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Consumers can make decisions in as little as a third of a second

Milica Milosavljevic∗ Christof Koch∗† Antonio Rangel∗‡

Abstract

We make hundreds of decisions every day, many of them extremely quickly and without much explicit deliberation.
This motivates two important open questions: What is the minimum time required to make choices with above chance
accuracy? What is the impact of additional decision-making time on choice accuracy? We investigated these questions in
four experiments in which subjects made binary food choices using saccadic or manual responses, under either “speed”
or “accuracy” instructions. Subjects were able to make above chance decisions in as little as 313 ms, and choose their
preferred food item in over 70% of trials at average speeds of 404 ms. Further, slowing down their responses by either
asking them explicitly to be confident about their choices, or to respond with hand movements, generated about a 10%
increase in accuracy. Together, these results suggest that consumers can make accurate every-day choices, akin to those
made in a grocery store, at significantly faster speeds than previously reported.
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1 Introduction

We make hundreds of decisions every day, many of them
extremely quickly and without much explicit delibera-
tion. Consider, as an example, a trip to the local grocery
store. While unfamiliar and high-stakes purchases often
involve careful comparisons, casual observation suggests
that many others are made at speeds that seem inconsis-
tent with careful deliberation. This motivates an impor-
tant open question in the psychology and neurobiology of
decision-making, as well as in the domain of consumer
research: What are the fastest speeds at which the human
brain is capable of identifying the most valuable options?

Previous work on the computational and neurobiolog-
ical basis of decision-making provides some clues. Mul-
tiple studies have shown that the Drift-Diffusion-Model
and its variants, which provide a computational descrip-
tion of how choices are made, are able to provide good
quantitative descriptions of how accuracy and response
times vary with the underlying parameters of the choice
problem (Link & Heath, 1975; Ratcliff, 1978; Usher &
McClelland, 2001; Busemeyer & Johnson, 2004; Gold
& Schadlen, 2007; Bogacz, 2007; Ratcliff & McKoon,
2008; Krajbich, Armel, & Rangel, 2010; for a compan-
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ion paper see Milosavljevic, Malmaud, Huth, Koch, &
Rangel, 2010). All of these models predict a speed-
accuracy tradeoff, which has been observed in the data.
However, this literature has not experimentally measured
the fastest speeds at which value-based decisions can be
made (Smith & Ratcliff, 2004; Gold & Schadlen, 2007;
Ratcliff & McKoon, 2008; Bogacz, Hu, Holmes, & Co-
hen, 2010).

An examination of previous decision-making studies
also suggest that decisions can be made quickly, but pro-
vide few clues about how fast these decisions can be
made when speed is the goal, perhaps due to external
constraints. For example, in Krajbich, Armel, and Rangel
(2010), hungry subjects made real choices between pairs
of food stimuli displayed on a computer screen with reac-
tion times (RT) that ranged from 1.7 seconds for the eas-
iest choices to 2.7 for the most difficult ones. Reaction
times in the 800 ms range have been reported in various
other choice studies (Knutson, Rick, Wimmer, Prelec, &
Loewenstein, 2007; Wunderlich, Rangel, & O’Doherty,
2010; Litt, Plassmann, Shiv, & Rangel, 2010). Studies
examining more complex choices, those involving six to
twelve options, have reported reaction times in the 6–
18 seconds range (Pieters & Warlop, 1999; Chandon,
Hutchinson, Bradlow, & Young, 2009).

However, work on the psychophysics of perceptual
judgments suggests that the brain may be able to carry out
the decisions computations much faster. Thorpe, Fize, &
Marlot (1996) showed that subjects could categorize nat-
ural scenes according to whether or not they contain an
animal using a go/no-go task (median RT of 445 ms on
“go” trials and differential ERP activity in 150 ms). Van-
Rullen & Thorpe (2001ab) found that subjects could dis-
tinguish between animals and vehicles in a go/no-go task
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at similarly fast speeds (mean RT of 364 ms for animals,
376 ms for vehicles; minimum RT of 225 ms for ani-
mals, 245 ms for vehicles as measured by earliest above-
chance responses; differential ERP activity detected in
150 ms for both tasks). Further, Kirchner & Thorpe
(2006) used a novel saccadic choice paradigm to show
that a pair of natural scenes flashed in the left and right
hemifields could be compared for the presence of one or
more animals with a median RT of 228 ms, and a mini-
mum RT of 120 ms. Utilizing a similar paradigm, Ban-
nerman, Milders, de Gelder, and Sahraie (2009) showed
that subjects could distinguish a fearful facial expression
or body posture from a neutral one in less than 350 ms
(mean RT). Similarly, forced-choice saccades to identify
human faces can be performed above chance and initi-
ated with a mean reaction time of 154 ms and a minimum
RT 100 ms (Crouzet, Kirchner, & Thorpe, 2010). Finally,
we recently showed that individuals can make magnitude
comparisons between two single-digit numbers with high
accuracy in 306 ms on average and are able to perform
above chance in as little as 230 ms (Milosavljevic, Mad-
sen, Koch, & Rangel, 2011).

Note that, as in the case of simple choice, in all of
these experiments subjects had to recognize the stimuli
and their location, analyze the stimuli to make a discrim-
ination judgment, and then indicate the outcome of the
judgment through a motor response. Thus, given the sim-
ilar computational demands, it is natural to hypothesize
that the brain should be able to make accurate simple
choices at much faster speeds than those that have been
reported in the literature.

We conducted four experiments designed to address
two basic questions: What is the minimum computa-
tion time required to make choices with above chance
accuracy? What is the impact of additional computa-
tional time on choice accuracy? An important difficulty
in answering these questions is that reaction time mea-
sures from standard choice paradigms overestimate the
amount of time that it takes to make a decision (i.e.,
to compute and compare values), since they include the
time that it requires to perceive the stimuli and to deploy
the choice. Here, we use a paradigm from vision psy-
chophysics (Kirchner & Thorpe, 2006), which was devel-
oped in the studies described above, and which allows us
to minimize the aforementioned measurement problems.

Determining the minimum computation times at which
consumers can make choices above chance level, as well
as the impact of additional time on choice accuracy, is im-
portant for two reasons. First, since a significant fraction
of decisions seems to be made at these speeds, it provides
an insight into the general quality of human decision-
making. The increased popularity of new technologies in
which decisions are made with the click of a mouse fur-
ther increases the importance of the question. Second, it

Figure 1: Typical trial in Experiment 1.
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provides insights into the nature of the computational and
neurobiological process that might be at work in making
fast decisions, such as the relative importance of “bottom-
up” (“feed-forward”) and “top-down” (“feedback”) pro-
cesses.

2 Experiment 1: Fast saccadic con-
sumer choices

Experiment 1 was designed to investigate how fast con-
sumers can make real value-based choices between pairs
of stimuli, i.e., pairs of food items, and to measure the
accuracy of the resulting choices.

2.1 Methods
Subjects. Twelve Caltech students with normal or
corrected-to-normal vision participated in the eye-
tracking study after providing informed consent.

Experimental Task. Subjects were instructed not to eat
for three hours before the experiment. The experiment
was divided into three phases.

First, there was a liking-rating task. Subjects were
shown images of 50 different food items. All of the foods
were highly familiar snack food items, such as candy bars
and chips (e.g., Snickers and Doritos), sold at local con-
venience stores, and which pre-testing had shown were
familiar to our subject population. The items were cen-
tered on the screen one at a time, and subjects were asked:
“How much would you like to eat this item at the end of
the experiment?” They reported their preferences on a
5-point scale, ranging from −2 (not at all; don’t like the
item at all) to +2 (extremely; one of my favorite snacks).
The items were neutral to appetitive, with average lik-
ing ratings ranging from −.83 ± .37 (SD) to 1.42 ± .36
(SD) across 12 subjects. These liking ratings served as
our measure of the value that the subjects place on each
food item. Thus, on each trial, the correct choice involved
picking the item with the higher subjective value.

Second, subjects completed 750 trials of a 2-alternative
forced choice (2-AFC) task. Figure 1 depicts the struc-
ture of the trials. Each trial began with an enforced 800
ms fixation on a central fixation cross, followed by a 200
ms blank screen (Fischer & Weber, 1993). Two different
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food items were then simultaneously shown for 20 ms,
centered one each at the left and right hemifields. The
pairs of food items were chosen randomly from the set of
50 items, with the constraint that the absolute subjective
rating differences (d=rating best−rating worst) be larger
than zero. That is, no two equally-rated food items were
ever paired on a same trial. Following the presentation
of the two choice options, two faint dots were displayed,
one on the left and one on the right side of the screen,
to indicate corresponding choice options. Subjects were
asked to respond as quickly as possible by making an
eye-movement toward the side where their preferred food
item appeared. They were also told that one of the trials
will be randomly chosen at the end of the experiment and
that they will be asked to eat the item that they chose
on that trial. Their response (left or right food item) was
recorded with an eye-tracker (see below) and the next trial
began immediately.

Finally, at the end of the study one of the choice trials
was randomly selected. Subjects were asked to stay in
the lab for 15 minutes and the only thing that they were
allowed to eat was whatever they chose in that randomly
selected trial.

Eye-tracking. The task took place in a dimly lit room
and subjects’ heads were positioned in a forehead and
chin rest. Eye-position data were acquired from the
right eye at 1000 Hz using an Eyelink 1000 eye-tracker
(SR Research, Osgoode, Canada). The distance between
computer screen and subject was 80 cm, giving a total
visual angle of 28º × 21º. The images were presented
on a computer monitor using the Matlab Psychophysics
toolbox and the Eyelink toolbox extensions (Brainard,
1997; Cornelissen, Peters, & Palmer, 2002). Left or right
choices were determined when an eye-movement was ini-
tiated from the center of the screen towards the food item,
and crossed a threshold of 2.2º (78 pixels) toward the left
or the right side of the screen. Saccadic reaction time,
here representing decision-making time, was determined
as the time difference between the onset of the images
and subjects’ saccade initiation.

The experiment was designed so to get an accurate esti-
mate of the minimum time required to make choice. Sev-
eral features are worth highlighting. First, the total mea-
sured reaction times include both the time that it takes to
make a decision (by computing and comparing the val-
ues associated with the two stimuli), as well as the time
required to recognize and process the stimuli, and to initi-
ate the associated motor response. Thus, this experiment
overestimates the actual time that it takes to make the de-
cision by an amount equal to the time that it takes to pro-
cess the stimuli visually and to initiate a saccade once the
decision has been made. Second, in order to minimize the
bias in our response time measure introduced by the mo-
tor response, we asked subjects to indicate their choice

by executing an eye-movement as rapidly as possible to
the location of their favorite stimulus. We used saccades
as our response modality because they are the fastest re-
sponses that humans can make (Saslow, 1967; Fischer &
Ramsperger, 1984). Third, we introduced a 200 ms blank
screen between the fixation and the stimulus display be-
cause this has been shown to speed up the saccade, which
further reduces the upper bias on our estimate of how fast
choices can be made (Fischer & Weber, 1993). Fourth,
the stimuli were displayed on the screen for only 20 ms
following Kirchner & Thorpe’s (2006) paradigm, which
was designed to determine the minimum reaction time for
their perceptual decision-making task.

We also highlight a limitation of the study. Since sub-
jects provide only one liking rating for each food item, it
is very likely that we measure the underlying preferences
with noise. Note that this stands in contrast with stan-
dard psychophysics methods in which the characteristics
of the stimuli that affect behavior (e.g., orientation or con-
trast) are controlled by the experimenter, and thus mea-
sured without noise. It is important to keep this source
of noise in mind when interpreting the accuracy results
described below. In particular, it implies that some of the
choices that we label as errors (in the sense of not choos-
ing the higher rated option) could in fact be correct given
the underlying true preferences (which we measured with
error). Note, however, that as long as the measurement
error in the liking ratings is additive and constant for all
items, our accuracy variable is measured with the same
amount of noise in all trial bins, which implies that our
results on how accuracy changes with variables such as
choice difficulty are noisier than ideal, but not biased.

Computation of Minimum Reaction Times (MRT).
Minimum reaction times (MRT) were computed using a
method taken from the statistical quality control literature
(Chandra, 2001; Roberts, 1959) and recently introduced
in the domain of perceptual decision making (Milosavl-
jevic, Madsen, Koch, & Rangel, 2011). The method has
also been used to filter “fast guesses” from perceptual
data when fitting the Ratcliff Drift Diffusion Model (Van-
dekerckhove & Tuerlinckx, 2007; Ratcliff & McKoon,
2008). The basic idea is as follows. Observations are or-
dered from low to high response times. Let Xi denote
the accuracy of the ith ordered response (1 = correct, 0
= incorrect). An exponentially weighted moving average
(EWMA) measure of accuracy is then computed using
the following formula:

EWMAi = λXi + (1− λ)EWMAi−1,

where λ is a parameter indicating how much weight to
give to past (ordered) observations in the moving aver-
age. Note that when λ = 1, the EWMA statistic is based
only on the most recent observation. In contrast, as λ
approaches 0, previous observations are given increasing
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weight relative to the latest observation. EWMA0 was
set to 0.5 (i.e. chance performance).

Intuitively, the EWMA measure provides an estimate
of how accuracy changes with increasing reaction times.
This measure can then be compared against the null hy-
pothesis of chance performance on all trials. This null hy-
pothesis generates a confidence interval for the EWMA
after i observations given by

µ±Nσ

√
λ

2− λ
(1− (1− λ)2i).

The first term in this expression is the mean EWMA
statistic under the null hypothesis, which in our experi-
ment is given by µ = E(Xi) = 0.05. The second term
provides an expression for the width of the confidence in-
terval: N is the number of standard deviations included
in the confidence interval, and σ = Std(Xi) = 0.5 is the
standard deviation of each observation Xi under the null
hypothesis. Note that under the null hypothesis perfor-
mance in every trial depends on the independent flip of a
fair coin.

The MRT can then be defined as the smallest ordered
reaction time at which the EWMA measure permanently
exceeds this confidence interval. For our analyses we
chose conservative parameters to reduce the possibility
of false positives: λ = 0.01 and N = 3. The EWMA
analysis was run separately for each subject and condi-
tion.

This test is meant to improve the previous measures
of minimum reaction times introduced by Kirchner &
Thorpe (2006) and extensively used in the literature (e.g.,
Crouzet, Kirchner, & Thorpe, 2010). Their typical anal-
ysis sorts reaction times in increasing order, divides them
into discrete bins (e.g. 10 ms bins centered at 10 ms, 20
ms, etc.), and then tests the average accuracy of obser-
vations in each bin against chance. This procedure has
raised some controversy because the resulting MRT mea-
sures are highly sensitive to the width and placement of
the bins.

2.2 Results

Trials with responses faster than 80 ms were excluded,
since this is the approximate minimum time necessary to
make a purposeful eye-movement (302 out of 9751 tri-
als). Also, the trials that took much longer than what is
required by the task were left out (4 out of 9751). These
trials probably represent errors made by the subject or the
eye-tracker, for example, due to a blink which may cause
a subject to miss the 20 ms presentation of the food items.

Figure 2 depicts the group reaction time curves for cor-
rect and error trials, as well as the mean estimate of the
MRT. The mean response time was 407 ± 1 (SEM) for

Figure 2: Reaction time distributions for Experiment 1,
for correct trials = thick line, and error trials = thin line.
Vertical line shows the mean MRT = 313 ms.

correct trials, and 396 ± 3 ms for error trials. Further-
more, the reaction time distributions show that a small
percentage of saccades took place between 80 and 200 ms
(1.0% for correct trials, and .7% for error trials). These
types of saccades are known as “express saccades” (Fis-
cher & Ramsperger, 1984).

Table 1 and Figure 3A show that, despite the speed of
the choices (mean response time across subjects was 404
± 21 ms), all subjects selected their preferred option well
above chance: mean accuracy was 73.3± 1.6% (binomial
test of above chance performance, p < 0.0001), ranging
from 65.2 ± 1.8% for most difficult choices to 84.6 ±
3.0% for easiest choices. Figure 3B describes reaction
times as a function of difficulty, where absolute distance
in liking ratings of the two food items of d=1 represents
difficult choices, and d=4 represents easy choices. For
difficult choices (d=1) the mean RT was 411 ms, while
for easy choices (d=4) the mean RT was 386 ms (paired
t-test: t=3.82, df=11, p=.0028). Table 1 also reports the
MRT for each individual. The mean MRT across subjects
was 313 ± 17 ms.

3 Experiment 2: Pure perceptual
detection control task

One limitation of Experiment 1 is that the estimate of the
minimum speed at which simple choices can be made in-
cludes the time necessary to perceive the items and initi-
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Table 1: Individual statistics for Experiment 1.

Subject Trials Accuracy (%) SEM Mean RT SEM Min RT

1 750 76.5 1.5 344 3 244
2 750 72.2 1.6 420 4 362
3 750 73.2 1.6 501 3 394
4 747 71.5 1.7 340 2 253
5 749 64.4 1.8 289 4 209
6 749 75.3 1.6 482 4 352
7 750 85.1 1.3 406 4 258
8 748 66.0 1.7 365 2 332
9 745 80.1 1.5 409 2 318

10 748 71.3 1.7 526 4 363
11 747 80.6 1.4 439 3 343
12 745 63.6 1.8 327 3 325
All 8978 73.3 1.6 404 21 313

Figure 3: (A) Percentage of correct choices as a function of liking rating differences between the two food items
(1=most difficult choices, 4=easiest choices). (B) Mean reaction time at each value distance. Error bars denote SEM.

ate the eye-movement through which the choices are indi-
cated. This is an important limitation because a key goal
of the paper is to improve existing estimates of the min-
imum amount of time at which values can be computed
and compared in the brain.

To address this limitation we carried out a pure percep-
tual detection control task in which subjects were asked
to detect the side of the screen on which a picture of a
food item is displayed and make an eye-movement to-
wards that location. Note that this task has similar per-
ceptual and motor demands as those in Experiment 1, al-
though not identical, since only one stimulus is shown on
the screen. However, in the new task subjects do not need

to compute and compare the value of stimuli. As a result,
a subtraction of the reaction times in Experiment 2 from
those in Experiment 1 provides an alternative and poten-
tially better estimate of the amount of time that it takes to
compute and compare values.

3.1 Methods

Subjects. Four subjects from Experiment 1 participated
in this experiment, which was conducted several weeks
after the previous one. Table 2 shows which subjects par-
ticipated in each experiment, as well as the order in which
they did so.
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Figure 4: Typical trial in Experiment 2.
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Task. Subjects completed 300 trials of a simple fixa-
tion task, shown in Figure 4. Each trial began with an
enforced 800 ms fixation on a central fixation cross, fol-
lowed by a 200 ms blank screen. Afterwards a single
food stimulus was placed in either the left or the right
hemifield for 20 ms, followed by two faint dots displayed
on either side of the screen to indicate corresponding sac-
cade landing positions. At that time subjects were asked
to, as quickly as possible, make an eye-movement toward
the side where the food item appeared. All omitted details
are as in the previous experiment.

We acknowledge several potential concerns with this
control experiment, which should be taken into account
when interpreting the results described here. First, since
unfortunately we thought of this task only after carrying
out the other experiments described here, all of the sub-
jects performed Experiment 1 before Experiment 2. This
raises the concern that familiarity with the stimulus set,
which was identical in both tasks, could have led to faster
responses in Experiment 2. Note that this would imply
that the task underestimates the time devoted to stimulus
recognition and motor deployment in normal choice, and
thus the estimates reported below would over-estimate
the time that it takes to compute and compare values. Sec-
ond, the control task is not perfect, since the perceptual
demands in Experiment 2 are significant simpler that than
those in Experiment 1 because now subjects can recog-
nize the location of the stimulus by simply perceiving a
flicker. Note, however, that this limitation also results in
an overestimate of the amount of time that it takes to com-
pute and compare values, which means that it does not af-
fect our overall conclusion that the brain can make simple
consumer choices at extremely fast speeds. Given these
concerns, the results in this section should be considered
exploratory, and as a result the rest of the paper empha-
sizes the MRT estimates from the other experiments.

3.2 Results

Due to extremely fast or slow response times, 30 out of
1200 trials were omitted from the further analyses. Fig-
ure 5 compares the reaction time distributions for Exper-
iments 1 and 2. Table 3 describes the mean and mini-
mum RT (MRT) for each subject, which in every case
were significantly faster in Experiment 2 than in Experi-

Table 2: Order of participation for each subject and ex-
periment.

Subject Exp 1 Exp 2 Exp 3 Exp 4

1 1 - 2 -
2 1 - - -
3 1 4 3 2
4 1 - - -
5 1 - - -
6 1 - 2 -
7 1 - 3 2
8 1 - - -
9 1 4 3 2
10 1 - 3 2
11 2 3 1 -
12 2 3 1 -
13 - - 1 -
14 - - - 1

ment 1 (highest p < .00001 for paired t-tests). The mean
reaction time across subjects was 183 ± 21 ms, which
was significantly faster than the mean response for Ex-
periment 1 (paired t-test, t=5.59, df=14, p=.0001). Table
3 also shows accuracy for each subject (mean = 99.8%)
and the MRT (mean=114 ms; paired t-test vs. Experiment
1, t=6.66, df=14, p < .00001).

We can now subtract the RT estimates of the two exper-
iments for the four subjects that participated in both tasks,
in order to get a better estimate of the amount of time that
it takes to compute and compare values. The mean dif-
ference in RT between a simple saccadic response and a
more demanding value-based saccadic choice across four
subjects was 235 ms, and the mean difference in the MRT
was 231 ms.

4 Experiments 3 and 4: The impact
of additional computation time on
choice accuracy

The next two experiments were designed to investigate
the impact of additional computation time on choice ac-
curacy. In Experiment 3, reaction times were slowed
down by asking subjects to respond only once they were
confident of which option they preferred. In Experiment
4, reaction times were slowed down by asking subjects
to indicate their choice with a button press instead of a
saccade, which naturally slows down reaction times.
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Table 3: Individual statistics for Experiment 2 and Experiment 1.

Exp 2 Exp 1 Exp 2 Exp 1 Exp2 Exp 1

Subject Trials Accuracy SEM Accuracy SEM Mean RT SEM Mean RT SEM MinRT MinRT

3 295 100.0 0.0 73.3 1.6 236 2 498 3 123 394
9 297 100.0 0.0 80.2 1.5 139 2 408 2 102 318

11 280 99.6 0.4 80.7 1.4 164 3 438 3 134 343
12 298 99.7 0.3 63.6 1.8 194 2 326 3 95 325
All 1170 99.8 0.1 74.5 3.8 183 21 418 36 114 345

Figure 5: Reaction time distribution for Experiment 1
(blue line) vs. Experiment 2 (green line). Thick line =
correct trials. Thin line = error trials. Vertical lines =
the estimate of the mean Minimum Reaction Time across
subjects: Experiment 1 = 313 ms; Experiment 2 = 114
ms.

4.1 Method

Subjects. Nine subjects participated in Experiment 3.
Five subjects participated in Experiment 4. See Table 2
for details.

Task. The procedure for Experiment 3 was identical to
that of Experiment 1, except that subjects were asked to
maintain the central fixation on the screen until they were
confident of which food item they preferred, and to only
then indicate their choice by making an eye-movement to
the location of their preferred item. The procedure for
Experiment 4 was identical to that of Experiment 1, ex-
cept that now responses were indicated by a button press.

Figure 6: Reaction time distribution for Experiment 3
(red line) vs. Experiment 4 (gray line). Thick lines =
correct trials. Thin lines = error trials. Vertical lines = the
mean Minimum Reaction Time across subjects: Experi-
ment 3 = 365 ms; Experiment 4 = 418 ms.

All omitted details are as in Experiment 1.

4.2 Results

In Experiment 3, due to extremely fast or slow response
times, 14 out of 6750 trials were omitted from the further
analyses. Figure 6 and Table 4 show the reaction time dis-
tributions and accuracy for Experiment 3 (eye-tracking;
N=9). The mean accuracy was 83.0% (binomial test
of above chance performance, p < 0.0001) and the mean
response time was 572 ± 44 ms. Accuracy increased
and reaction time decreased as a function of choice dif-
ficulty (paired t-test for difference in accuracy between
d=1=74.2% and d=4=95.0% is significant at p < .0001;
paired t-test for reaction times between d=1=606 ms and
d=4=510 ms is significant at p=.014).
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Table 4: Individual statistics for Experiment 3.

Subject Trials Accuracy (%) SEM Mean RT SEM MinRT

1 750 75.9 1.6 435 5 265
3 750 80.7 1.4 517 4 384
6 750 84.4 1.3 623 5 422
7 750 89.1 1.1 526 6 316
9 750 96.9 0.6 866 11 437

10 750 85.3 1.3 681 6 461
11 747 82.2 1.4 501 7 311
12 747 85.7 1.3 482 7 300
13 742 66.6 1.7 520 7 385
All 6736 83.0 2.8 572 44 365

Table 5: Individual statistics for Experiment 4.

Subject Trials Accuracy (%) SEM Mean RT SEM MinRT

3 750 83.3 1.4 567 5 441
7 743 83.8 1.3 469 6 350
9 748 93.9 0.9 699 9 435

10 750 78.4 1.5 600 5 451
14 749 77.8 1.5 824 13 414
All 3740 84.9 2.9 632 60 419

In Experiment 4, due to extremely slow response times
2 out of 3742 trials were omitted from the further analy-
ses. Figure 6 and Table 5 depict the reaction time dis-
tributions and accuracy for Experiment 4 (manual re-
sponses, N=5). The mean accuracy was 84.9% (binomial
test of above chance performance, p < 0.0001) and the
mean response time 632 ± 60 ms. Accuracy increased
and reaction time decreased with decreasing choice diffi-
culty (paired t-test for accuracy between d=1=74.2% and
d=4=93.8% is significant at p=.004; paired t-test for re-
action times between d=1=685 ms and d=4=559 ms is
marginally significant at p=.07).

Figure 7 shows the group reaction time curves for cor-
rect and error trials for Experiments 3 and 4. None of the
differences (in RT or accuracy, over any value distance)
between the two experiments were statistically different
(for all t-tests, p>.3).

In order to facilitate comparisons across experiments,
Figure 8 shows the comparison of the Minimum Reaction
Times (MRT), accuracy, and mean reaction times for all
four experiments.

5 Discussion

The experiments described here have generated three
main findings. First, using a measure of Minimum Re-
action Times (MRT) we found that subjects can compute
and compare values significantly above chance in as little
as 313 ms. Second, we found that, at average reaction
times of 404 ms subjects were able to compute and com-
pare values with accuracies as high as 73%, and that at
most 235 ms of this time was devoted to the computation
and comparison of values (the rest was spent on preparing
and initiating the response). Third, we have found that
slowing down subjects by either asking them explicitly
to be confident about their choices, or by asking them to
indicate choices using hand movements, increases mean
reaction times by about 150 ms (comparison between
the same 8 subjects who completed Experiments 1 and
3 shows a difference of 150 ms; the difference between
the same 4 subjects who completed Experiments 1 and
4 was 123 ms), while generating only small increases in
choice accuracies: 9.6% and 7.6%, respectively.

A comparison of these estimates with the time that it
takes to carry out other simple cognitive computations
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Figure 7: Experiments 3 (dashed line) & 4 (solid line). (A) Percentage of correct trials as a function of liking rating
differences between the two food items (1=most difficult choices, 4=easiest choices). (B) Mean reaction times for
each value distance. Error bars denote SEM.

Figure 8: (A) Comparison of Minimum RTs and Mean RTs in all experiments: Experiment1 = Speed; Experiment 2 =
Control; Experiment 3 = Conf; Experiment 4 = Manual. (B) Mean Accuracy in all experiments. Error bars represent
SEM.

is informative. For example, humans can make a purely
visual binary discrimination to select the natural scene
containing one or more animals in about 140–160 ms
(Kirchner & Thorpe, 2006), can distinguish a fearful fa-
cial expression or body posture from a neutral one in
less than 350 ms (Bannerman, Milders, de Gelder, &
Sahraie, 2009), and can make judgments after brief expo-
sures (<1 s) to complex stimuli that are predictive of the
choices made when they have sufficient time to deliberate
(Ambady & Rosenthal, 1992; Willis & Todorov, 2006).
Since the motor processing demands of our task, as well
as the details of the experimental design, are similar to
these perceptual decision-making tasks (esp. Kircher and

Thorpe, 2006), it is interesting to compare the psycho-
metrics of the two tasks, both of which involve indicating
one’s choice by making an eye-movement to one of two
images. A comparison of the average reaction times sug-
gests that value-based decisions take approximately 264
ms longer than purely perceptual choices (404 ms in our
eye-tracking speed condition versus 140 ms in the per-
ceptual discrimination task in Kirchner & Thorpe, 2006).
A similar estimate is provided by a comparison of Exper-
iment 1 and our control task in Experiment 2 (235 ms).

A caveat to the finding that additional processing time
had a small impact on choice accuracy is that our manip-
ulations increased computation times only by about 168
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ms (difference between Experiment 3 and Experiment
1). It is conceivable that longer deliberation times might
have generated even higher choice accuracies. However,
given the well-known stochastic nature of choice, it might
be that the choice accuracies are already near ceiling at
around 600 ms. Further careful testing will be necessary
to settle this question.
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