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Abstract

The “less is more effect” (LIME) occurs when a recognition-dependent agent has a greater probability of choosing the
better item than a more knowledgeable agent who recognizes more items. Goldstein and Gigerenzer (2002) define α as
the probability that a correct choice is made on the basis of recognition alone and β the probability that a correct choice
is made when both items are recognized (via additional cues). They claim that a LIME occurs if α > β (α > 1/2)
and α and β remain constant as the number of recognized items, n, varies. In fact, it can be shown that neither of these
parameters generally remains constant as n varies, and neither of them are simple functions of n. Therefore, a new
theoretical basis for the LIME is needed. This paper provides mathematical results for understanding when the LIME
can occur and elucidates implications of these results. The major findings presented here are as follows:

• Demonstrations that the LIME can occur when α ≤ β and fail to occur when α > β, and derivation of the
conditions for these co-occurrences;

• A new characterization of the conditions under which the LIME occurs;
• Generalizations of this characterization to handle imperfect recognition; and
• Characterization of when the LIME occurs as more items become recognized.

The primary implication of these results is that the advantage of the recognition cue depends not only on cue validities,
but also on the order in which items are learned. This realization, in turn, suggests that research in this area should
incorporate a more dynamic focus on learning and memory processes, and the effects of reputational information.
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1 Introduction

In choosing between two items, an agent who recognizes
one item but not the other may use this recognition cue to
make the choice, whereas one who recognizes both items
must use other cues and one who recognizes neither must
guess. The “less is more effect” (LIME) occurs when
a recognition-dependent agent has a greater probability
of choosing the better item than a more knowledgeable
agent who recognizes more items. This paper provides
some new mathematical results for understanding when
the LIME can occur and elucidates implications of these
results.

Many researchers investigating the descriptive valid-
ity of the recognition heuristic report high usage rates.
Goldstein and Gigerenzer (2002) reported a 90% usage
rate. Serwe and Frings (2006) found that 88% of their
lay and 93% of their amateur samples used the recogni-
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tion heuristic in choosing tennis match winners. Newell
and Shanks (2004) reported 88% usage in a stock-market
setting. Pachur and Biele (2007) found that the recogni-
tion heuristic accounted for 90% of the forecasts in their
study, more than four other candidate mechanisms. Fi-
nally, Pohl (2006) observed that additional cue knowl-
edge increased the usage of the recognition heuristic over
cases where recognition of an object did not carry any
other knowledge with it.

However, empirical evidence for the LIME is equiv-
ocal, at least on face value. Goldstein and Gigerenzer
(2002), Serwe and Frings (2006), and Scheibehenne and
Bröder (2007) are definitely in the “yes” camp, Pohl
(2006) finds that the LIME is possible but claims only
small effect-sizes, Andersson, Edman and Ekman (2005)
and Ayton and Onkal (1997) present “less is as good as
more” evidence, and Pachur and Biele (2007) are decid-
edly in the “no” camp. Simulation studies based on real
ecologies lend some support to the prospect of LIMEs
(e.g., Goldstein & Gigerenzer, 2002, and Dougherty,
Franco-Watkins & Thomas, 2008). Moreover, Schooler
and Hertwig (2005) and Pleskac (2007) present simula-
tion results suggesting that imperfect recognition may ac-
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tually increase the likelihood of a LIME. Matters are fur-
ther complicated by shortcomings in some of the studies
and an apparent lack of consensus on the requirements
for a test of the LIME. These exigencies, combined with
the results presented in this paper, render the corpus of
empirical studies problematic and inconclusive. I shall
return to this matter toward the end of this paper.

Goldstein and Gigerenzer (2002) define α as the prob-
ability that a correct choice is made on the basis of recog-
nition alone and β the probability that a correct choice
is made when both items are recognized (via additional
cues). They claim that a LIME occurs if α > β (α >
1/2) and α and β remain constant as the number of rec-
ognized items, n, varies. This view has been widely ac-
cepted and used as a guide for when to expect the LIME
(e.g., Pachur & Biele 2007). Pleskac (2007) concurs with
Goldstein and Gigerenzer and makes an analogous claim
under conditions of imperfect recognition.

However, Goldstein and Gigerenzer assume that α and
β remain constant as the number of recognized items, n,
varies. In fact, neither of these parameters necessarily re-
mains constant as n varies, and neither of them is a sim-
ple function of n. We shall see demonstrations of these
assertions shortly, and indeed Goldstein and Gigerenzer
allowed that the assumption is not realistic. We shall see
how various modifications of this assumption lead to the
absence or presence of a LIME.

A sufficiently rigorous approach to this problem be-
gins by distinguishing between the probability, β, of cor-
rectly choosing between pairs of recognized items using
the knowledge cue, and the probability, vc, of correctly
choosing between any pair of items using the knowledge
cue (i.e., vc is the knowledge cue validity). To begin, I
will demonstrate that the LIME can occur when α < β.
In Table 1 we have 10 items of which 6 are recognized.
The left-most column shows the rank of each item on the
outcome and the fifth (Cue Rank) column shows their
ranks on a knowledge cue to be used for choosing be-
tween two recognized items. For purposes of simplifica-
tion and clarity, throughout this paper I will restrict dis-
cussion to a rank-order knowledge cue with no ties.

First, let us determine α. From Table 1, the number of
correct choices is the sum of the 0-entries in the “Recog.”
column whose ranks is greater (i.e., worse) each of the 1
entries: Cr = 4+4+3+3+2+1 = 17. The number of
incorrect choices is the sum of the 1-entries whose rank
is greater than each of the 0 entries: Dr = 4+2+1 = 7.
The result is α = 17/(7 + 17) = .708.

We use a similar procedure to compute the probabil-
ity of making a correct choice using the knowledge cue,
i.e., the knowledge cue validity vc. The Cc column in
Table 1 shows the number of items ranked worse than
the item in each row that would be correctly identified
by comparing that item’s cue-rank with that of the other

Table 1: LIME when α < β

Outcome Cue
Rank Recog. Cr Dr Rank Cc Dc Ccr Dcr

1 1 4 0 1 9 0 5 0
2 1 4 0 2 8 0 4 0
3 0 0 4 9 1 6 0 0
4 1 3 0 6 3 3 2 1
5 1 3 0 5 3 2 2 0
6 0 0 2 4 3 1 0 0
7 1 2 0 8 1 2 1 0
8 0 0 1 3 2 0 0 0
9 1 1 0 10 0 1 0 0
10 0 0 0 7 0 0 0 0

17 7 30 15 14 1

items. For example, the first item has cue-rank 1 so
by using the cue to compare it with the other 9 items
we would correctly choose the first item as the better-
ranked. In contrast, the third item has cue-rank 9, so
we would make only 1 correct choice in comparing its
cue-rank with those of the items that actually are ranked
worse. The Dc column shows the corresponding num-
ber of incorrect choices. There are Cc = 30 correct and
Dc = 15 incorrect choices, resulting in a cue validity
vc = 30/(30 + 15) = .667. Likewise, from the last two
columns in Table 1, the probability of choosing correctly
between pairs of recognized items by using the knowl-
edge cue is β = Ccr/(Ccr +Dcr) = 14/(14+1) = .933.

Note that vc 6= β. That is, we have an example of the
fact that the probability of making a correct choice be-
tween pairs from the 6 recognized items is not the same
as the probability of making a correct choice when all
10 items are recognized. Moreover, both α and β can
vary depending on the order in which the remaining items
are learned (i.e., become recognizable). For example,
if the next item learned is item 6 or 10 then the result
will be β = .857, whereas if the next is item 3 or 8
then the result will be β = .809. Likewise, if item 6
is learned next α = .714 whereas if item 10 is learned
next α = .524. These examples show variation in α and
β as n varies, and they demonstrate that both parameters
can take different values for alternative collections of rec-
ognized items having the same n.

Moreover, there is no generalized relation between the
range of possible values of β and vc. Assuming vc ≥
1/2 (i.e., use any negative cue in reverse), there is always
at least one pair of items whose rank-order matches the
order of the cue, so that if only those two items have been
learned then β = 1. Conversely, if vc < 1 then there is
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always at least one pair whose rank-order and cue-order
are reversed so that if only those two items have been
learned then β = 0. By the same argument, α can range
from 0 to 1 depending on the order in which items are
learned.

Now, we shall build up the probability of making a cor-
rect choice between pairs of items in Table 1, initially fol-
lowing Goldstein and Gigerenzer. For those pairs where
one item is recognized and the other isn’t, we use the
recognition cue and have

P (correct&untied) =
2αn(N − n)
N(N − 1)

,

where N is the total number of items and n is the number
of recognized items. The probability of a correct choice
when both items are unrecognized (i.e., where a guess
must be made) is

P (correct&neither) =
(N − n)(N − n− 1)/2

N(N − 1)
.

Finally, the probability of a correct choice when both
items are recognized is

P (correct&both) =
βn(n− 1)
N(N − 1)

.

Summing these terms gives Goldstein and Gigerenzer’s
(2002) formula. They denote P (correct) by f(n), so
using their notation and plugging in the appropriate num-
bers yields f(n) = .756. Thus, we have the LIME be-
cause vc = .667 < f(n) = .756, but we also have
α = .708 < β = .933, so we observe that if β is al-
lowed to vary (and thus differ from vc) a LIME can occur
when α < β.

When α and β are not constant, not only can the
LIME occur when α < β, but the condition α > β
does not guarantee a LIME. A counter-example can be
constructed by modifying the one in Table 1. Sup-
pose the knowledge cue ranks for the 10 objects are
{5, 4, 3, 2, 1, 6, 7, 8, 9, 10}. Then the knowledge cue va-
lidity is vc = 35/(35 + 10) = .778. Now suppose the 6
recognized objects have outcome ranks {1, 2, 3, 4, 9, 10}.
Then α = 16/(16 + 8) = .667 and β = 9/(9 + 6) = .6,
and α > β is satisfied. However, both α and β are less
than vc so no weighted sum of them and 1/2 is going to
exceed vc. Indeed, f(n) = .622, so the LIME does not
occur. I shall address the issue of how common are oc-
currences of the LIME when α < β and no LIME when
α > β in sections to follow.

Finally, we need to distinguish among various defini-
tions of the LIME. Goldstein and Gigerenzer point out
that there are at least three versions: One comparing more
and less knowledgeable agents, another comparing per-
formance in different domains, and a third comparing

performance as an agent learns new items. The version
we have been discussing is the first kind, vc < f(n),
which Katsikopoulos (2010) calls the “full experience”
LIME. But another is f(n) > f(n + 1), which can occur
regardless of whether vc < f(n). Let us call this a “lo-
cal LIME.” The difference between the two is simply that
vc = f(N).

The next section of this paper investigates the co-
occurrence of the LIME and α < β. The third lays out the
conditions under which the LIME can occur under con-
ditions of perfect and imperfect recognition. The fourth
deals with the effect of learning items, and there is a brief
concluding section. All technical arguments (theorems
and proofs) are relegated to the Appendix.

2 When do the LIME and α < β co-
occur?

In this section I will demonstrate that the co-occurrence
of the LIME and α < β is likely to be quite common-
place. My purpose is twofold: First, to enhance our un-
derstanding of their co-occurrence and, second, to de-
velop a perspective that extends our understanding of the
LIME and performance of the recognition heuristic gen-
erally. To begin, I will alter the Goldstein-Gigerenzer no-
tation by using vr = α and vcr = β. Thus, all cue validi-
ties will be denoted by v with an appropriate subscript.
Throughout this paper, without much loss of generality,
we will limit the treatment of the knowledge cues to a
single cue with ranks and no ties.

The Goldstein-Gigerenzer formula for f(n) is

f(n) =
2vrn(N − n) + Qr/2 + vcrn(n− 1)

N(N − 1)
, (1)

where Qr = (N − n)(N − n− 1). This can be rewritten
as

f(n) =
γrn(N − n) + γcrn(n− 1)/2

N(N − 1)
+ 1/2, (2)

where γr = 2vr−1 and γcr = 2vcr−1. These γ parame-
ters are Goodman and Kruskal’s gamma coefficient of as-
sociation. For instance, γcr = (Ccr−Dcr)/(Ccr +Dcr).
Equation (2) shows that deviations of f(n) from 1/2 may
be written as a weighted sum of gamma coefficients. It
will prove useful at times to interpret the LIME in these
terms.

First, substituting (1 + γc)/2 for vc, from equation (2)
we may express the LIME as

γc <
2γrn(N − n) + γcrn(n− 1)

N(N − 1)
. (3)

Second, α < β iff γr < γcr. Combining this latter in-
equality with the LIME inequality above and rearranging



Judgment and Decision Making, Vol. 5, No. 4, July 2010 When less is more 233

Figure 1: Number of recognized items by probability of
correct choice
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terms, we satisfy both the LIME and α < β iff

γcN(N − 1)− γcrn(n− 1)
2n(N − n)

< γr < γcr. (4)

It is also possible for the LIME to occur even when vr <
vc under this condition:

γr < γc <
2γrn(N − n) + γcrn(n− 1)

N(N − 1)
. (5)

It certainly is possible for these inequalities to be sat-
isfied under conditions that are quite ordinary. In partic-
ular, it can be shown (see Theorem 1 in the Appendix)
that when equations (4) or (5) are satisfied if n < N
then it is always the case that vc < vcr. This result re-
veals that the LIME and α < β always can co-occur
for some appropriate n if the recognition heuristic moder-
ates the knowledge cue validity so as to increase it within
the subset of recognized items. Thus, the knowledge
cue “piggy-backs” on the recognition heuristic. Return-
ing to the simple example in the Introduction, we can
see that the LIME and α < β co-occur and, indeed,
vc = .667 < vcr = .933.

It is all very well to show that the LIME and α < β can
co-occur once, but can they repeatedly co-occur as more
items become recognized? Suppose we have 20 items
ranked 1,2,..., 20 and let the knowledge cue have ranks 2,
5, 10, 12, 19, 20, 4, 6, 3, 9, 8,7 , 1, 14, 13, 11, 15, 18, 17,
16. The knowledge cue validity is vc = .663. Now let
the order in which these items become recognized be 1,
3, 7, 4, 6, 12, 14, 2, 19, 18, 9, 15, 20, 5, 8, 11, 10, 13, 16,
17. Figure 1 plots the resulting values for f(n) as items
become recognized with vc represented by a horizontal
line at .663, with vc < f(n) and therefore the LIME on
12 occasions. Figure 2 plots the cue validity within the
recognized items by the recognition validity at each turn.
On 10 occasions α < β and 6 of those co-occur with the
LIME.

Of course, existence proofs and demonstrations do not
indicate whether this co-occurrence is common or not,

Figure 2: Cue validity of recognized items by recognition
validity
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Figure 3: P (α < β|vc < f(n)) by r12 and r13
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so let us turn to simulations to pursue this point. The
simulations randomly sampled 20 replicates 10,000 times
from a trivariate standard normal distribution and con-
verted them to a vector of ranks (x1, x2, x3), where x1

is the outcome rank, x2 is the knowledge cue rank, and
x3 is the order of learning rank. The pairwise correla-
tions were set to all possible combinations of {.3, .5, .7},
plus an additional 9 combinations with r13 (the correla-
tion between outcome and order of learning ranks) set to
0, resulting in 36 runs.

The results are summarized in Figure 3, which displays
the proportion of runs where α < β out of those in which
vc < f(n), i.e., P (α < β|vc < f(n)). This proportion
ranges from about .05 to .43, so this co-occurrence is not
uncommon for mid-range cue validities. Moreover, it is
apparent that r13, the correlation between outcome and
order of learning ranks, drives P (α < β|vc < f(n)).
Lower r13 predicts higher P (α < β|vc < f(n)), with
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Figure 4: P (vc < f(n)) by r12 and r13
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the maximum achieved when r13 = 0. In contrast, r12

(the correlation between outcome and the knowledge cue
rank) and r23 (the correlation between the order of learn-
ing and the knowledge cue rank) have negligible effects.
Recall that r13 is a proxy for the cue validity of order
of learning which in turn determines the recognition cue
validity for each value of n. Therefore, this finding tells
us that the co-occurrence of the LIME and α < β is in-
versely related to the order of learning validity.

3 A New General Condition for the
“full experience” LIME

3.1 Perfect Recognition
We now return to examining the LIME itself. The sim-
ulations described earlier may be used to gain intuition
about how the LIME is influenced by the cue validities
of the knowledge cue and the order of learning, with a
“chance” benchmark in which the order of learning is
uncorrelated with outcome rank. Figure 4 shows the re-
sulting P (vc < f(n)), the proportion of trials in which
the LIME occurred, as a function of r12 and r13. As we
might expect, higher r13 predicts a higher probability of
the LIME, and for constant r13 a lower r12 predicts more
frequent LIMEs. This latter trend reflects the fact that al-
though it is possible for the LIME to occur when α < β,
it is easier for it to occur when the opposite is true. As r12

declines it is more likely that α > β and therefore also
more likely that the LIME will occur.

It should be clear that the LIME can occur “by chance,”
in the sense that an arbitrary order of learning can some-
times produce the LIME. In the Table 1 example, if item 8

or item 10 is the last item to be learned then just before it
is learned f(n) will be .733, both instances of the LIME
(recall that vc = .667). However, if item 3 or item 6 is the
last to be learned then f(n) will be .644 or .667, neither
of which exceeds vc. So, conditional on all items but 3,
6, 8, and 10 having been learned, if each of the remaining
four is equally likely to be the last learned then in the last
learning stage the probability of the LIME is .5.

Now in Figure 4 note that when r13 = 0, P (vc <
f(n)) does not fall to a negligible level. In fact, for
r12 = .3 the probability of the LIME is around .15 to
.20. It can be driven higher still by allowing a negative
correlation between the order of learning and the knowl-
edge cue rank. For r12 = .3 and r23 = −.5, for instance,
the simulation resulted in P (vc < f(n)) = .256. At least
some occurrences of the LIME are an artifact of random
variability in recognition cue validity despite the absence
of order-of-learning validity. Therefore, in evaluating the
accuracy of the recognition heuristic, it seems advisable
to benchmark any empirical findings against appropri-
ate “null” models that track the occurrence of the LIME
when the order-of-learning validity is zero.

Is there another general condition restricting when the
LIME can occur? This condition can be stated simply but
it requires a small addition to the machinery that has been
built up so far. Denote by vcnr the probability of choos-
ing correctly between recognized and unrecognized items
by using the knowledge cue (rather than the recognition
cue), and let vcnn be the probability of correctly choosing
between two unrecognized items by using the knowledge
cue. Obviously these are “counterfactual” constructions
in the sense that the partially ignorant agent cannot use
the knowledge cue to choose between items unless both
are recognized. Nevertheless, vcnr and vcnn permit us to
decompose vc into its three components:

2vcnrn(N − n) + vcnnQr + vcrn(n− 1)
N(N − 1)

,

where again Qr = (N − n)(N − n − 1). From this
expression and equation (1) the LIME condition may be
written as

vcnr2n + vcnn(N − n− 1)
< vr2n + (N − n− 1)/2.

(6)

This version of the LIME reveals that if vcnn ≥ 1/2 then
the LIME occurs only if

vcnr < vr. (7)

Recall that in the Goldstein-Gigerenzer notation vr = α.
So this really is where the recognition cue’s validity must
exceed that of the knowledge cue, namely in choices
between a recognized item and an unrecognized item.
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Schooler and Hertwig’s (2005) implementation of the
recognition heuristic in the ACT-R framework uses no
knowledge cue and instead assumes guessing when both
objects are recognized. That is, they explicitly restrict
vcr and vcnn to 0.5 and thus implicitly vcnr also is 0.5.
Consequently their simulation obtains a LIME simply by
recognition performing above chance level. Conversely,
if vcnr ≥ vr the LIME occurs only if vcnn < 1/2. Fi-
nally, it should be evident that because vcr (i.e., β) is
common to both f(n) and vc, the occurrence of α > β
without the LIME may be quite frequent. Indeed, it is
no surprise that Pachur and Biele (2007) failed to find a
LIME even when the α > β condition was satisfied.

Clearly the order in which items become recognized
is crucial in determining whether the LIME will occur.
If this order perfectly matches the order of the outcome
ranks then of course at each step vr = 1 and the LIME
is maximally likely. On the other hand, if pairs of items
become recognized whose ranks are equally above and
below the median rank then vr = .5 and the LIME is
unlikely to occur. The order in which items become rec-
ognized acts like another cue with the order of learning
determining the ranks of this cue.

Accordingly, let vo denote the validity of the order in
which items become recognized. At the point where n
items have become recognized we may decompose vo in
the same way as vc using an obvious notation, so that we
write vo as

2vrn(N − n) + vonnQr + vorn(n− 1)
N(N − 1)

.

Restrictions on vo impose further restrictions on the
conditions under which the LIME occurs. If vo ≤ vc,
then vcnr < vr only if γc.r > γo.r, where γc.r is the par-
tial gamma coefficient for the knowledge cue with recog-
nition partialed out and γo.r is the corresponding partial
gamma for the order of learning (see Corollary 1 in the
Appendix). It may seem counter-intuitive that the LIME
could occur even when the order of learning validity is
lower than that of the knowledge cue and vcnn ≥ 1/2,
but that is unmistakably what this result says. Nor is it
difficult to construct such examples.

Table 2 displays one such example with 10 items of
which 5 are recognized, vc = .778 < f(n) = .8 and
therefore the LIME, and yet vcnn = .6 and vo = .667 <
vc. The LIME is achievable here because vcnr = .8 <
vr = .88 , and this inequality in turn is achievable be-
cause γc.r = .486 > γo.r = .371.

3.2 Imperfect Recognition
Pleskac (2007) extends the study of the recognition
heuristic by introducing a condition that recognition is
imperfect, i.e., people do not always recognize the items

Table 2: LIME when vo ≤ vc

Outcome Alternative Recognition
Rank Recognition Cue Order

1 1 1 3
2 1 2 2
3 0 4 10
4 1 6 1
5 1 5 5
6 1 9 4
7 0 8 9
8 0 3 7
9 0 10 6
10 0 7 8

5 55 55

Table 3: Probabilities of correct choices for f(n)

H M T F

H B

M 1/2 1/2
T A 1/2 1/2
F G∗ 1−A 1/2 1/2

*G = zA + (1− z)/2

they have experienced. Thus, instead of just recognized
and unrecognized items, there are hits (items correctly
identified as having been experienced), misses (items in-
correctly identified as not experienced), true rejections
(items correctly identified as not experienced), and false
alarms (items incorrectly identified as experienced). The
result is 10 distinct pairs of items, each with their own
decision rule (Pleskac, 2007, Table 1).

Pleskac assumes that the cue validity of experience,
denoted by A, is independent of recognition ability, so
he replaces α with A. Likewise, he replaces β with B,
the validity of the knowledge cue among the experienced
(instead of the recognized) items. I have summarized the
components of f(n) in his scheme in Table 3, using the
abbreviations H for hits, M for misses, T for true rejec-
tions, and F for false alarms.

For (M,M), (T,M), and (T,T) pairs a decision maker
must guess, so the probability of a correct choice from
these three pairs is 1/2. Pleskac (2007: 384) argues that
the probabilities of correct choices from the (H,M) and
(F,T) pairs also must be 1/2. By definition, the proba-
bility of a correct choice from the (T,H) pairs is A, the
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probability of a correct choice from the (F,M) pairs is
1 − A, and the probability of a correct choice from the
(H,H) pairs is B.

As Pleskac (2007: 384-5) points out, choices involv-
ing the (F,H) pairs benefit partly from experience. Rather
than repeating his argument here, suffice it to say that the
proportion of correct choices for these pairs is zA + (1−
z)/2, where z is the proportion of experienced items that
would be chosen over the false-alarm items on the basis
of some choice heuristic. In Pleskac’s setup the knowl-
edge cues are binary (either positive or negative) and his
version of this heuristic is that the experienced item must
have at least one positive cue value. For the time being,
we will leave this heuristic unspecified.

Pleskac claims that the LIME can occur only if A >
B. In a recent paper Katsikopoulos (2010) disproves this
claim, showing that the LIME can co-occur with A <
B even allowing Gigerenzer and Goldstein’s assumption.
We can extend the argument from section 2 to specify
when the LIME can co-occur with A < B. Denoting the
hit-rate by h and the false-alarm rate by f , Theorem 2 in
the Appendix provides the following characterization of
the LIME under imperfect recognition:

γc <
2γA (h−f+zhf)ne(N−ne) + γBhne(hne−1)

N (N − 1)
,

(8)
where ne is the number of items experienced, and γA and
γB have the obvious meanings. When h = 1 and f = 0
(i.e., under perfect recognition) this equation reduces to
equation (3) with ne = n, γA = γr, and γB = γcr.
Theorem 2 proves that the LIME can co-occur with A <
B iff

γcN (N − 1)− γBhne(hne − 1)
2ne(N − ne)

<

γA (h− f + zhf) < γB (h− f + zhf) . (9)

When h = 1 and f = 0 this equation reduces to equation
(4) with the same substitutions as above.

Now, following Katsikopoulos (2010), let
αe = (A− 1/2)(h− f + zhf) + 1/2, and
βe = (B − 1/2)h2 + 1/2.
Thus, αe and βe are analogous to α and β under imperfect
recognition. Theorem 2 also shows that the LIME can
co-occur with αe < βe iff the γB(h − f + zhf) term
in equation (9) is replaced with γBh2. This is a more
severe requirement than equation (9), so if the LIME co-
occurs with αe < βe it also co-occurs with A < B but
the converse does not hold.

A higher value of h and a lower value of f make the
inequalities in equations (8) and (9) easier to satisfy, and
therefore the LIME more likely to occur. The h − f +
zhf term is not positive when f ≥ h/(1− hz), in which
case the inequalities cannot hold if γc, γB and γA all are
positive. Katsikopoulos (2010) presents a new version of

Table 4: Probabilities of correct choices for the knowl-
edge cue

H M T F

H B

M B B

T B1 B1 B2

F B1 B1 B2 B2

the LIME when f ≥ h/(1− hz), whereby f(n) declines
as n increases until n becomes sufficiently large. We will
not consider this condition here; a full investigation of the
LIME under imperfect recognition is beyond our scope.

Clearly a higher value of z also increases the likeli-
hood of the LIME. Thus, the heuristic driving z when
the knowledge cue is ranked instead of binary should be
of interest to researchers in this area. A simple heuristic
would be to choose the experienced item over the false-
alarm item if the knowledge cue rank of the experienced
item is better than some benchmark known to the deci-
sion maker. On the other hand, a rational decision maker
who believes that A > 1/2 should set z = 1.

What form does the general condition for the LIME in
equation (7) take under imperfect recognition? To deter-
mine this, we begin by assuming that the validity of the
knowledge cue differs only across the same three subsets
of item pairs as in perfect recognition. This assumption
is simply the counterpart of the foregoing assumption re-
garding the experience cue validity, A, namely that these
cue validities are conditionally independent of the agent’s
recognition ability. Thus, in Table 4 the knowledge cue
validity is B for choices between pairs of experienced
items, B1 for choices where one item is experienced and
the other not, and B2 when both items are not experi-
enced.

Corollary 2 in the Appendix shows that if the appropri-
ately weighted sum of B2 and B is 1/2 or greater, then
the general condition in equation (7) generalizes to the
inequality

γB1 < γA (h− f + zhf) . (10)

When h = 1 and f = 0 this inequality reduces to equa-
tion (7) with γA = γr and γB1 = γcnr. As before, higher
values of h and z and a lower value of f make this in-
equality easier to satisfy, and therefore the LIME more
likely to occur.

We now will relax the assumption that the experience
and recognition are conditionally independent, by allow-
ing the probability of a correct choice between (H,M)
pairs to differ from 1/2. This probability is denoted by
Q in Table 5. The motivation for relaxing this assump-
tion is to consider the influence that memory effects such
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Table 5: Probabilities of correct choices without the in-
dependence assumption

H M T F

H B

M Q 1/2
T A 1/2 1/2
F G∗ 1− qA 1/2 1/2

*G = zA + (1− z)/2

as primary or recency might have on the LIME. If the
higher-ranked experienced items are more likely to be
recognized then Q > 1/2. If the earlier-experienced
items are more highly ranked then a primacy effect will
result in Q > 1/2, whereas a recency effect would yield
Q < 1/2.

Relaxing the conditional independence assumption
also affects the probability of a correct choice between
(F,M) pairs because the knowledge cue validity for the
misses is no longer A. Instead, it is qA, where if Q > 1/2
then 0 < q < 1 whereas if Q < 1/2, q > 1. Corollary 3
in the Appendix shows that the LIME condition in equa-
tion (10) generalizes to

γB1 (N − ne) + 2γB

(
h− h2

)
ne <

γA (h− f + zhf + f (1− h) (1− q)) (N − ne)+

f (1− h) (1− q) (N − ne) + 2γQ

(
h− h2

)
ne, (11)

where γQ = 2Q−1. For small ne this inequality is dom-
inated by the comparison between γA and γB1 , whereas
large ne it is dominated by γQ versus γB . Here, the gen-
eralized condition for the LIME no longer holds. It is
possible for γQ to exceed γB sufficiently to enable the
LIME to occur when equation (10) is violated.

4 Learning and forgetting
In order for a local LIME to occur, f(n) must either rise
and then fall or vice-versa. That is, there must be a lo-
cal “more-is-more” effect (or MIME) followed by a local
LIME or vice-versa as items are learned or the reverse
sequence if items are being forgotten. There is a corre-
sponding local LIME and MIME pair if we consider re-
moving or adding an item to the collection of items, but
we will not deal with that case here. We shall also con-
sider only the case of perfect recognition.

Learning and forgetting items will generally change
f(n) but not vc. The conditions under which the direction
of change in f(n) can switch sign are of interest, because
that is the event that signals a local MIME followed by
a local LIME or vice-versa. We will focus on the case

where one more item is learned. The results for the case
where one item is forgotten differ only in minor respects
that are not of interest here.

Let vr1 denote the new probability of correct choices
between a recognized and unrecognized pair using the
recognition heuristic when one more item has been
learned. Likewise, let vcnr1, vcnn1, and vcr1 denote the
new probabilities of correct choices using the knowledge
cue between a recognized and unrecognized pair, two un-
recognized items, and two recognized items respectively.
Each of these probabilities will have their corresponding
γ parameters as before. Now, consider the change in
the proportion of correct choices as one more item is
learned: f(n) − f(n + 1). Theorem 3 in the Appendix
shows that f(n) − f(n + 1) = 0 for n < N − 1 under
the following conditions:

δcr < 0 iff δr > δr0 and
δcr ≥ 0 iff δr ≤ δr0,

(12)

where δr = γr − γr1, δcr = γcr − γcr1, and

δr0 =
nγcr + (N − 2n− 1)γr

(N − n− 1)(n + 1)
.

When n = N − 1, f(n)− f(n + 1) = 0 iff

δcr =
2(γcr − γr)

N
.

For n < (N − 1)/2, δr0 > 0 so equation 12 implies
that if δr < 0 then δcr > 0. Moreover, even for inter-
mediate values of n ≥ (N − 1)/2 it turns out that δr0

is close to 0. Thus, generally equation (12) suggests that
in order for a local MIME-LIME sequence to occur, δcr

and δr will tend to have opposite signs so that an increase
in the recognition validity will be offset by a decrease in
the knowledge-cue validity among recognized items and
vice-versa.

Now because vc does not change, we also must
ascertain the conditions for it to remain constant as one
more item is learned. Theorem 4 shows that vc remains
constant for n such that n < N − 1 under the following
conditions:

δcr < 0 if δcnn > 0 and δcnr = δcnr0,

δcr ≥ 0 if δcnn ≤ 0 and δcnr = δcnr0,

δcr < 0 if δcnr > δcnr0 and δcnn = 0, and
δcr ≥ 0 if δcnr ≤ δcnr0 and δcnn = 0,

(13)
where δcnr = γcnr − γcnr1, δcnn = γcnn − γcnn1, and

δcnr0 =
nγcr + (N − 2n− 1)γcnr − γcnn1(N − n− 1)

(N − n− 1)(n + 1)
.
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When n = N − 1, vc remains constant when one more
item is learned iff

δcr =
2(γcr − γcnr)

N
.

Equation (13) suggests a quasi-hydraulic relation be-
tween δcr and both δcnr and δcnn that accords with the
commonsense supposition that as an additional item is
learned any change in vcr will be compensated by a net
opposite change in the weighted sum of vcnr and vcnn

due to the fact that vc does not change. For intermediate
values of n, it turns out that δcnr0 is close to 0. Con-
sequently, δcnn tends to have a larger effect on δcr than
δcnr0 does.

5 Discussion
The main results presented in this paper may be summa-
rized as follows.

1. When we relax the assumption that α and β do not
change as n varies, the LIME does not depend on
the condition that α > β. This condition can oc-
cur without the LIME. Likewise, the LIME can co-
occur with α < β and, indeed, with α < vc or even
when the order of learning validity is less than the
knowledge cue validity (vo < vc). Moreover, these
co-occurrences can arise under conditions that ar-
guably are neither unusual nor bizarre. The main
requirement is that the recognition heuristic mod-
erates the knowledge cue validity so as to increase
it within the subset of recognized items. Simula-
tions revealed that the higher the order of learning
validity, the less likely the LIME is to co-occur with
α < β. An analogous result was obtained under im-
perfect recognition, thereby extending Katsikopou-
los’ (2010) finding that the LIME can co-occur with
A < B to include co-occurrence with αe < βe.

2. In the new general condition for the LIME, equa-
tion (6) implies that if vcnn > 1/2 then the LIME
can occur only if vcnr < vr, i.e., if the recogni-
tion cue validity exceeds the knowledge cue validity
within the set of recognized items. This new condi-
tion for the LIME was generalized to deal with im-
perfect recognition, with the additional finding that
a higher hit-rate and lower false-alarm rate increase
the likelihood of the LIME.

3. Under imperfect recognition when the assumption
of conditional independence between recognition
and experience is relaxed, vcnr < vr is no longer re-
quired because the LIME can occur if the knowledge
cue validity for (H,M) pairs sufficiently exceeds the

knowledge cue validity for (H,H) pairs. The latter
comparison carries greater weight as more items are
learned and/or as hit-rate increases.

4. If the LIME occurs then at some point as more items
are learned or forgotten there must be a local MIME
followed by a local LIME, or vice-versa. Equa-
tion (12) suggests (but does not strictly imply) that
when the local MIME-local LIME sequence occurs,
the change in vcr will be negatively associated with
change in vr.

The results generalize to a binary knowledge cue or an or-
dinal cue with tied ranks (here I have assumed an ordinal
knowledge cue with no tied ranks), and also to a weighted
sum of cues. Equivalent examples to those from Table
1 onward using a binary knowledge cue are available
from the author on request. Tied ranks sever the analogy
with the γ coefficient of association but do not invalidate
the results. When the knowledge cue is used to make a
choice, I assume guessing is used if the two items are tied
on the knowledge cue. Letting Tc denote the number of
tied pairs, vc = (Cc+Tc/2)/(Cc+Dc+Tc) and an analo-
gous formula holds for vcr, i.e., β. Now, 2vc−1 no longer
is γc but instead equals Somers’ (1962) dxy , an asym-
metric measure of ordinal association (Somers’ measure
is related to Kendall’s τb by dxydyx = τ2

b ). Thus, all re-
sults in this paper expressed in terms of validities remain
as they are, and dealing with ties simply means that all
results expressed in terms of γ coefficients have Somers’
dxy substituted for γ.

The findings presented here apply to any binary char-
acteristic whose possession by an item is not fixed but can
vary either through assignment by a perceiver or environ-
mental changes. Not only does this include the recogni-
tion cue, but any other binary status cue (e.g., member-
ship in a group, organization or club that carries with it
relevant knowledge cues and without which those cues
are absent). These findings describe how effective status
cues earn their keep.

The results also point toward four programmatic rec-
ommendations regarding future work on the recognition
heuristic. First, despite the demonstrations via analytical
results and simulations that α > β is not required for the
LIME, it is not known how often α < β and the LIME
co-occur in real environments, how often α > β occurs
without the LIME, or whether these co-occurrences de-
pend on n and/or N . All three merit further investigation.

Second, the results highlight the importance of the or-
der in which items are learned. No account of the recog-
nition heuristic can be complete without an understanding
of the effects of the order of learning, and therefore those
aspects of reputational systems and learners determining
that order. Population-level models of the recognition
heuristic and predictions of its accuracy should incorpo-
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rate at least an expected order of learning, and preferably
an appropriate distributional model of that order.

The implications of these results are compatible with
certain other criticisms of empirical research on the
recognition heuristic. Dougherty et al. (2008) raise the
problem of determining the reference class and ecology
within which cue validities are evaluated, and Gigeren-
zer, Hoffrage and Goldstein’s (2008) response refers to
a general confusion between cue validity and ecological
validity. The main point is that inferring a LIME via
between-agent comparisons requires agents in the same
ecology (e.g., German citizens reading German news-
papers should not be compared with American citizens
reading American newspapers) who are making choices
within the same reference class of objects (e.g., f(n) for
American cities cannot sensibly be compared with f(n)
for German cities).

The results in this paper imply that f(n), α, and β

for one set of n recognized objects in a particular ecol-
ogy and reference class will not necessarily be identical
for a different set of n recognized objects, even for the
same agent. Moreover, to establish that a LIME has oc-
curred by comparing between agents requires the ecologi-
cal validity of the knowledge cues to be identical for those
agents. Thus, unconfounded between-agent comparisons
(agent 1 knows n1 objects and agent 2 knows n2 objects,
where n1 > n2) require not only that both agents be lo-
cated in the same ecology and reference class, but also
vc1 = vc2, preferably because both agents use the same
knowledge cues in the same way, and the n2 objects are a
subset of the n1 objects. Of course, this is unlikely to hold
for agents in real environments. For example, Dougherty
et al. (2008: 208) suggest that as agents learn more ob-
jects they may also learn more effective cues.

The current empirical literature on the recognition
heuristic generally is flawed or subject to influences that
researchers have not taken into account. For example,
Serwe and Frings (2006) compare the predictive accu-
racy of aggregated rankings of Wimbledon tennis play-
ers based on mere recognition with the ATP rankings of
these players, so they are not actually evaluating the per-
formance of the recognition heuristic in conjunction with
knowledge and guessing. On the other hand, Pohl (2006)
and Pachur and Biele (2007) use methods that do this,
but the remaining potential confounds in their studies are,
first, that the knowledge cue validity vc will be unique for
each individual and therefore will have an unknown effect
on each person’s β, and second, the sets of objects recog-
nized by subjects whose n is small may not be subsets
of the sets of objects recognized by subjects whose n is
large.

Within-agent (agent 1 = agent 2) comparisons satisfy
nearly all of the aforementioned requirements if the col-
lection of objects remains stable for the duration of the
comparisons. Between-agent comparisons or compar-
isons of mean f(n) for different values of n are vul-
nerable to confounds except in very restricted or con-
trolled ecologies. A clear recommendation for studying
the LIME in its “pure” form with effects due solely to n

is tracking agents over time as they learn or forget objects
in environments with stable collections of objects.

The order of learning is determined not only by repu-
tational systems but also by learners. The effectiveness
of the recognition heuristic therefore hinges not only on
aspects of the social environment but also how individ-
uals interact with and learn from that environment, and
retain what they have learned. Pleskac (2007) and Kat-
sikopoulos (2010) have made inroads on this topic. Both
Katsikopoulos’ paper and the results at the end of section
4 suggest possible joint effects of memory processes (the
example used here is primacy versus recency effects) and
the reputational system on the performance of the recog-
nition heuristic. Empirical studies would benefit from
taking on a more dynamic approach than most recogni-
tion heuristic studies, studying how people learn and re-
member (or forget) about a collection of items.

To date, agent learning or forgetting in regard to the
recognition heuristic has been investigated in simulations
(e.g., Goldstein & Gigerenzer 1999 and Dougherty et al.
2008) but not empirically. Dougherty et al.’s methods
come close to satisfying the requirements for investigat-
ing the LIME that have been derived from the results pre-
sented here. However, like others in this domain, they
have erroneously assumed that β remains constant as n

varies and is the same for different collections of n rec-
ognized items.

A third direction for future research is the extension of
the issues raised in this paper to group inferences. Reimer
and Katsikopoulos (2004) present several analytical re-
sults characterizing the LIME under various combination
rules such as majority-rule. They assume that α and β

do not change as n varies, so their findings merit further
investigation whereby this assumption is relaxed.

Fourth, collections of items and their ranks on out-
comes often are unstable. Ranks can change, of course,
because items can improve or decline, even if only
through stochastic artifacts such as regression toward the
mean. Perhaps more importantly, items may drop out or
new ones appear. The disappearance of old items and ap-
pearance of novel ones will affect both the order of recog-
nition validity and knowledge cue validity, and therefore
the performance of the recognition heuristic. These ef-
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fects were hinted at but not dealt with here. Understand-
ing them will require the same reorientations described
above, namely greater attention to the order in which
items are learned (or forgotten), to the joint effects of
learner and environment characteristics, and to dynamics
in general.

Finally, a few remarks are in order on the limitations
and utility of formal analysis as utilized in this paper.
As in any mathematization, some idealizations and sim-
plifications have been made. Chief among these is the
assumption that the properties of the knowledge cue do
not change as more items are learned or forgotten. As
Dougherty et al. (2008) observe, it is plausible that this
assumption may not hold. On the other hand, the setup
in this paper avoids simplifications in earlier analyses
that have misguided researchers, most importantly the
assumption that α and β are invariant under changes in
n or for different collections of n recognized items. I
would argue that this new analysis does not commit what
Lewandowsky (1993) termed “irrelevant specification.”

Regarding utility, the approach in this paper does what
formal analyses and models should (Fum, Missier, &
Stocco, 2007). First, it highlights determinants of how
the recognition heuristic performs that have been over-
looked. It does this by deriving the influence of the or-
der of learning and by introducing “counterfactual” con-
structs such as vcr, neither of which are obvious in ver-
bal descriptions of the recognition heuristic. Second, it
provides guidelines for researchers concerning methods,
novel phenomena to investigate, and when the LIME is
possible and when it is not.
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Appendix

Theorem 1: when equation (4) or (5) is satisfied if n < N

then it is always the case that vc < vcr.

Proof : We begin with equation (4). First, we set n = kN

and re-express the left-hand inequality in equation (4) as

γcN(N − 1)− γcrkN(kN − 1)
2kN(N − kN)

= qγr,

where 0 < q < 1. Solving for k yields two roots, the
relevant one of which is

(γcr − 2Nqγr+√
4(N − 1)Nγc (γcr − 2qγr) + (γcr − 2Nqγr) 2)/

(2N (γcr − 2qγr))

Now, we set γr = γ, γc = εγ, and γcr = δγ. We also set
the restrictions that δ > 1, ε > 0, and 0 < q < 1. Setting
k < 1, the γ terms cancel out and we get

δ − 2Nq +
√

(δ − 2Nq)2 + 4(N − 1)N(δ − 2q)ε
2N(δ − 2q)

< 1.

There are two cases: 2q < δ and 2q > δ. Assuming first
that 2q < δ, the above inequality may be rearranged as:

(δ − 2Nq)2 + 4(N − 1)N(δ − 2q)ε

< (2N(δ − 2q)− (δ − 2Nq))2.

Expanding the right-hand side and cancelling common
terms on both sides yields

ε < δ.

Now assuming that 2q > δ, the first inequality may be
rearranged as:

(2Nq − δ)2 − 4(N − 1)N(2q − δ)ε

> ((2Nq − δ)− 2N(2q − δ))2.

A similar algebraic argument then leads to ε < δ. This
requirement immediately implies vc < vcr.

Equation (5) may be rearranged in a similar fashion to
solve for k, which yields an identical solution with the
additional provisos that q < δ and 0 < ε < 1. From
the fact that ε appears only in the numerator of the root
for k tells us that this additional restriction constrains k

to lower values than those possible for the co-occurrence
of the LIME and α < β, ceteris paribus.

¤

Corollary 1: If vo ≤ vc, then vcnr < vr only if γc.r >

γo.r, where γc.r is the partial gamma coefficient for the
knowledge cue with recognition partialed out and γo.r is
the corresponding partial gamma for the order of learn-
ing.

Proof : From the definitions that

vo =
2vrn(N − n) + vonnQr + vorn(n− 1)

N(N − 1)

and

vc =
2vcnrn(N − n) + vcnnQr + vcrn(n− 1)

N(N − 1)

it is clear that if vo ≤ vc, then vcnr < vr only if

vcnnQr + vcrn(n− 1) > vonnQr + vorn(n− 1).

From the relationship between validities and gamma co-
efficients, this inequality implies

γcnnQr + γcrn(n− 1) > γonnQr + γorn(n− 1).

From the definition of a partial gamma coefficient it fol-
lows that

γc.r =
γcnnQr + γcrn(n− 1)

Qr + n(n− 1)

and

γo.r =
γonnQr + γorn(n− 1)

Qr + n(n− 1)
.

The preceding inequality therefore may be written as

γc.r > γo.r.

¤

Theorem 2: the LIME can co-occur with A < B iff

γcN (N − 1)− γBhne(hne − 1)
2ne(N − ne)

< γA (h− f + zhf) < γB (h− f + zhf) .

The LIME also can co-occur with αe < βe iff the γB(h−
f + zhf) term in equation (9) is replaced with γBh2. If
αe < βe then A < B but the converse does not hold.

Proof : Constructing f(n) from Pleskac’s Table 1 ele-
ments and using the substitutions
A = (γA + 1) /2 and
B = (γB + 1) /2,
we may write

f(n) =
γA(h−f+zhf)ne(N−ne)+γBhne(hne−1)/2

N(N − 1)
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+1/2.

From vc = (γc + 1) /2
we have vc < f(n) iff γc/2 < f(n) − 1/2. Combining
A < B with this latter inequality yields

γcN (N − 1)− γBhne(hne − 1)
2ne(N − ne)

< γA (h− f + zhf) < γB (h− f + zhf) .

Now, let
αe = (A− 1/2)(h− f + zhf) + 1/2, and
βe = (B − 1/2)h2 + 1/2.
Then a straightforward algebraic rearrangement of αe <

βe yields
γA(h− f + zhf) < γBh2.
The claim that if αe < βe then A < B follows from the
observation that
h− f + zhf ≤ h2.
This observation holds because its opposite implies that
h(1− h) < f(zh− 1),
which is impossible because the left-hand term is non-
negative whereas the right-hand term is non-positive.

¤

Corollary 2: If

B2(N − ne)(N − ne − 1) + Bne(ne − 1)(1− h)

≥ ((N − ne)(N − ne − 1) + ne(ne − 1)(1− h)) /2,

then vc < f(n) iff

γB1 < γA (h− f + zhf) .

Proof : Under the inequality specified above and from
Table 3, vc < f(n) iff

Ah(1− f) + (1−A)(1− h)f

+ (zA + (1− z)/2)hf + (1− h)(1− f)/2

> B1 (h(1− f) + f(1− h) + hf + (1− h)(1− f)) ,

which may be rearranged to give

γB1 < γA (h− f + zhf) .

¤

Corollary 3: If

B2(N − ne)(N − ne − 1) + Bne(ne − 1)(1− h)

≥ ((N − ne)(N − ne − 1)

+ (1− h)ne((1− h)ne − 1))/2

+ Qn2
eh(1− h),

then vc < f(n) iff

γB1 (N − ne) + 2γB

(
h− h2

)
ne

< γA (h− f + zhf + f (1− h) (1− q)) (N − ne)

+f (1− h) (1− q) (N − ne) + 2γQ

(
h− h2

)
ne,

where γQ = 2Q− 1.

Proof : Constructing f(n) from Table 5 and using the
substitutions
A = (γA + 1) /2,
B = (γB + 1) /2, and
Q = (γQ + 1) /2,
we may write

f(n) = (γA(h− qf + (q + z − 1)hf)ne(N − ne)+

γBhne(hne − 1)/2 + γQn2
e(h− h2))/(N(N − 1))

+1/2.

From vc = (γc + 1) /2 we get the result immediately.

¤

Theorem 3: For n ≤ N − 1, f(n)− f(n + 1) = 0 under
the following conditions.
For n = N − 1,

δcr =
2(γcr − γr)

N
.

For n < N − 1,

δcr =
2(nγcr + b1γr − b2δr)

n(n + 1)
,

where
b1 = N − 2n− 1, b2 = (n + 1)(N − n− 1),
δcr = γcr − γcr1 and δr = γr − γr1.
Moreover,
δcr < 0 iff δr > δr0 and
δcr ≥ 0 iff δr ≤ δr0, where

δr0 =
nγcr + (N − 2n− 1)γr

(N − n− 1)(n + 1)
.

Proof : f(n)−f(n+1) = 0 can be written as a quadratic
in n of the form:

R1n
2 −R2n + R3 = 0,

where
R1 = δcr − 2δr,
R2 = δcr − 2(N − 2)δr − 2γcr + 4γr, and
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R3 = 2(N − 1)(δr − γr). This equation is linear in δcr,
and a simple algebraic rearrangement yields

δcr =
2(nγcr + b1γr − b2δr)

n(n + 1)
,

with b1 and b2 defined as above.
When n = N − 1 this equation reduces to

δcr =
2(γcr − γr)

N
.

Note that the above equation is negative in δr. When n <

N − 1 setting δcr = 0 and solving for δr yields

δr =
nγcr + (N − 2n− 1)γr

(N − n− 1)(n + 1)
= δr0.

Thus, for n < N − 1,
δcr < 0 iff δr > δr0 and
δcr ≥ 0 iff δr ≤ δr0.

¤

Theorem 4: For n ≤ N − 1, the knowledge cue validity
remains constant as an additional item is learned, i.e.,
vc,n − vc,n+1 = 0 (where vc,n denotes the knowledge
cue validity when the number of recognized items is n),
under the following conditions.
For n = N − 1,

δcr =
2(γcr − γcnr)

N
.

For n < N − 1,

δcr =
2nγcr + d1γcnr − d2γcnn1 − d3δcnr − d4δcnn

n(n + 1)
,

where
d1 = N − 2n− 1,
d2 = N − n− 1,
d3 = 2(n + 1)(N − n− 1),
d4 = 2 + N2 + 3n + n2 −N(2n + 3),
δcnr = γcnr − γcnr1 and δcnn = γcnn − γcnn1.
Moreover,
δcr < 0 if δcnn > 0 and δcnr = δcnr0,
δcr ≥ 0 if δcnn ≤ 0 and δcnr = δcnr0,
δcr < 0 if δcnr > δcnr0 and δcnn = 0, and
δcr ≥ 0 if δcnr ≤ δcnr0 and δcnn = 0, where

δcnr0 =
nγcr + (N − 2n− 1)γcnr − γcnn1(N − n− 1)

(N − n− 1)(n + 1)
.

Proof : This proof has the same form as in Theorem 3.
vcn − vcn+1 = 0 can be written as a quadratic in n of the
form:

S1n
2 − S2n + S3 = 0,

where
S1 = δcr − δcnn − 2δcnr,
S2 = δcr− 2N(δcnn− δcnr)+4(γcnr− δcnr)− 2(γcr +
γcnn), and
S3 = (N − 1)(δcnr − γcnr + (N − 1)δcnn + 2γcnn).
This equation is linear in δcr, and a simple algebraic re-
arrangement yields

δcr =
2nγcr + d1γcnr − d2γcnn1 − d3δcnr − d4δcnn

n(n + 1)
,

with d1, d2, d3, and d4 defined as above.
When n = N − 1 this equation reduces to

δcr =
2(γcr − γcnr)

N
.

Note that the above equation is negative in δcnr and in
δcnn. When n < N − 1 setting δcr = 0 and vc,n −
vc,n+1 = 0, and solving these equations for δcnn and
δcnr, yields δcnn = 0 and

δcnr =
nγcr + (N − 2n− 1)γcnr − γcnn1(N − n− 1)

(N − n− 1)(n + 1)

= δcnr0.

Thus, for n < N − 1,we obtain the inequalities in Theo-
rem 4. ¤


