compared M = 14 models and used several sets of pa-
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rameters for models with free parameters such as cumula-
tive prospect theory (Tversky & Kahneman, 1992). Their
measure of fit was percent correct prediction of a majority
of subjects (henceforth majority choice), averaged across
all the Ni decision problems in each data set. They also
report percent correct prediction of majority choice and
the percent agreement between all model pairs across the
N = 260 decision problems. A similar approach is used
in several chapters in Gigerenzer, Todd, and the ABC Re-
search Group (1999). Hau, Pleskac, Kiefer, and Hertwig
(2008) considered N = 732 decision problems involving
123 subjects from three experiments and compared M =
16 models (see Figure 6 in their paper). Their measure
of fit was overall percent correct predictions. Erev et al.
(2010) analyzed three model contests, each using a differ-
ent decision paradigm, with two problem sets (N = 60 in
each set). The contestants submitted their favorite mod-
els (they received M = 7–8 submissions for the various
contests) and the measure of fit (by which the winner was
identified) was the mean squared deviation of the model
from the choices in the competition data set.

1.1 Supplemental pair-wise analysis

The measures used in these papers aggregate discrepan-
cies in a compensatory fashion to provide global fit sum-
maries. These global fit summaries have a variety of lim-
itations and shortcomings: (a) they are insensitive to the
number of identical predictions between models, or the
diagnostic ability of the problem set; (b) they are com-
pensatory in nature so they hide the relations between the
models (for example, if two models have the same sum
of squared deviations from the actual data—one cannot
tell if the two models make similar predictions for all
problems, or make distinct predictions with one model
working better for some problems and the other being
superior for a different subset); (c) the performance of
certain models, as measured by a global fit index, can be
manipulated by judicious choices of the decision prob-
lems; and (d) some measures (such as majority choice)
are sometimes used sub-optimally (e.g., majority choice
counts ignore the relative magnitude of prediction error,
yet it is occasionally used to evaluate models that make
quantitative predictions).

These limitations are well recognized in the literature
(Birnbaum, 1973; Birnbaum, 1974; Birnbaum, 2008a;
Glöckner & Betsch, 2008; Hilbig, 2008). Several recent
papers advocate methodologies that address these limita-
tions such as a maximum likelihood strategy for model
comparison (Bröder and Schiffer, 2003) and adding mul-
tiple dependent measures like response time and confi-
dence when choice predictions alone are not sufficiently
diagnostic (Glöckner, 2009).

We outline an approach that supplements comparisons

based on such global fit measures, addresses some of their
weaknesses, and provides additional information and in-
sights about the merit of the various models. Essentially,
we propose a “tournament” where every model is a com-
petitor and every decision provides a new confrontation
between all pairs of models. Thus, one can determine a
winner for each pair of models by using some scoring
rule (see examples of scoring rules in the following sec-
tions). Furthermore, one can combine the results of these
direct head to head confrontations to determine an over-
all ranking of the models.1 We also show that this overall
ranking does not have to be in complete agreement with
the ranking based on the global discrepancy function (see
Budescu & Yu, 2007 for a previous application).

In addition to providing more detailed information
about the relative performance of the model, this ap-
proach has the ability to focus only on the most rele-
vant comparisons for each pair. A fact that is often ig-
nored in standard model comparisons is that many de-
cision problems are non-diagnostic in the sense that all
models make identical predictions. In the pair-wise ap-
proach these cases are excluded and every pair of models
is compared only on the basis of the cases where they
make distinct predictions, so these diagnostic cases carry
more weight (compared to the global approach where all
cases contribute equally, regardless of their diagnostic-
ity).

Global summaries can potentially overlook key in-
sights in model comparison that can be revealed with
this extended methodology. For example, a ranking of
all models based on a global measure may obscure in-
transitive cycles that could signal that each of the models
perform better for a different subset of decision problems
(as shown in one of our examples).2 The new pair-wise
comparison method identifies such cases.

We illustrate the proposed method with two examples.

2 Re-analysis of the Hertwig, Bar-
ron, Weber, and Erev (2004)
study

In the traditional description based decision making
paradigm DMs are asked to choose between gambles
with known (“described”) outcomes and their respective

1The analogy is a competition among N chess players who play
each other repeatedly (but not necessarily an equal number of times)
over the course of a year. Every game ends with a win for player A, or
a win for Player B, or a draw. Based on the aggregation of the games
where there is a winner one can determine at the end of the year (a) the
“winner” in each pair and (b) a ranking of the N players.

2An intransitive cycle refers to a pattern where the models cannot be
properly ranked. For example model A outperforms model B, model B
outperforms model C, and model C outperforms model A.
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probabilities. In the experience based decision making
paradigm the DM does not know the outcomes and their
respective probabilities. Instead the DM is allowed to ex-
perience the gambles by repeatedly sampling from their
distributions (typically by pressing buttons shown on a
computer screen and at no cost). The outcomes are sam-
pled randomly from the two gambles with well defined
probability distributions. The DM samples as much as
he/she wants before making a final choice. Thus, these
final decisions are based on a collection of random expe-
riences and the subjective estimates that the DM forms,
instead of descriptions of the outcomes and their respec-
tive probabilities. This paradigm poses an interesting and
unique challenge for modeling choices because the mod-
els need to use each individual’s unique history of expe-
riences to predict his/her choices. Because of the ran-
dom nature of these experiences, there is little control
over the diagnosticity of the decision problems. For ex-
ample, experiences may induce obvious choices (that all
decision models would predict) even in cases where the
gambles’ parameters would lead to more heterogeneous
predictions.

We analyze the choices from the Hertwig et al. (2004)
EBDM study where 50 subjects were given access to two
buttons that, when pressed, produced independent expe-
riences from the risky gambles. DMs sampled from these
gambles until they decided they were ready to choose
which button to play for real payment. A median of 15
samples were drawn before making a choice.3 We com-
pare M = 6 different models previously used in the liter-
ature.4 They include the three best models reported by
Hau et al. (2008): maximax, the natural mean heuris-
tic, and the cumulative prospect theory two-stage model
with Tversky and Kahneman (1992) parameters (CPT-
TK) as applied by Fox and Hadar (2006). Three ad-
ditional models include maximal probability (Broomell,
2010), and two variants of the round-wise comparison
model (Broomell, 2010; Hills and Hertwig, 2010). See
Appendix A for details on the models.

Table 1 shows the overall correct prediction rate, and
the chance adjusted rate given by Cohen’s κ (computed
as (percent correct – 0.5)/(1 – 0.5)), for all models. The
highest performing models are the two round-wise mod-
els, natural mean, and maximal probability models. The
adjusted rates show that all models perform well above
chance level, and the rates of correct predictions for these
models are quite similar. This can be due to agreement
between the models’ correct (and incorrect) predictions
of the same choices, or their ability to predict correctly

3The data are available at http://dfexperience.unibas.ch/data.html.
4The choice of model parameters used in these comparisons is an

important factor in determining model performance. For reviews of pa-
rameter selection/estimation for model comparison please see Glöckner
and Betsch (2008) and Birnbaum (2008a).

Table 1: Percent of correct predictions by six models for
the Hertwig et al (2004) data.

Model Raw percent correct Cohen’s κ

Maximax 0.73 0.46
Nat. Mean 0.79 0.58
CPT-TK 0.68 0.36
Maximal prob. 0.78 0.56
Round-wise Indicator 0.84 0.68
Round-wise Mean 0.82 0.64

Note: Winning model is in bold.

(and incorrectly) distinct subsets of choices. Table 2 dis-
plays the percent of identical predictions and of identical
correct predictions made by each pair of models. To put
these values in perspective, consider the expected level
of agreement between models. Let PCi and PCj be the
rate of predictions of a certain choice by Models i and
j, respectively, and PCij be the rate of identical predic-
tions by both models. The Frechet bounds provide upper
and lower bounds for the amount of agreement between
two models given each model’s marginal percentage of
correct choices.5 The closer the observed rate of agree-
ment, PCij, is to the upper (lower) bounds the higher
(lower) the fraction of identical predictions by the two
models. Consider the best two models in Table 1: They
predict correctly 0.84 and 0.82 of the choices (and are
incorrect in 0.16 and 0.18 of the cases), respectively, so
the rate of joint correct predictions must be between the
lower bound (0.84 + 0.82 –1.00) = 0.66 and 0.82. The
actual rate is 0.82, matching the upper bound indicating
that both models predict correctly the same choices. In
fact, all 6 models analyzed make identical predictions in
48% of the cases examined and the same correct predic-
tions in 44% of the cases. The results show an extremely
high number of identical predictions between the natural
mean, round-wise mean, and round-wise indicator mod-
els. Conversely, the CPT-TK has the lowest number of
identical predictions with the other models (especially
with the maximal probability model).

The level of similarity between the various models can
be visualized by performing a Multidimensional Scaling
(MDS) that uses the proportion of identical predictions
(shown above the diagonal in Table 2) as the measure of
proximity. The MDS solution considers all pairs simulta-
neously and generates a map of all models where the dis-
tances between points reflect their level of similarity—the
higher (lower) the rate of identical predictions, the closer

5Any bivariate distribution function, H(x, y), with marginal dis-
tribution functions F (x) and G(x) satisfies the following inequali-
ties, known as the Frechet bounds (Weisstein): max{F (x) + G(y)−
1, 0} ≤ H(x, y) ≤ min{F (x), G(y)}.
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Table 2: Proportion of identical predictions (above the diagonal) and proportion of identical correct predictions (below
the diagonal) for each pair of models applied to the Herwtig et al. (2004) data.

Maximax Nat. Mean CPT-TK Max. Prob. Round-wise
indicator

Round-wise
mean

Maximax – 0.68 0.75 0.67 0.72 0.70
Nat. Mean 0.61 – 0.74 0.78 0.93 0.97
CPT-TK 0.59 0.61 – 0.51 0.67 0.72
Max. Prob. 0.60 0.69 0.50 – 0.87 0.79
Round-wise ind. 0.67 0.80 0.62 0.77 – 0.95
Round-wise mean 0.64 0.80 0.63 0.70 0.82 –

Figure 1: MDS mapping of the six models based on their
rate of identical predictions for the choices in the Hertwig
et al. (2004) data.
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(more distant) the models are in the two dimensional con-
figuration. Figure 1 illustrates vividly the pattern de-
scribed above: CPT-TK is distant from the maximum
probability model, with the natural mean and round-wise
models being very close to each other and located roughly
in the middle. Maximax (which does not use probability
information) is equally distant from all the models.

Table 3 displays a pair-wise comparison of the six
models based only on the cases where they make dis-
tinct predictions. Each entry in the top panel of Table
3 is the ratio of the number of correct predictions of the
row model over the number of correct predictions of the
column model. Values greater (lower) than 1 show more
correct predictions for the row (column) model. One sim-
ple way to think of this ratio is as the odds of making a
correct prediction by betting on the Row model, rather
than the Column model. The last column in the table is
the geometric mean of these ratios weighted by the num-
ber of unique predictions and, accordingly, it is labeled

WGM.6 This is the overall score of the model in the con-
text of the competition.

The bottom panel of Table 3 shows the number of
unique predictions of the row model when compared with
the column model. Typically, this matrix is symmetric,
but some models cannot make unique predictions based
on certain experienced samples, so it is slightly asym-
metric. This matrix determines the number of decision
problems used to assess relative performance. This num-
ber can be low for two reasons. When the models make
many identical predictions (see round-wise mean and the
natural mean models in Table 3) we face a low diagnos-
ticity problem. In such cases this low count is more in-
formative than the actual comparison, as it indicates that
the competing models are, essentially, identical.

The other reason for a low count could be that the mod-
els do not produce predictions for all problems. For ex-
ample, a model that makes predictions in only a small
subset of problems—and these predictions are extremely
accurate—can easily outperform models that make pre-
dictions for all problems regardless of the performance of
these models on the remaining problem set. Such cases
are indicative of a more basic problem of differential gen-
erality of the models. Competitions are meaningful and
most informative only when they compare models that
apply to a similar range of problems, and in our view,
models with a restricted range of predictions should be
excluded from large tournaments. Of course, one can al-
ways set additional tournaments that focus only on lim-
ited classes of problems where all models are on equal
footing. For example, a model that does not make pre-
dictions about choices between mixed prospects should
be excluded from a general tournament of models of

6Let ri be the ratios (1 to M ) in a given row of the matrix and let ni

(1 to M ) be the number of observations for each ratio. The weighted
geometric mean is computed as: WGM = (

QM
i=1 r

ni
i )1/(

PM
i=1 ni)

If all ni are equal then the equation reduces to the regular geometric
mean, GM = (

QM
i=1 ri)

1/M . In this ratio scaling problem, the geo-
metric mean provides the log least squares estimates of the measures of
support for each model (Budescu, Zwick, and Rapoport, 1986).
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Table 3: Ratio of the number of choices favoring the row model and the number of choices favoring the column model
in the Herwtig et al. (2004) data. Entries above the diagonal are reciprocals of the entries below the diagonal such that
rij = 1/rji.

Maximax Nat. mean CPT-TK Max. prob. Round-wise
indicator

Round-wise
mean WGM

Maximax 1.00 0.72 1.54 0.76 0.54 0.60 0.84
Nat. mean 1.39 1.00 2.27 1.07 0.50 0.25 1.09
CPT-TK 0.65 0.44 1.00 0.67 0.41 0.37 0.66
Max. prob. 1.32 0.93 1.50 1.00 0.56 0.76 1.04
Round-wise ind. 1.87 2.00 2.43 1.78 1.00 1.43 1.39
Round-wise mean 1.67 4.00 2.70 1.31 0.70 1.00 1.27

Number of unique predictions made by the row model when compared to the column model.

Maximax Nat. mean CPT-TK Max. prob. Round-wise
indicator

Round-wise
mean

Maximax 150 44 33 44 44 42
Nat Mean 42 150 34 29 17 6
CPT-TK 33 36 150 65 49 39
Max. prob. 43 30 64 150 25 30
Round-wise ind. 41 16 46 23 150 15
Round-wise mean 39 5 36 28 15 150

choice, but should be included in similar restricted tour-
naments of models of choice between positive (or nega-
tive) prospects.

The results in Table 3 show that the round-wise indica-
tor model is the winner. It beats all the other models (all
ratios > 1) in the cases where its predictions differ from
its competitors, and it is correct on average twice as often
as it is wrong. Conversely, this particular instantiation of
the CPT-TK (using the group parameters from Tversky
& Kahneman, 1992) loses all its direct competitions (all
ratios < 1), and it is wrong on average twice as often as
it is right. Finally, we compared the weighted geometric
means from Table 3 with the rate of correct predictions
(Table 1). The six models are ranked identically, and their
scores are highly correlated (r = 0.96).

3 Re-analysis of decision model pre-
dictions for Erev et al. (2010)

The recent model competition run by Erev et al. (2010)
provided a unique platform for generating, testing, and
evaluating decision models for three types of decision
problems: description based decisions, experience based
decisions, and feedback based decisions. The organiz-
ers randomly generated and paired gambles and produced
two data sets that were used in the “competition” of mod-
els. The first data set contained the parameters of two

gambles (one risky and one safe) and the choices of a
sample of subjects. Subjects in the competitions used
these data to derive decision models that were then used
to fit the choices in the second data set (generated by a
different sample of subjects). The proportion of risky
choices predicted by each model was compared to the ob-
served proportion of risky choices, and models were rated
according to the mean squared deviation (MSD) of each
of the 8 competing models (see Appendix B for model
descriptions). Table 4 lists the results of the competition
for choices from description. Model M1 is the best, fol-
lowed quite closely by models M6 and M4. Model M8 is
in last place.

Unlike the Hertwig et al. (2004) data where the pre-
dictions were binary (correct or incorrect), the measure
of fit in this example is continuous (proportion of risky
choices). To implement our approach, we counted the
number of times a proportion predicted by a model was
closer to the observed proportion than the prediction of
the competing model on a trial by trial basis. In this com-
petition the number of identical predictions is very small
(less than 5 out of a total of 60 for all pairs), so this is
not a major factor. Each entry in Table 5 represents the
number of wins of the row model divided by the number
of wins by the column model.

Interestingly, no model beats all its competitors and
no model is beaten by all the others. According to the
weighted geometric mean of the ratios, model M6 is the
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Table 4: The mean squared deviation between the pre-
dicted and observed choice proportions in the competi-
tion for predicting decisions from description data (Erev
et al. 2010).

Model Overall MSD

M1 0.0126
M2 0.0291
M3 0.0268
M4 0.0165
M5 0.0213
M6 0.0134
M7 0.0187
M8 0.0375

best, followed by models M1 and M4. Model M2 is in
the last place. Table 5 shows the intransitive pattern of
relations among the top 3 models:7 model M1 beats M4
but not M6; M6 beats M1, but not M4; and model M4
beats M6, but not model M1! This intransitivity sug-
gests that there is no best model, so we tested if various
models work best for some choices. We contrasted the
cases where each of the top models, M1 and M6, per-
forms better. There were only 2 cases (out of 60) where
the two models were equally close to the actual propor-
tion of choices, and 28 (30) trials where model M1 (M6)
outperformed model M6 (M1) (see Table 5). The striking
pattern is that model M1 outperforms model M6 for gam-
bles with negative expected values, and M6 is better than
M1 for gambles with positive expected values! Thus, the
obvious conclusion is that each of the models is more ac-
curate for a specific subset of the domain. Such patterns
suggest that some of the models are much more narrow
and specific than the intended domain of the tournament.
Many discrepancies of this type indicate that there is a ba-
sic mismatch between the desired goal of testing general
models and the nature of the available models.

The new approach is not restricted to counts of agree-
ment with, or proximity to, the correct value. It can be
implemented with a variety of metrics of performance.
We illustrate this point in Appendix C with two additional
pair-wise tournaments of these models.

4 Discussion
Many experiments attempt to select decision problems
that are maximally diagnostic to optimally differentiate
between specific decision models. Other researchers use
(and re-use) many sets of decision problems or randomly
generated problems. In these settings our pair-wise tour-

7The relevant entries are in italics in the matrix.

Table 5: Ratio of row/column counts of model closer to
observed choice rate (Erev et al. 2010, decisions from de-
scription). Entries above the diagonal are reciprocals of
the entries below the diagonal such that rij = 1/rji.

M1 M2 M3 M4 M5 M6 M7 M8 WGM

M1 1.00 1.76 1.40 1.15 1.55 0.93 1.50 1.80 1.35
M2 0.57 1.00 0.97 0.46 0.58 0.48 0.69 1.00 0.69
M3 0.71 1.03 1.00 0.87 0.61 0.49 0.57 1.19 0.78
M4 0.87 2.17 1.15 1.00 1.07 1.11 1.04 1.71 1.21
M5 0.65 1.73 1.64 0.93 1.00 0.72 1.11 1.71 1.12
M6 1.07 2.11 2.05 0.90 1.39 1.00 2.11 1.46 1.43
M7 0.67 1.46 1.76 0.97 0.90 0.47 1.00 1.19 0.98
M8 0.56 1.00 0.84 0.58 0.58 0.69 0.84 1.00 0.75

nament of models approach is an important, useful sup-
plement to the global, compensatory, measures of per-
formance that are used routinely. We have illustrated
the approach with two different types of data (binary
choices and probability of choice) and with various met-
rics of fit (ratios of counts, differences of deviations, etc).
This demonstrates the flexibility and generality of the ap-
proach, and suggests that researchers can easily adopt this
framework to other problems and other metrics that best
fit the focus and context of their research.

For example, one of the reviewers suggested using this
method to analyze the performance of a single model con-
sisting of several stages. The Priority Heuristic (Brand-
stätter, Gigerenzer, and Hertwig, 2006) outlines a non-
compensatory lexicographical model based on three sim-
ple decision rules that focus on different attributes: the
minimal outcome, the probability of the minimal out-
come, and the maximal outcome. These three decision
rules can be treated as competing models in the pair-wise
tournament to evaluate the performance of the full Prior-
ity Heuristic model with each component decision rule.
Thus, one could set a tournament where Model 1 = Prior-
ity Heuristic, Model 2 = Maximin, Model 3 = minimize
the probability of losing, Model 4 = Maximax, and Model
5 = Maximin followed by minimization of the probability
of losing. The pair-wise method could reveal, for exam-
ple, to what degree the predictions of the Priority Heuris-
tic (Model 1) are in agreement with the first decision rule
in the hierarchy (Model 2) and the first two (Model 5) .

Most importantly, the application of the pair-wise tour-
nament to both the Hertwig et al. (2004) and Erev et
al. (2010) data provided new insights about the models
that could not have been extracted from the original data
analyses. The most revealing aspect of the Hertwig et
al. (2004) data was the high level of agreement between
the predictions of the models. The pair-wise analysis re-
vealed that almost half of the decision problems did not
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differentiate between any of the models. In addition to
focusing the model comparison process to the diagnostic
cases, we are able to illustrate (see Figure 1) the similar-
ity between the models (the natural mean and round-wise
mean) that could not be detected using global measures.

In the Erev et al. (2010) data set our approach uncov-
ered several interesting facts. The first is the intransitiv-
ity among the top three models which suggests the win-
ner has a very weak (and questionable) advantage. The
second insight is that different measures rank the mod-
els differently (including the top 2 models) showing that
the rankings are not very robust in this case. Finally,
and maybe most revealing, when we compared the cases
where M1 or M6 are best, we found that they performed
best in different subsets of decision problems. None of
these results could be inferred from standard measures of
global performance and they illustrate the potential of this
new, simple, transparent, easy to implement and inter-
pret tool that addresses successfully many methodolog-
ical concerns.

Researchers should consider carefully the most appro-
priate metric for each application. In some cases counts
of correct predictions are all that matter (and all that is
available to work with) as in the Hertwig et al. (2004)
example. In other cases, one may wish to use quantita-
tive measures in the metrics of probabilities, outcomes,
etc. Our method can work with multiple metrics (as we
illustrated in Appendix C with the Erev et al. 2010 data)
and allows researchers to explore the robustness of their
conclusions.

In the Hertwig et al. (2004) example the ranking of
the models inferred from the pair-wise tournament agreed
with the ranking based on overall correct prediction and
in the Erev et al. (2010) example the correspondence was
much lower. This raises the question of how often the
pair-wise approach is in agreement with the global mea-
sures of fit. We address this issue at some length in Ap-
pendix D where we show that, even with as few as M =
3 models, the two approaches will diverge, and that the
likelihood of such inconsistencies increases as a function
of the number of decisions. We also use a bootstrapping
approach to document the level of inconsistency between
the pair-wise ranking and the global measures of fit for
the two examples. Both analyses clearly confirm that the
pair-wise comparison approach can add meaningful in-
formation and lead to new insights.

4.1 General caveats about model compar-
isons

We believe that the new approach can add considerable
information to the process of comparing and evaluating
model performance. It provides a more detailed analysis
and focuses attention toward diagnostic problems. How-

ever, the pair-wise tournament is not a magic solution and
it cannot eliminate all the problems that can plague the
model comparison process. Some of the problems are
more general and are not related to the specific model
comparison methodology employed. Thus, when using
the new proposed scaling produced by the pair-wise tour-
nament one should continue to watch for the well docu-
mented pitfalls of this process. One such problem is the
use of inappropriate measures of fit (see Birnbaum 1973,
1974 on the improper use of the correlation as a measure
of fit, and problems with other measures including the
overall percent correct, Birnbaum, 2008a; Hilbig, 2010).
One should also remember that the selection of problem
sets can determine to a large degree the performance of
models on global measures of fit. We emphasize the im-
portance of diagnostic experimental designs and problem
sets for differentiating between decision models. Finally,
recall that comparisons between models depend on the
proper and fair treatment of models with and without free
parameters. Applying global fit summaries to paramet-
ric models with arbitrarily selected parameters or with
parameters estimated by various methods and in differ-
ent contexts can bias the process and misidentify the best
models (Birnbaum 2008a).
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Appendix A: Description of the mod-
els used to predict the Hertwig et al.
(2004) data
The Hertwig et al. (2004) data set includes the objec-
tive (generating) parameters of the decision problem, the
DMs’ samples, and their choices. Each of the models in
this tournament was fit using the experienced samples,
so predictions for any given pair of gambles may differ
across individuals as a function of the samples experi-
enced. The decision models are described in Table A.1.

Appendix B: Description of the top 3
models used to predict the results of
the Erev et al. (2010) tournament
The Erev et al. (2010) data set includes the objective pa-
rameters of the decision problem, the predicted propor-
tion of choices favoring the risky gamble, and the ob-
served proportion of choices favoring the risky gamble.
The top three decision models are described in Table B.1.

Appendix C: Additional metrics for
the pair-wise tournament for the
Erev et al. (2010) data
We present two additional pair-wise tournaments of these
six models based on (a) minimizing squared deviations,
and (b) minimizing absolute deviations. First, we com-
puted for each model the Squared Deviation (SD) and the
Absolute Deviation (AD) from the observed proportion
of choice. Then we calculated for each pair of models
the difference in squared deviations (SDrow-SDcol) and
the difference in absolute deviations (ADrow-ADcol). The
results of these two analyses are presented in Tables C.1
and C.2, respectively. A difference is negative if the row
model performs better and has a smaller (squared or ab-
solute) deviation than the column model. The weighted
row means provide an overall scaling of the models’ per-
formance.

The order inferred from the pair-wise comparison
based on squared deviations (Table C.1) is identical to
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Table A.1. Model Descriptions for Hertwig et al. (2004)
data.
Maximax: Chooses the gamble that provides the high-
est outcome experienced.

Natural Mean Heuristic: Calculates the overall aver-
age of experienced outcomes from each gamble and
chooses the gamble that provides the higher average
outcome experienced.

Cumulative Prospect Theory 2-stage Model: Uses the
relative frequency of outcomes from each gamble as an
estimate of probability, applies the weighting and util-
ity transformations using the group parameters from
Tversky and Kahneman (1992) to produce a value for
each gamble and chooses the gamble with the higher
value.

Maximal Probability: The experiences are used to es-
timate a probability of obtaining each outcome and
the model chooses the gamble that provides the higher
probability of obtaining a higher outcome.

Round-wise Indicator: Sampling is broken down into
rounds (or runs) based on the switching behavior dur-
ing the sampling process. The average experience of
each round is compared and the gamble that wins the
most rounds is chosen.

Round-wise Mean: Sampling is broken down into
rounds based on the switching behavior during sam-
pling. The difference in the average experience from
each gamble is calculated across all rounds, and is av-
eraged. The gamble with the higher average is chosen.
Note: Round-wise terminology is used in Hills and
Hertwig (2010), the round-wise mean model is equiva-
lent to the contrast model outlined in Broomell (2010).

the overall MSD (and the score is a linear transforma-
tion of the overall MSD reported in Table 4), favoring
model M1 followed by M6 and M4, while the ordering
inferred from absolute deviations (Table C.2) agrees with
the count base analysis in Table 5 (M6 best followed by
M1 and M4). Table C.3 shows the (Pearson and Kendall)
correlations between the scores of the 8 decision models
according to the various metrics. There is a reasonably
high, but far from perfect agreement!

This analysis demonstrates that, similar to global com-
parisons, one can use several different metrics in the pair-
wise tournament. Results based on these metrics are
not always in agreement, potentially leading to different
rank orders for the competing models. In some cases
researchers may choose the most appropriate measures
based on their research goals. For example, although the
sum of squared deviation is the standard choice in social
sciences, one may opt for the sum of absolute deviations,

Table B.1. Model Descriptions of top three models for
Erev et al. (2010) data.

Model 1: Linear utility and logistic choice.

Model 4: Prospect theory with aspiration levels.

Model 6: Prospect theory without diminishing sensi-
tivity with Luce’s choice rule.

which is known to be much less sensitive to extreme and
outlying cases, if the researcher suspects that some of the
models compared may make such extreme predictions, or
if the data set includes a small number of cases with pay-
offs that are markedly larger than all the rest and may af-
fect the results disproportionally. In other cases, one may
wish to compare multiple metrics. Although it may be
tempting to resolve conflicting rank orderings from mul-
tiple metrics (or global summaries) by choosing a metric,
we believe that such conflicts should be treated as a signal
that there is no clear winning model and that additional
collection of diagnostic data is warranted.

Appendix D: Analysis of the agree-
ment between overall measures of fit
and the global scaling produced by
the pair-wise comparisons.

Part 1: Simulation

Assume the response is binary and assume that we have
M competing models predicting N choices. Each model
predicts correctly (or incorrectly) each of the N cases.
Thus, for every case there can be anywhere between 0
(all models are wrong) and M (all models are right) cor-
rect predictions. This setup induces 2M possible patterns
but two of them (when all models are wrong and when
they are all right) are non-diagnostic and uninformative,
so the analysis focuses on the remaining (2M–2) patterns.
Table D.1 lists all cases involving M=3 models.

Global measures of fit (excluding N000 and N111) pro-
vide the total number of correct predictions for each
of the M=3 models as: T1 = (N110 + N101 + N100);
T2 = (N110 + N011 + N010); and T3 = (N101 + N011 +
N001). The pair-wise measures of fit (excluding N000
and N111) provide the following ratios of the number
of unique correct predictions: R12 = (N100 + N101) /
(N010 + N011); R13 = (N100 + N110) / (N001 + N011);
and R23 = (N010 + N110) / (N001 + N101) and recall that
Rij = 1 / Rji. For each ratio we compute the geometric
means to obtain a global scaling from the pair-wise tour-
nament as: GM1=(1*R12*R13)1/3; GM2=(R21*1*R23)1/3;
and GM3=(R31*R32*1)1/3.
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Table C.1. Comparison of squared deviations from the observed choice proportion (SDrow-SDcol) for each pair of
models (Erev et al. 2010, decisions from description). Lower numbers show better performance.

M1 M2 M3 M4 M5 M6 M7 M8 Mean

M1 0.000 –0.016 –0.014 –0.004 –0.009 –0.001 –0.006 –0.025 –0.0093
M2 0.016 0.000 0.002 0.013 0.008 0.016 0.010 –0.008 0.0070
M3 0.014 –0.002 0.000 0.010 0.006 0.013 0.008 –0.011 0.0048
M4 0.004 –0.013 –0.010 0.000 –0.005 0.003 –0.002 –0.021 –0.0055
M5 0.009 –0.008 –0.006 0.005 0.000 0.008 0.003 –0.016 –0.0008
M6 0.001 –0.016 –0.013 –0.003 –0.008 0.000 –0.005 –0.024 –0.0086
M7 0.006 –0.010 –0.008 0.002 –0.003 0.005 0.000 –0.019 –0.0034
M8 0.025 0.008 0.011 0.021 0.016 0.024 0.019 0.000 0.0153

Table C.2. Comparison of absolute deviations from the observed choice proportion (ADrow–ADcol) for each pair of
models (Erev et al. 2010, decisions from description). Lower numbers show better performance.

M1 M2 M3 M4 M5 M6 M7 M8 Mean

M1 0.000 –0.043 –0.036 –0.008 –0.018 0.004 –0.015 –0.057 –0.022
M2 0.043 0.000 0.007 0.036 0.025 0.047 0.028 –0.013 0.021
M3 0.036 –0.007 0.000 0.029 0.018 0.040 0.021 –0.021 0.014
M4 0.008 –0.036 –0.029 0.000 –0.011 0.012 –0.008 –0.049 –0.014
M5 0.018 –0.025 –0.018 0.011 0.000 0.022 0.003 –0.039 –0.004
M6 –0.004 –0.047 –0.040 –0.012 –0.022 0.000 –0.019 –0.061 –0.026
M7 0.015 –0.028 –0.021 0.008 –0.003 0.019 0.000 –0.041 –0.007
M8 0.057 0.013 0.021 0.049 0.039 0.061 0.041 0.000 0.035

Table C.3. Pearson correlation between the scores of the models (above diagonal) and Kendall rank order correlation
between their ordering (below the diagonal) for the Erev et al. (2010) data (decisions from description).

Pair-wise

Global
MSD

Count
ratio

Squared
dev

Absolute
dev

Global MSD 1.00 0.90 1.00 0.99
Count ratio 0.79 1.00 0.90 0.94
Squared dev 1.00 0.79 1.00 0.99
Absolute dev 0.93 0.86 0.93 1.00
Note: Scores were reversed in some cases to orient all
metrics identically.

We compared the ranking of the models based on T1,
T2, T3 and GM1, GM2, GM3. We considered all possi-
ble patterns and computed the (Kendall) rank order cor-
relations between the two rankings. To simplify interpre-
tation we eliminated all cases involving ties (i.e., Ti=Tj
and/or GMi = GMj). The results are summarized in Table
D.2 for N = 25, 50, 75. There is a sizeable minority of
cases where the two rankings are not in perfect agreement
(τ < 1).8 Also note that the rate of such cases increases,
and the mean correlation decreases, as the number of de-
cisions increases, justifying the approach.

8When rank ordering three objects there are only four possible val-
ues for Kendall’s Tau: τ = 1, 1/3, –1/3, and –1. The rankings analyzed
only produced values of τ = 1 and 1/3.

Part 2: Bootstrap samples from Hertwig et
al. (2004) and Erev et al. (2010) data sets

We further test the agreement between global measures
of fit of the models and the scaling inferred from the pair-
wise tournament. We produced B = 100 bootstrap sam-
ples for each data set by sampling with replacement N
cases for each re-sample. These re-samples were used to
produce B = 100 global summaries and v = 100 rankings
of the models. The mean values of all the measures are
shown in Table D.3. In the Hertwig et al. (2004) data the
two global summaries agreed on the best model in 79%
of the re-samples, and agreed on the worst model in 96%
of the re-samples. In the Erev et al. (2010) bootstrapped
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Table D.1. All cases of incorrect and correct prediction for each of M=3 models.

Model 1 Model 2 Model 3 Count Description of Pattern

R R R N111 All models correct: non-diagnostic
R R W N110 Models 1 and 2 are correct
R W R N101 Models 1 and 3 are correct
R W W N100 Only model 1 is correct
W R R N011 Models 2 and 3 are correct
W R W N010 Only model 2 is correct
W W R N001 Only model 3 is correct
W W W N000 All models wrong: non-diagnostic

Note: R = Right; W = Wrong

re-samples the two global summaries agree on the best
model only in 59% of the cases, and agree on the worst
model in 38% of the re-samples.

Table D.2. Distribution of Kendall τ rank order correla-
tion for simulation.
Kendall τ N=25 N=50 N=75

τ = 1/3 0.034 0.065 0.077
τ = 1 0.966 0.935 0.923

Mean value τ 0.977 0.957 0.949

No of cases 35,532 1,757,112 15,279,486

We computed the Kendall τ rank order correlation be-
tween the two rankings across the B re-samples. The
distribution of rank order correlation for the 100 boot-
strap samples is shown in Figure D.1. The box includes
the central 50% of the distribution of τ values and the
center line indicates the median τ . The whiskers extend
to cover approximately 2.7 standard deviations from the
mean with extreme data points marked in red. The mean
correlation is τ = 0.87 for the Hertwig et al. (2004) data
set, and τ = 0.74 for the Erev et al. (2010) data set. These
results illustrate vividly the additional contribution of the
new approach.

Table D.3. Mean (standard deviation) of the global
measures of fit from the 100 bootstrap re-samples.
Hertwig et al.
(2004) Percent correct Pair-wise GM

Maximax 0.73 (0.04) 0.85 (0.14)
Nat. Mean 0.79 (0.04) 1.13 (0.16)
CPT-TK 0.68 (0.04) 0.67 (0.12)
Max. Prob. 0.78 (0.04) 1.06 (0.18)
Round-wise Ind. 0.84 (0.03) 1.42 (0.22)
Round-wise
mean 0.82 (0.03) 1.27 (0.16)

Erev et al. (2010) MSD Pair-wise GM

M1 0.013 (0.002) 1.36 (0.15)
M2 0.029 (0.005) 0.71 (0.11)
M3 0.027 (0.004) 0.76 (0.12)
M4 0.016 (0.003) 1.22 (0.18)
M5 0.021 (0.003) 1.14 (0.17)
M6 0.013 (0.003) 1.46 (0.20)
M7 0.019 (0.003) 1.01 (0.16)
M8 0.038 (0.007) 0.75 (0.14)

Figure D.1. Distribution of the Kendall τ rank order
correlation between the model rankings derived from the
global fit and pair-wise comparison approaches based on
B = 100 bootstrap re-samples from each data set.
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