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Appendix: Statistical Methods Used

We assume that each of our trials is an indepen-
dent event and that we can therefore consider our
data to be a sequence of Bernoulli trials. Given the
high variability of performance among subjects be-
ing tested simultaneously, we feel it is reasonable
to make the assumption of independence. If this
assumption is false, it is more probable that we
could have obtained our results if the subjects were
guessing.

In order to determine the probability of our re-
sults being due to chance (i.e., guessing), we use the
binomial formula. This gives the probability of k
successes (correct answers) in n trials, given a proba-
bility p of success and q = (1 — p) of failure.

I';(S,, = k) = P|k successes in n trials)

—_ (II:) pkqn—k

where

(%) = Tz

and
n'=n+(n—1)-{n—=2)++-2-1.

This formula is verified by considering the fact
that p* is the probability of getting k correct an-
swers in succession and g * is the probability of
getting n — k incorrect answers in succession. The
probability of a particular sequence of k correct and
n — k incorrect answers is thus p*g"-*. The number
of possible sequences of n answers with k correct is
(n) (“n choose k”).

k

Given the hypothesis that the subjects were not
able to hear any differences and merely guessed, we

assume that they have a fifty percent chance of get-
ting any trial correct so p = ¢ = 1/2. Thinking of
the result of each trial as a Bernoulli random vari-
able with an expected value of 1/2 (1 if correct, 0 if
incorrect), the number of successes out of n trials,
S, will be the sum of the random variables for each
trial. S, itself is a random variable and the function
ps,(k), which gives the probability that S, = k, is
called the probability mass function (PMF).

As a result of the central limit theorem, the PMF
of a sum of Bernoulli random variables will con-
verge to a Gaussian curve. Had we conducted 100
trials and had the subjects been guessing, the enve-
lope of the PMF of the total number correct would
be a roughly Gaussian curve centered at 50. The
probability that the total number correct due to
guessing would be between a and b is simply the
sum of all values of the PMF between a and b
(the sum of all values of any PMF is 1).

In order to determine the probability that our
data was due to guessing, we want to find the sum
of values of the guessing PMF for S, between k (num-
ber of correct answers in our particular experiment)
and n (number of trials). This is the probability
that, had the subjects been guessing, they would
have done as well or better than they actually did.
We compute this by evaluating the expression

P(k = Sn Sn) S izk P(Sn = 1) = !Ek (?)piqn—i.

A more severe significance test asks the question
“What is the probability of getting results that far
from the mean had the subjects been guessing?”” In
only evaluating “one tail of the Gaussian,” we are
assuming that if the subjects are able to hear a dif-
ference then they will do better than chance. Con-
sider the situation where subjects are always able
to identify X, but don’t understand the experimen-
tal procedure and consistently circle the wrong
choice on the ballot. The total correct would be 0
and it is highly unlikely that such a result would
occur if the subjects were guessing. In the event
that it is possible for subjects to consistently “push
the wrong button,” one must consider the proba-
bility that they would do very poorly due to guess-
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ing, by evaluating

n-k n-k
[ — i) = n\ i n-i
iZOI(Sn i) igo(i)pq ’

In fact, by symmetry, this is always equal to 272,
P(S, = i} so we can just double the result from our
previous computation. We employed this method
when calculating the significance of the preference
results, since we had no a priori way of knowing
which cable is the better sounding product.

If we consider the first identification trial as a
training period, we find that listeners identified the
mystery presentation correctly 58 times out of 94.
Had the subjects guessed, they would have gotten
58 or more correct with probability 1.5%.

Including the data from the first identification
trial in our analysis, the listeners got 71 correct out
of 122. Subjects who were guessing would get 71 or
more correct with probability 4.2%.

Computing the above numbers directly is facili-
tated by a programming language such as Lisp with
arbitrary precision integers because the “n choose
17212) ~ 7% and the (1/2)¢
terms get quite small. In the words of Alvin Drake,
“Should this quantity [P(k < S, < n]| be of interest,
it would generally require a very unpleasant cal-
culation.” Many people therefore use the central

k" terms get quite large ((

limit theorem to obtain an approximation that can
be easily computed with a hand calculator.

The central limit theorem implies that the sum
of a large number of Bernoulli random variables is
approximately a variable with a Gaussian distri-
bution. A special case of the central limit theorem,
known as the DeMoivre-Laplace limit theorem, is
useful when p (probability of success in one trial)
is close to 1/2.

b+—;‘-—np:|
V np(l - p)

1
a--—-—np
V np(1 - p]
where ®(x] is a function that gives the area from
—o to x under the unit normal Gaussian (®(0) =
0.5). Values of @ can be obtained from standard

tables or by numerically integrating the formula for
the Gaussian probability density function

1
«AXol =
fulxo) = =
See (Drake 1967) for a readable introduction to
the above material. Upon request, the authors will
be glad to supply Common Lisp software that cal-
culates significance using both methods.
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