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In employee selection and academic admission decisions, holistic (clinical) data combination methods
continue to be relied upon and preferred by practitioners in our field. This meta-analysis examined and
compared the relative predictive power of mechanical methods versus holistic methods in predicting
multiple work (advancement, supervisory ratings of performance, and training performance) and aca-
demic (grade point average) criteria. There was consistent and substantial loss of validity when data were
combined holistically—even by experts who are knowledgeable about the jobs and organizations in
question—across multiple criteria in work and academic settings. In predicting job performance, the
difference between the validity of mechanical and holistic data combination methods translated into an
improvement in prediction of more than 50%. Implications for evidence-based practice are discussed.
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Predicting performance in work and academic settings is quite
complex, with a large utility for strong prediction. Since numerous
individual and situational factors have been shown to influence
performance and both jobs and some performance determinants
can change over time, multiple measures are often used to thor-
oughly evaluate applicants. For even moderately complex jobs, a
great deal of information frequently is collected via tests, inter-
views, resumes, and simulations, creating the ultimate issue of how
to best make use of it all.

Two general approaches have been used to combine data col-
lected from applicants. The first are mechanical (actuarial, algo-
rithmic) approaches that involve applying an algorithm or formula
to each applicant’s scores. Examples range from aggregating
scores using simple unit weights, to estimating optimal weights, to
using more complex empirically derived decision trees. Holistic
methods, the second general and more common approach (clinical,
expert judgment, intuitive, subjective), include both individual

judgments of data and group consensus meetings. The defining
characteristic of the holistic methods is that data are combined
using judgment, insight, or intuition, rather than an algorithm or
formula that is applied the same way for each decision.

Although the holistic approach has remained the most common
approach over time (Jeanneret & Silzer, 1998; Ryan & Sackett,
1987), previous research across a range of fields has demonstrated
consistently improved decision accuracy for mechanical methods
over holistic ones (Grove & Meehl, 1996). Several reviews have
been conducted evaluating and comparing different types of me-
chanical and clinical data combination across a mixture of fields
and decision types (e.g., Grove, Zald, Lebow, Snitz, & Nelson,
2000; Sawyer, 1966). There are two consistent findings in these
reviews. The first is that the specific type of mechanical versus
holistic method is largely less important than whether or not the
method uses human judgment versus an equation for data combi-
nation. Second, the central issue appears to be how the data are
combined together to form a judgment or recommendation rather
than how they are gathered in the first place. That is, people are
effective at collecting information but appear to be less effective at
combining multiple sources of information into a final decision.

However, no meta-analysis has been conducted on this issue for
the prediction of human performance in work and academic set-
tings. Such an investigation is important because the actual size of
the difference between mechanical and holistic approaches in
predicting work or academic performance is unknown. Given that
there is generally a strong preference for holistic expert-driven
clinical decision making (Highhouse, 2008b) in Industrial-Work
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and Organizational (IWO) psychology, a relatively small differ-
ence would suggest that the method of data combination is a
marginal issue. Consequently, emphasis should be placed on en-
couraging the consistent use and ongoing development of high-
quality predictors. On the other hand, if the difference is large, then
research is needed to understand its source and find methods that
capture at least some of the strengths of the mechanical methods
while remaining acceptable to end users.

Brunswik Lens Model

To frame the current study, we adopt the Brunswik Lens Model
(Brunswik, 1955, 1956), which provides a theory of decision
making and an elegant analytical framework. Conceptually, the
Lens Model assumes that people perceive information in their
environment and combine one or more pieces of information into
a judgment or prediction. In a selection context, this information
could be anything from characteristics of the setting to subtle
behavior cues from potential job candidates to an understanding of
the foibles of senior management. The human judge can weight
each piece differentially and then combine the information to yield
a prediction or judgment. The Lens Model permits modeling the
human judge’s weighting and combining of information cues with
any combination of methods (additive, configural, power, interac-
tive, conditionally) and comparing it to other methods of data
combination.

Structurally, the Lens Model contains three major components:
the subject response or judgments (Ys), the environmental or
independent variable cues (information cues), and the outcome or
criterion value of interest (Ye). The relations among these compo-
nents is used to evaluate the nature of decision making (see Figure
1). Specifically, the Lens Model specifies that the judgment made

by an individual is based on their perception and mental weighting
of one or more cues (e.g., observed interview behavior, test scores,
resume items). These cues, in turn, have actual associations with
an outcome (e.g., performance, turnover). One can think of the
judge peering into the future through the lens of the environmental
cues influenced by the weights and combinations used by the
judge.

Typically multiple regression is used to quantify how cues are
related to judgments as well as outcomes. Regressing the judgment
on the cues (called the Cognitive Strategy) and the outcome on the
cues (called the Ecological Validity) models how the cues, on
average, are related to judgments and outcomes, respectively.
Correlating the judgments with the outcome is often called the
Achievement Index and estimates how strongly judgments are
predictive of outcomes. This meta-analysis contrasts the magni-
tude of the Ecological Validity with the Achievement Index.
However, much more can be done with the model and previous
research on other aspects of the model can aid in interpreting the
current results. The Lens Model is particularly powerful because it
allows scholars to examine how cues are typically used but also
how variably.

It is well established that judges use cues “inconsistently” in that
they deviate in many cases from the estimated regression weights
based on the judge’s predictions (e.g., Karalaia & Hogarth, 2008).
In other words, judges will often weight the same set of cues
differently across targets, weighting, for example, historical ac-
complishments more for one candidate than another. Thus, the
model makes a distinction between “man” (the judge’s prediction
for each individual target) and the “model of man” (the estimated
average values from regressing the judge’s prediction on a set of
cues).

X1

X2

X3

Xk

r1s

r2s

r3s

rks

r1e

rke

r3e

r2e

Ecology (e) Subject Judgments (s)

Independent Variable Cues

“The Lens”

Subject 
Response (Ys)

Criterion 
Value (Ye)

Achievement Index
Clinical Validity

ra = rYe rYs

Predicted Subject 
Response Ŷs

Predicted Criterion 
Value Ŷe

...

Mechanical Knowledge (G)
G = Ŷe Ŷs

Unmodeled Knowledge (C)
C = Re Rs

Environmental 
Predictability (Re)
Re = r Ye Ŷe

Cognitive 
Control (Rs)
Rs = r Ys Ŷs

Figure 1. The Lens Model.
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The correspondence between the “man” and the “model of man”
predictions has been referred to as “cognitive control” (Rs; Ham-
mond & Summers, 1972). It quantifies just how consistently
judges combine information. Cognitive control is often fairly low
for judges making complex psychological judgments. This is not
problematic, per se, if the deviations made by the judge improve
judgment accuracy. For example, intuiting that biodata are espe-
cially salient for one applicant based on structured interview
results would lead to lower cognitive control (i.e., biodata are not
consistently weighted) but might yield improved prediction accu-
racy.

This leads to one of the most striking findings from Lens Model
research. Models of the judge consistently outperform the judge’s
actual judgments. Remarkably, adhering to a weighted composite
based on previous judgments will do better than the expert on
whom it was developed (e.g., Goldberg, 1970). Returning to our
example, this evidence suggests that the judge’s intuition to more
heavily emphasize the biodata information for one individual will
typically be in error and that consistent use of the cues tends to
results in better predictions.

Theoretically, judge inconsistency leaves open the possibility
that the judgments do, in fact, contain insights that improve on a
mechanical composite but the concern is that these insights may be
plagued by unreliability. The Lens Model provides two mecha-
nisms for evaluating this question. First, the judge’s predictive
validity above and beyond a linear optimal weighting of cues can
be examined. This is called “C” in Lens Model parlance (or
Unmodeled Knowledge) and is the correlation of the residuals
between the Cognitive Strategy model and the Ecological Validity
model. C is in contrast to G, which is called Mechanical Knowl-
edge. Mechanical knowledge is the correspondence between pre-
dictions made by an optimally weighted mechanical combination
of predictors and predictions made the human judge. These dif-
ferent indexes allow scholars to examine the extent to which
judges employ less than optimal weighting schemes.

Research has indicated that there is little predictive power
unique to clinical judgments (Karalaia & Hogarth, 2008). On the
whole, these findings suggest that, compared to mechanical pre-
diction from a set of cues, clinical judgment is degraded by both
failing to appropriately weight all relevant cues (i.e., Rs � 1) and
unreliably in applying weighting schemes that are developed (i.e.,
G � 1). This degradation does not generally appear to be com-
pensated with unique accuracy of clinical predictions as C values
(insights beyond the linear mechanical model) are typically zero or
very small (Karalaia & Hogarth, 2008). Although previous theory
and research provide a good explanation of the cause of any
differences, the impact of inappropriate weights and unreliability
in applying those weights on decisions varies by topic. Estimating
the size of the difference is a major reason for the present study.
Although this introduction has focused the Lens Model on the
mechanical/clinical question, it has much broader implications for
validation research and we return to the model’s implications in
the discussion. We argue that it should be adopted as an overar-
ching framework for all personnel selection research.

In total, theory and prior research suggest that an over attention
to salient cues and inconsistency in use of weights without a
compensating gain in insights will cause experts to form judg-
ments with less predictive power than mechanical combination of
the same set of cues. The questions remain, “How much of a

difference?” and “For what criteria?” This meta-analysis examines
and compares the relative predictive power of mechanical methods
versus clinical methods in predicting multiple work (advancement,
supervisory ratings of performance, and training performance) and
academic (grade point average) criteria.

Method

The Meta-Analytic Database

We used a modified version of Hunter and Schmidt’s (2004)
psychometric meta-analytic method (see below) to quantitatively
aggregate results across studies that compared criterion-related
validities of clinical data combination methods to criterion-related
validities of mechanical data combination methods. Studies were
gathered from several sources. Using the terms “combination,”
“mechanical,” “actuarial,” “clinical,” “impressionistic,” “holistic,”
“fit,” and “judgmental” (as well as synonyms and different forms of
these terms) to identify relevant research, we searched PsycINFO
(1887–2008), ERIC (Education Research Information Center,
1966–2008), Digital Dissertations (1861–2008), and google
.com (2008). We examined citation lists within all articles, disser-
tations, and technical reports to obtain additional relevant studies.

To be included in the database, a study had to quantitatively
compare use of mechanical combination of data from one or more
independent variables to the use of clinical combination of the
same data from the same independent variables to predict work or
academic criteria (e.g., performance, achievement).1 Thus, each
study included (a) at least one effect size for a mechanical data
combination method correlated with a work or academic criterion
and (b) at least one effect size for a clinical data combination
method correlated with the same exact criterion.

The independent variables used for each data combination
method were selected to maximize their similarity. That is, to the
extent possible we made “apples versus apples” comparisons
where the clinician used and had access to the same information as
was used in the mechanical combination. In no case could the
mechanical combination methods use information that was un-
available to the clinician, as such comparisons would favor the
mechanical method. Some studies compared clinical and mechan-
ical methods for varying numbers of predictors, including scenar-
ios in which one method had more predictors than the other.
However, for each such study we also chose the closest match in
the number of predictors for each combination method (provided
that the mechanical method did not employ more predictors while
allowing the clinical some leeway). The only exception was when
both methods had technically different measures that effectively
measured the same construct and are very similar in predictive
power (e.g., high school rank vs. high school grade point average;
Neidich, 1968).

1 The one partial exception to this rule is the comparison of the mechan-
ical data combination of meta-analyzed dimension scores reported in
Arthur, Day, McNelly, and Edens (2003; R � .45), which Arthur et al.
compared to the meta-analyzed overall assessment rating (OAR) reported
in Gaugler, Rosenthal, Thornton, and Bentson (1987; corrected r � .37). It
is not fully clear the extent to which the clinicians whose clinical data
combination methods reflected in Gaugler et al.’s correlation of .37 had
access to the same information used in the mechanical data combination
procedures of Arthur et al.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1062 KUNCEL, KLIEGER, CONNELLY, AND ONES

http://google.com
http://google.com


Furthermore, we did not use effect sizes for the mechanical data
combination method that were the result of exploratory analytic
techniques that would gave it an unfair advantage over the clinical
data combination method. For example, in some studies (e.g.,
Lewis & MacKinney, 1961; Mitchel, 1975), authors selectively
chose a subset of independent variables for the mechanical com-
bination only after screening based on relationships with the cri-
terion. Such selectivity may capitalize on sampling error and
overestimate true predictive power of the mechanical combination.

Coding of all articles was inspected by two or more authors. To
avoid violating assumptions of the independence of samples, effect
sizes were first averaged within a particular study prior to aver-
aging across studies. Two studies (Arthur, Day, McNelly, &
Edens, 2003; Stuit, 1947) had relatively much larger sample sizes
(N). To prevent these studies from overwhelming any analysis,
effect sizes from these studies were weighted by the median of
other studies’ sample sizes rather than their own sample size.
However, it should be noted that inclusion of these studies with the
full Ns does not alter the conclusions of the study.2

Meta-Analytic Procedures

Selection of workers and students on the basis of predictors
often results in range restriction, which in turn attenuates estimates
of predictive validity. Unreliability of predictor and criterion mea-
sures also attenuates these estimates. Unfortunately, there were
inadequate sample specific data to correct studies for either range
restriction or unreliability either individually or through artifact
distributions. Hence, the validity estimates provided here are likely
to be underestimates of the actual relationship between predictors
and criteria. Not correcting for statistical artifacts means that the
magnitudes of differences between mechanical and clinical com-
bination methods may also be underestimated. For example, if the
criterion reliability is ryy � .60, comparing an observed validity of
.25 to another observed validity of .30 underestimates the differ-
ence in their corrected correlations (.32 vs. .39).

For all clinical data combination, effect sizes were obtained
(either directly or through calculation) as zero-order correlations.
In the case of mechanical combination, effect sizes were either
zero-order correlations (rs) or multiple correlations (multiple-Rs).
However, these multiple correlations are upwardly biased because
predictions made with more than one predictor may capitalize on
chance factors specific to a particular sample for which regression
weights are estimated (Nunnally, 1978). This capitalization on
chance results in a multiple correlation value that will typically
overestimate the mechanical formula’s predictive validity in an-
other sample or the population (i.e., shrinkage). The research
purpose here is to ascertain how well the independent variables
predict in future applied settings. The two estimates that can be
created are the estimated cross-validated multiple correlation and
the population multiple correlation.

Given that most selection systems are ongoing and weights can
be refined over time, neither estimator is ideal. The cross-validated
multiple correlation can be considered as the value of the regres-
sion weights for the subsequent set of decisions. (�c; Cattin, 1980a;

Fowler, 1986). �c (or its estimate �̂c) indicates how predictive
a formula is when the regression weights are created based on data
from one sample and then reused in subsequent samples drawn
from the same population.3 However, with efforts to refine the

weights with more data, the estimated cross-validated multiple
correlation would then be the lower bound with the estimated
population Multiple-R providing as estimate of the upper bound.
Therefore, we provide results based on both sets of estimates. To
estimate �̂c, we used a version of Browne’s (1975) formula (see the
Appendix, Formula 3). Although alternate methods of calculating
�̂c exist (e.g., Claudy, 1978; Rozeboom, 1978), this version of
Browne’s formula has generally performed best in Monte Carlo
simulation studies (Raju, Bilgic, Edwards, & Fleer, 1999; Shieh,
2008; Yin & Fan, 2001).

An adapted version of Hunter and Schmidt’s (2004) “bare-
bones” meta-analytic procedure was used to aggregate results
across studies to estimate the mean predictive validity, the ob-
served variability around that mean predictive validity, and the
variability remaining after accounting for variability due to sam-
pling error. The modification was necessary due to the mixture of
effect sizes included in the mechanical estimates. In estimating the
variability due to sampling error, our combination of zero-order
correlations and multiple-R correlations for mechanical combina-
tions necessitated adapting Hunter and Schmidt’s bare-bones pro-
cedures. Specifically, although sampling error impacts our esti-
mate of a population-level effect size whether the sample-level
effect sizes in our meta-analyzed studies are zero-order correla-
tions or multiple correlations, the formulae for estimating sampling
error of these statistics differ.

Therefore, we estimated sampling error variance individually
for each sample using the appropriate sampling error statistic for
the effect size (r or �̂c). For each of the zero-order correlations, �e

2

(sampling error variance) was calculated using Hunter and
Schmidt’s (2004, pp. 85–92) bare-bones procedure. For each of the
multiple correlations, a measure of variability for each effect size
point estimate, var(�̂c)—which Browne (1975) refers to as
var(�)—was calculated using Browne’s estimation method (see
the Appendix, Formula 4).4

To estimate true variability around the meta-analytic mean, the
individual sample estimates of �e

2 and var(�) were pooled together.
An observed sample-size weighted correlation variance was cal-
culated using the mean observed effect size, zero-order correla-
tions, and the shrunken Rs. Hunter and Schmidt’s (2004, pp.
85–92) bare-bones procedure provides the appropriate formula
with an example. The pooled error variance was subtracted from
the observed correlation variance, and then the square root was
taken to obtain SD�.

The final database included 25 samples across 17 studies. After
replacing extreme sample outliers with the median of the Ns for the
other samples in the same analysis, there were 2,263 workers for
whom predictions were made via mechanical data combination,
2,027 workers for whom predictions were made via clinical data

2 For interested readers, these results are available from the first author.
3 �̂c is preferable to alternate formulas for adjusting for shrinkage, such

as Cattin’s (1980a) �, because the goal of these analyses is to estimate
validities that would be observed in a sample (a new set of applicants).
Cattin’s �, however, is appropriate when the goal is to estimate the
population-level multiple correlation.

4 Although several competing approaches exist for estimating var(�)
(Fowler, 1986; Mendoza & Stafford, 2001), these approaches involve
added complexity without demonstrated improvement over Browne’s
(1975) method. The use of Browne’s formulas was most with a preference
for transparency and parsimony in methodology.
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combination, 889 students for whom predictions were made via
mechanical data combination, and 632 students for whom predic-
tions were made via clinical data combination. Within each anal-
ysis, the samples were independent of each other and the effect
sizes included relationships for three work and two academic
criteria.

Results

Summaries of each study contributing to the meta-analysis are
presented in Table 1. For those estimates that required aggregation
of Multiple Rs, the magnitude of the mechanical estimate varied
depending on the shrinkage formulae applied. When aggregated
separately for each outcome variable, across all outcome variables
for population estimates, a consistent pattern emerged. Larger
correlations were found for mechanical methods over clinical
methods. For many important criteria, validities of mechanical
methods were substantially larger than those found for clinical data
combination approaches (see Table 2). The mechanical advantage
was eliminated but not reversed for two criteria when the most
stringent new-sample shrinkage estimates were employed.

For job performance, the average correlation was .44 for me-
chanical and .28 for clinical. Advancement criteria yielded a
smaller difference of .42 for mechanical versus .36 for clinical.
The least data existed for training outcomes but the results were
consistent with other results with an average of .31 for mechanical
and .16 for clinical. For the educational criterion of grade point
average, the predictive validities were larger with an average value
of .58 for mechanical and .48 for clinical. Finally, in our most
diverse analysis, a collection of three different measures of non-
grade measures of academic achievement (faculty evaluations,
comprehensive exam performance, and degree completion)
yielded the narrowest difference with an average of .47 for me-
chanical and .46 for clinical prediction (although the latter is based
on only 161 students).

Most of these differences in validity are substantial, especially
for job performance. In predicting this criterion, the difference
between the validity of mechanical and clinical data combination
methods translates into a population level improvement in predic-
tion of more than 50%.

Discussion

The results of this meta-analysis demonstrate a sizable predic-
tive validity difference between mechanical and clinical data com-
bination methods in employee selection and admission decision
making. For predicting job performance, mechanical approaches
substantially outperform clinical combination methods. In Lens
Model language, the Achievement Index (clinical validity) is sub-
stantially lower than the Ecological Validity.

This finding is particularly striking because in the studies in-
cluded, experts were familiar with the job and organizations in
question and had access to extensive information about applicants.
Further, in many cases, the expert had access to more information
about the applicant than was included in the mechanical combi-
nation. Yet, the lower predictive validity of clinical combination
can result in a 25% reduction of correct hiring decisions across
base rates for a moderately selective hiring scenario (SR � .30;
Taylor & Russell, 1939). That is, the contribution our selection

systems make to the organization in increasing the rate of accept-
able hires is reduced by a quarter when holistic data combination
methods are used. Yet, this is an underestimate because we were
unable to correct for measurement error in criteria or range restric-
tion. Corrections for these artifacts would only serve to increase
the magnitude of the difference between the methods.

Despite the results obtained here, it might be argued that one
great advantage of the clinical method is that frequent changes in
jobs or circumstances will lead to a situation where the equation is
no longer appropriate while a clinical assessment can accommo-
date the change in circumstances. There are three problems with
this argument. First, there is no empirical evidence supporting this
scenario in the literature. The performance dimensions of jobs
have remained quite stable over time. For example, early evalua-
tions of the dimensional structure of the job of managers yielded
much the same dimensions as contemporary models (e.g., Borman
& Brush, 1993; Campbell, Dunnette, Lawler, & Weick, 1970;
Flanagan, 1951). Second, linear models are quite robust to changes
in weights. That is, unless the weights suddenly change from
positive to negative (another situation that has never been observed
in the literature), the overall predictive power of the composite
remains strong (Dawes, 1979). Finally, if such a situation were to
occur, the use of an expert’s subjective weights, integrated into a
modified equation, would still outperform the clinician.

Small N situations are also sometimes raised as a concern. It is
sometimes argued that these settings prevent the use of mechanical
methods. This is not the case. Each predictor can be weighted by
evidence from the literature (e.g., dominance is typically a mod-
erately valid predictor of leadership effectiveness). The advent of
validity generalization and considerable number of meta-analyses
in the literature provides some solid ground for differential weight-
ing. Alternatively, expert judgment (preferably aggregated across
multiple experts) can be used to set weights (e.g., our stock
in-basket should get only nominal attention given the job level and
functional area). These values can then be used to weight and
combine the assessment results.

The field would benefit from additional research that investi-
gates specific, and hopefully controllable, features of the assess-
ment, assessee, and decision process that contribute to reduced
predictive power. It is possible that assessors are overly influenced
by aspects of candidate’s personality or demeanor that are not
associated with subsequent job performance. Such evidence could
be used for assessor training to reduce such systematic errors and
could be combined with methods to increase the use of effective
predictors and data combination methods (Kuncel, 2008). Al-
though the results presented here are wholly consistent with a
broader literature, ongoing research is important for expanding on
the modest number of studies presenting evidence of this compar-
ison. The file drawer problem could also be present although we
expect that, given common practice, results would tend to skew in
favor of mechanical rather than holistic judgment.

Viewing and Reframing Personnel Selection Through
the Lens Model

From our perspective, the Lens Model provides a new way of
thinking about personnel selection that reaches well beyond the issue
of mechanical versus expert judgment. The true focus in validation
work should be on how information is used and what decisions are
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made by organizational members (e.g., what predictors to use, what
predictors to ignore, to whom to extend a job offer) and job applicants
(e.g., the decision to apply, what level of effort to exert during
selection, the decision to accept a job offer). The present study
highlights the importance of this focus because the predictive power
of the selection/admissions systems is affected by human judgment,
and is not the same as a weighted sum of their parts. Yet, the
importance of the judgment and decision making framework extends
beyond the present study and upends traditional validation research in
some critical and radical ways. We discuss three implications of the
Lens Model for selection that are important for understanding the
limitations of the present study and key directions for future research.
Note that this is far from an exhaustive list.

The Lens Model can be extended to include the decision to hire,
decisions to apply/accept, and the effect of hiring on subsequent
performance. Within a decision-to-hire framework, correlations be-
tween predictors and observed performance in a validation study do
not necessarily reflect the utility of a predictor when used in a hiring
decision (even in the simplified case where all job offers are ac-
cepted). The judgment to extend an offer can have no relationship
with predictor scores even though the predictor cues are associated
with subsequent job performance. That is, a predictor can be dis-
counted when hiring employees and have no effect on hiring deci-
sions. Within this framework, a traditionally valid (r � 0) predictor
that does not affect hiring judgments has negative utility due to the
cost of using the predictor. Obtaining a non-zero correlation between
a predictor and subsequent job-performance does not tell us if it

favorably influences hiring decisions. The correlation is only an
unambiguous measure of predictive validity if the predictor is used in
a strict top down selection format. If hiring judgments deviate from
the top down selection decisions, then predictive power and utility
will differ.

Second, incremental predictive power as measured by multiple
regression analyses will typically reflect a rarely occurring (and often
idealized) setting where decision making is based on strict differential
weighting and top down selection. In contrast, within a judgment
framework, redundant predictors (�R � 0) can improve prediction by
pushing out or reducing a human judge’s emphasis on invalid cues.
Double counting a redundant predictor helps if it makes one ignore
invalid variance in forming a judgment. The model suggests that face
validity for the decision maker (often considered a side issue or
external marketing concern in selection research) becomes a critical
feature as it likely influences use and subjective weighting of decision
aids. Put simply, no matter how valid a predictor is, if it is not liked
by decision makers, it likely will not improve the decision quality.
The same issue applies to experts combining information from many
cues.

Third, a potential applicant’s decision to apply can dramatically
affect the nature of the pool and, therefore, the expected average
performance of new workers after making the hiring decision. For
example, Kuncel and Klieger (2007) reported that when applicants
had information about the likelihood of acceptance they generally
chose to avoid applying to law schools for which they were either
under or over qualified. The resulting applicant pools across law

Table 2
Meta-Analysis of Mechanical and Clinical Combinations of Predictors for Five Criteria

Criterion Nmech Nclin k rmech rclin �obs–mech �obs–clin ��–mech ��–clin

Work: Job Performance 1,392 1,156 9 (5 rs, 4 Rs) No Shrinkage (R): 0.47 0.28 0.14 0.09 0.12 0.03
Population (�): 0.44 0.28 0.11 0.09 0.03
New Sample (�c): 0.40 0.28 0.08 0.09 0.05 0.03

Work: Advancement 683 683 5 (1 r, 4 Rs) No Shrinkage (R): 0.50 0.36 0.13 0.12 0.12 0.10
Population (�): 0.42 0.36 0.10 0.12 0.10
New Sample (�c): 0.36 0.36 0.11 0.12 0.08 0.10

Work: Training 188 188 2 (2 rs) No Shrinkage (R): 0.31 0.16 0.05 0.08 0.00 0.00
Population (�): 0.31 0.16 0.05 0.08 0.00 0.00
New Sample (�c): 0.31 0.16 0.05 0.08 0.00 0.00

Academic: Grade Point
Average

426 471 6 (2 rs, 4 Rs) No Shrinkage (R): 0.59 0.48 0.09 0.12 0.05 0.08
Population (�): 0.58 0.48 0.09 0.12 0.08
New Sample (�c): 0.56 0.48 0.09 0.12 0.06 0.08

Academic: Non-Grade 463 161 3 (1 r, 2 Rs) No Shrinkage (R): 0.48 0.46 0.05 0.17 0.00 0.13
Population (�): 0.47 0.46 0.05 0.17 0.13
New Sample (�c): 0.46 0.46 0.05 0.17 0.03 0.13

Note. Nmech � number of persons for whom a mechanical data combination method was used to make a prediction; Nclin � number of persons for whom
a clinical data combination method was used to make a prediction; k � number of samples that each contained a comparison between mechanical data
combination and clinical data combination (each contained data included in the analysis); r � sample whose included effect size is a zero-order correlation;
R � sample whose included effect size is a multiple correlation; No Shrinkage (R) � sample size weighted mean correlation whose multiple correlation
components are observed values from the samples on which the regression equations were developed; Population (�) � sample size weighted mean
correlation whose multiple correlation components are shrunk to the population level; New Sample (�c) � sample size weighted mean correlation whose
multiple correlation components are cross-validated estimates (shrunk to the level of a new sample from the same population); rmech � sample size weighted
mean correlation for the mechanical data combination methods (composite of multiple and/or zero-order correlations); rclin � sample size weighted mean
observed correlation for the clinical data combination methods; �obs–mech � sample size weighted observed standard deviation of the correlations for
mechanical data combination; �obs–clin � sample size weighted observed standard deviation of the correlations for clinical data combination; ��–mech �
standard deviation of correlations for mechanical data combination after removing sampling error variance; ��–clin � standard deviation of correlations for
clinical data combination after removing sampling error variance.
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schools differed dramatically as a result. As selection system infor-
mation becomes public, applicant pools may shift depending on their
perception of the system.

Practice Suggestions

While recognizing that a strong preference for expert judgment
makes a complete change in practice unlikely, a number of methods
could be adopted that could yield immediate benefits.5 First, in cases
with many applicants, mechanical methods could be used to screen all
but a final pool. Second, experts could use mechanically combined
data as an anchor and make limited (or consensus based) adjustments.
Third, documenting the reason for deviations from mechanically
combined scores makes the decision public and would permit follow
up research and feedback. Fourth, both expert combined and mechan-
ically combined scores could be presented to decision-makers. This
fourth approach also allows for a narrative explaining the difference.
Finally, given the previous literature, the most likely source of the
difference is lower reliability for the clinical approaches (i.e., less
consistent and more fraught with unsystematic errors). Therefore, the
method with the most potential for improved predictive power would
be to average across multiple raters even if secondary (and possibly
less involved) raters were given a lower weight in the final assess-
ment.

Research on each of these suggestions would be invaluable partic-
ularly if embedded in the broader judgment and decision making
framework outlined in the introduction and discussion. It is possible
that less valid data combination methods (in a correlational sense)
have a larger positive effect on end user decision making due to
greater face validity and acceptability. We believe research on three
general questions are crucial. First, why does expert judgment result
in lower correlations? Second, why do decision makers use or ignore
information in decision making? Third, what alternative methods
improve predictive power while retaining acceptability? Finally, it is
not unreasonable to believe that experts have important insights.
Unfortunately, it appears that this comes at too high a cost. Therefore,
what can be done to capture insights while avoiding validity damag-
ing inconsistency?

For rare and highly complex jobs, future research should consider
adopting a forecasting framework where experts make specific and
verifiable predictions about the future behavior of assessees. This
framework will allow for the accumulation of data in small N settings
and advance the field.

Highhouse (2008a) noted “arguments in favor of holistic assess-
ment, nevertheless, sometimes take on a faith-based quality and fail to
acknowledge the preponderance of the evidence” (p. 375). Consistent
with the preponderance of the evidence, this meta-analysis found and
quantified that a consistent and substantial loss of information occurs
when data are combined clinically—even by experts who are knowl-
edgeable about the jobs and organizations in question—across mul-
tiple criteria and work or academic settings.

On the positive side, it is clear that psychological assessments do
predict subsequent performance across outcomes and domains. We do
useful work. Also clear is that improvements can be made. The results
do not mean that experts are unimportant. Again, the literature dem-
onstrates that data combination is best done mechanically while
information collection can be done quite effectively by experts. Over-
all, the time of experts would be best invested in collecting job

relevant information about candidates or working on subsequent de-
velopment rather than judgment based data combination.

Although the widespread replacement of clinical methods with
mechanical methods is unlikely in the foreseeable future, we see this
study’s findings as a call to find hybrid methods of data combination
that improve on expert judgment while remaining acceptable to end
users. We take a pragmatic view of this issue. Surveys have suggested
that although 2% of people involved in individual assessment make
use of purely mechanical methods, close to half report using methods
that combine statistical and holistic methods (Ryan & Sackett, 1987).
Although the nature and effectiveness of these, likely varied, ap-
proaches is unknown, it appears that there is room to develop methods
that move the mean upward while retaining approaches that are
attractive to professionals and end users. Evidence-based practice can
benefit from keeping the results of this meta-analysis in mind when
developing and utilizing selection and admission systems.

5 With the possible exception of organizations concerned with equal
employment opportunity (EEO) compliance, which will use fixed weights
to avoid charges of disparate treatment.
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Appendix

Cross-Validation Estimation Method

To solve for the point and sampling error estimates, one usually has
to solve first for � and �, because among the values in the equations
they usually are the only unknowns (see Table A1). Calculating � (or
at least an estimate of it) necessitates determining whether the pre-
dictor model in question is fixed or random (see Cattin, 1980). In
fixed predictor models (FPMs), the predictors in the equation are the
only predictors that could have been used to address the research
question. In random predictor models (RPMs), the predictors in the
equation are just a sample of the predictors that could have been used
to address the research question. For FPMs, one should use Wherry’s

(1931) formula, although it may be slightly biased (Cattin, 1980). For
RPMs, one should use a version of Olkin and Pratt’s (1958) formula
(Cattin, 1980; Shieh, 2008; Yin & Fang, 2001). Most questions in
social science use the RPM rather than the FPM (Cattin, 1980), and
the RPM seemed more appropriate for the studies being meta-
analyzed. Shieh (2008) found that a slightly modified version of Olkin
and Pratt’s (1958) formula for estimating � performed best in simu-
lations (see Table A1, Formula 2). To solve for �, one uses Browne’s
(1975) Equation 2.8 recommended by Cattin (1980) and Shieh
(2008).
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Table A1
Key Equations for Cross-Validation Estimates

Formula Source(s)

1. ���2� � �2 �
2�N � p � 2��N � 2p � 6��p � 1��4�1 � �2�2

�N � p � 4���N � 2p � 2��2 � ��3 � o��N � p��1�
Browne’s (1975) Equation 2.10

2. �̂P
2�R2� � 1 �

N � 3

N � p � 1
�1 � R2��1 �

2�1 � R2�
N � p � 2.3� Shieh (2008) (based on Olkin & Pratt,

1958)

where �̂P
2�R2� � 0 if �̂P

2�R2� � 0

3. �2 �
�N � p � 3��4 � �2

�N � 2p � 2��2 � p

Browne’s (1975) Equation 2.8; Cattin
(1980); Shieh (2008)

4. var��2� �
2�N � p � 2��p � 1��4�1 � �2�2�2�N � p � 5��2 � 1 � �N � 2p � 6��2�

�N � p � 4���N � 2p � 2��2�p�3 � o��N � p��1�
Browne’s (1975) Equation 2.11

Note. � � �c � population cross-validated multiple correlation; ε(�2) � �̂c
2 � estimated cross-validated multiple correlation, squared; var(�2) � var(�̂c

2) �
variance of estimated cross-validated squared multiple correlation; � � population multiple correlation; R2 � observed multiple correlation, squared (a.k.a.,
observed coefficient of determination); �̂P

2�R2� � �̂2 � estimated population multiple correlation, squared; N � number of observations; p � number of
predictor variables; o � “little o” � a function describing the limit on error � how far off one’s obtained value can be.
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