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Abstract

In this article a broad perspective incorporating elements of time series theory is presented for conceptualizing the
data obtained in multi-trial judgment experiments. Recent evidence suggests that sequential context effects, assimilation
and contrast, commonly found in psychophysical judgment tasks, may be present in judgments of abstract magnitudes.
A time series approach for analyzing single-subject data is developed and applied to expert prognostic judgments of
risk for heart disease with an emphasis on detecting possible sequential context effects. The results demonstrate that
sequential context effects do exist in such expert prognostic judgments. Contrast and assimilation were produced by cue
series; the latter occurring more frequently. Experts also showed assimilation of prior responses that was independent
of the cue series input. Time series analysis also revealed that abrupt or large trial-by-trial changes in the value of cues
that receive the most attention in prognostic judgment tasks can disrupt the accuracy of these judgments. These findings
suggest that a time series approach is a useful alternative to ordinary least squares regression, providing additional
insights into the cognitive processes operating during multi-cue judgment experiments.

Keywords: expert judgment, time series, contrast and assimilation, single-subject analysis.

Psychological data are segments of life histories: as
such they are ordered sequences of observations and by
definition time series. — Robert A. M. Gregson (1983).

1 Introduction
Many judgment experiments may be viewed as involv-
ing two time series: a series of stimuli presented by
the experimenter, and a series of responses provided
by the subject. Over the years various theories of hu-
man judgment have been proposed. One thing all these
theories have in common is that they have been, and
are being, developed using single-subject repeated mea-
sures experiments. Whether judgment data are mod-
eled using multiple regression, as is typical in the judg-
ment analysis paradigm often associated with social judg-
ment theory (Hammond, et al., 1975), by single-subject
ANOVA which forms the foundation of information inte-
gration theory (Anderson, 1981; 1982), by conjoint anal-
ysis (Luce & Tukey, 1964; see also Krantz & Tversky,
1971), or by fast and frugal heuristics, such as Take the
Best (Gigerenzer et al., 1991), or the Matching Heuristic
(Dhami & Ayton, 1998; 2001), the data are obtained by
presenting the subject with a series of stimuli to be judged
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and recording a series of responses. Such idiographic de-
signs (and analysis of their ensuant data) are the focus of
this article.

Contrast and assimilation are psychological processes
involving the sequential context in which judgments
are made. In a variety of psychophysical judgment
paradigms employing large numbers of trials (e.g., ab-
solute and relative magnitude scaling tasks, absolute and
relative identification tasks) sequential context effects are
frequently observed (for reviews see DeCarlo & Cross,
1990; Stewart, Brown, & Chater, 2005). Assimilation
occurs when the response to a given stimulus intensity
tends to be larger when the immediately preceding stim-
ulus is of greater intensity than the current stimulus, and
tends to be smaller when the preceding stimulus inten-
sity is less than that of the current stimulus. Contrast
occurs when the response to a given stimulus intensity
tends to be smaller when the immediately preceding stim-
ulus is of greater intensity than the current stimulus, and
tends to be larger when the preceding stimulus intensity is
less than that of the current stimulus. DeCarlo and Cross
(1990) discuss various theoretical models of psychophys-
ical judgment that have been proposed to explain sequen-
tial context effects in magnitude scaling experiments and
show how these can be evaluated using time series regres-
sion. One class of models is referred to as relative judg-
ment models in which the subject is portrayed as com-
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paring the value of the current stimulus to the value of
the stimulus on the preceding trial rather than to some
fixed internal reference. Stewart et al. (2005) discuss
relative judgment models in absolute identification tasks.
Another class of models suggests that sequential context
effects result from a response heuristic, or the tendency
of the subject, in the face of uncertainty, to guess in the
direction of his or her previous response (see DeCarlo &
Cross, 1990 for discussion). The point for consideration
is that sequential context effects may arise because inter-
nal representation of the current stimulus is affected by
the previous stimulus, and/or because of a tendency un-
der uncertainty to provide a response based on the previ-
ous response. The question is whether similar sequential
context effects operate in expert judgment tasks.

Expert prognostic judgments, such as a clinician’s es-
timate of the likelihood that a patient will suffer a heart
attack in the future based on current signs and symptoms,
have been studied by judgment researchers employing
multiple regression analysis (e.g., Beckstead & Stamp,
2007; Harries, 1995; Tape, Kripal & Wigton, 1992). To
illustrate how sequential context effects might manifest
themselves, let us examine what could happen with a sin-
gle dichotomous cue. For example, consider the clinician
faced with the prognostic task of estimating a patient’s
risk for coronary heart disease (CHD) and say that the cue
in question is whether or not the patient has diabetes. The
situation can be described by assimilation if the judgment
of CHD risk for a patient with diabetes tends to be lower
when the immediately preceding patient does not have di-
abetes, and, the judgment of CHD risk for a patient with-
out diabetes tends to be higher when the preceding patient
has diabetes. Alternatively, the situation can be described
by contrast if the judgment of CHD risk for a patient with
diabetes tends to be higher when the immediately preced-
ing patient does not have diabetes, and, the judgment of
CHD risk for a patient without diabetes tends to be lower
when the preceding patient has diabetes.

In psychophysical judgment tasks, such as magnitude
scaling, the observed response provided by the subject is
interpreted to be an estimate of the sensory magnitude
associated with a given, unidimensional, stimulus inten-
sity. In multi-cue judgment tasks where there is not nec-
essarily an objective stimulus intensity to be scaled, the
response provided by the subject may be interpreted dif-
ferently. In such judgment tasks, the observed response
may be interpreted as an estimate of an integrated judg-
ment along a more abstract subjective continuum, such as
patient-risk for CHD.

Vlaev and Chater (2007) asked whether contrast and
assimilation, as observed in psychophysical judgments,
would operate when people make estimates of more ab-
stract magnitudes. They examined estimates of cooper-
ativeness made in a series of strategic choice decisions
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Figure 1: Sequential context effects produced by the dia-
betes cue in a multi-cue judgment task where clinicians
judged patient’s risk for coronary heart disease. Re-
sponses to the current patient (trial) are categorized ac-
cording to consecutive values of the diabetes cue. Subject
63 shows assimilation, Subject 59 shows contrast. Plotted
values are adjusted for category differences on the eight
cues.

(i.e., prisoner’s dilemma games). In their experiment,
playing a random sequence of 96 cooperative and un-
cooperative games produced greater mean differences in
cooperation rates (71% vs. 18%) when compared to con-
ditions composed of 48 cooperative games followed by
48 uncooperative games (33% vs. 18%), and vice versa
(18% vs. 50%). These differences were analyzed us-
ing ANOVA on aggregated responses. The authors in-
terpreted the significant interaction as support for trial-
by-trial (local) contrast effects. The current article inves-
tigates whether such sequential context effects operate in
expert prognostic tasks but takes a different theoretical
and analytical approach.

When sequential context effects associated with a cue
in a multi-cue judgment task are observed, they are here
interpreted to mean that a cue’s influence (as represented
by its β weight) is altered by the values that the cue takes
over consecutive trials. Assimilation means that when the
cue values on trials t and t − 1 are different, the cue’s
influence is smaller than when the cue values on these
trials are the same. Contrast means that when the cue
values on trials t and t−1 are different, the cue’s influence
is larger than when the cue values on these trials are the
same. Although this interpretation may sound odd to a
psychophysicist, it is consistent with traditional methods
of demonstrating sequential context effects. For example,
one way of demonstrating these effects is to plot the mean
response to the stimulus value on the current trial as a
function of the differences between the stimulus value on
the current and immediately preceding trial.

Figure 1 is an example of such a plot using data
from two clinicians who participated in a judgment task
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Table 1: Changes in influence weight, β, for the diabetes cue as a function of the cue’s values on consecutive trials.

Subject Effect All trials cue(t) = cue(t-1) cue(t) 6= cue(t-1)

63 assimilation .493 .575 .223
59 contrast .404 .281 .788

Note: Number of trials total is 80, number of trials where consecutive cue values were equal is 54, number of
trials where cue values were not equal is 25.

wherein they estimated 80 patients’ risk for CHD based
on eight cues (the task will be described in detail be-
low). Here we focus on the diabetes cue for illustration.
Each subject’s responses were analyzed separately and
converted to standardized scores to allow for direct com-
parison. Subject 63 (squares and solid line) shows as-
similation; the mean rating of risk for the current patient
is biased toward the diabetes status of the prior patient.
Subject 59 (triangles and dashed line) shows contrast; the
mean ratings are biased away from the diabetes status of
the prior patient. Each subject’s responses were also ana-
lyzed separately using multiple regression (diabetes was
coded 1 if present, 0 if absent). Table 1 shows some of the
results. First, when responses from all 80 trials were an-
alyzed, both subjects shows roughly the same size partial
β weights for the diabetes cue. When the data are catego-
rized according to the values of the diabetes cue on con-
secutive trials and re-analyzed, we see how the β weight
for each subject changes when assimilation or contrast
takes place.

Although these regression analyses illustrate that the
cue’s influence changes when assimilation and contrast
take place, this approach is flawed because of its piece-
meal nature; data from two subsets of trials have been an-
alyzed separately. A better approach would be to analyze
the data from all the trials simultaneously.

Time series analysis can be used to test hypotheses that
sequential context effects are operating in the series of re-
sponses obtained from a single subject. Specific models
can be constructed to isolate sequential context effects
produced by the cue (stimulus) series and those operat-
ing independently in the judgment (response) series. In
the present article a time series approach is developed by
extending ideas discussed in the context of psychophys-
ical research to cover multi-cue judgment tasks. Before
preceding to discuss the application of time series anal-
ysis, a broad perspective in which to position time series
theory and methods in psychological research is needed.
The next section is an attempt to provide such a perspec-
tive. Following this discourse, an illustrative applica-
tion is presented with an emphasis on detecting possible
sequential context effects operating in expert prognostic
judgments of risk for heart disease.

2 Psychology from a time series
perspective

2.1 An introduction to time series

A time series is a realization of a data-generating process,
where observations are equally spaced across time. Fa-
miliar examples in econometrics include a stock’s daily
price, or quarterly sales figures (Yaffee, 2000). In terms
more familiar to psychologists, Gregson (1983) defined
a time series as a sequence of events ordered in time,
which we may have good reason to believe is gener-
ated by some lawful underlying process that itself persists
throughout the whole duration of the observations made.
In psychology the series may be the responses a subject
gives on successive trials of an experiment or the amount
of some behavior a client undergoing psychotherapy ex-
hibits daily over several weeks. The data collected in the
psychological laboratory, or in field studies, are consid-
ered sampled segments from ongoing processes that are
amenable to representation by univariate stochastic dif-
ference equations. Most measurements taken in psychol-
ogy may be regarded as discrete realizations of contin-
uous processes. The trial in a judgment experiment is
conceptually taken as the unit throughout this article and
the series of cue values and judgments are considered a
discretely sampled data system.

Time series analysis is a set of regression-based meth-
ods for analyzing data ordered sequentially in time. The
goal of the analysis is to identify patterns in the sequence
of values, that is, to identify how the values are corre-
lated with themselves but offset in time, in order to gain
some insight into the underlying process(es) that gener-
ated the data. A series is decomposed into numerous po-
tential components. One of these is a random process,
referred to in the parlance of time series theory as a se-
ries of “shocks.” Overlaid on these shocks are various
possible patterns. Most obvious of these are trends over
time (including linear and quadratically increasing and
decreasing means). A second pattern is the lingering ef-
fects of earlier values in the series (i.e., an autoregres-
sive or AR process), and a third is the lingering effects
of earlier shocks (i.e., a moving-average or MA process).
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These patterns are not mutually exclusive and all three
may be found in a given time series. Readable introduc-
tions in econometrics are available (see Ostrom, 1990;
Yaffee, 2000) and more rigorous mathematical treatment
may be found in Hamilton (1994). A thought-provoking
monograph, surveying the elementary theory of time se-
ries and indicating where and how its use can increase
insight into psychological processes that extend through
time, has been written by Gregson (1983). His treatise
focuses on data obtained in the psychological laboratory
and will be relied upon heavily throughout this article.

2.1.1 A psychology of organism-environment inter-
actions in time

Brunswik (1952) advocated for a psychology of systems,
and suggested that the proper subject matter for study
by psychologists is the organism as it interacts with, and
adapts to, objects in its changing environment. Adapta-
tion is a sequential process, and as such, those seeking to
understand it can benefit by applying time series theory
and analysis. In tracing the history and thematic rela-
tions of psychology to other sciences, Brunswik (1956)
pressed for aligning the methods and explicit theoriz-
ing of psychology with those of other disciplines he de-
scribed as “already recognized as statistical on charac-
ter.” Arguably, Brunswik may have recognized the im-
portance of sequential context effects in adaptation and
foreseen the relevance of their study for psychology. In-
deed, his schematic representation of history concludes
with the (at the time of his writing, unrealized) contribu-
tions of time series theory and analysis, citing the work
of Wiener (1949). When discussing probabilistic predic-
tion he mentioned autocorrelation as being useful. Major
advances in the theory and mathematics of time series,
now taken for granted, occurred after Brunswik’s death,
notably the work of Kalman (1960) and Box and Jenkins
(1970).

Researchers (Hammond, Hursch, & Todd, 1964;
Tucker; 1964), working with Brunswik’s lens model, de-
veloped the lens model equation which quantifies and re-
lates the cue-criterion relationships in the environment,
the cue-judgment relationships, and the correspondence
between judgments and criterion. As useful as the lens
model equation has proved to be as a framework for con-
ceptualizing the expert judgment process (see Stewart,
2001), in its current form it does not accommodate au-
tocorrelation that may be present in the judgments and
environment. Although beyond the scope of this article, it
may be possible to modify the lens model equation to ac-
commodate sequential effects by incorporating concepts
from time series theory.

Current

Stimulus

Previous

Stimuli

Current

Response

Previous

Responses

Environment Organism

lc

ls

lsr

lr

{lp}

lrs

Figure 2: Dynamic structure of the organism-
environment system.

2.1.2 Gregson’s dynamic structure of the organism-
environment system

Gregson (1983) offered a framework for considering,
and identifying, the dynamic structure of the organism-
environment system using time series. He realized that
the responses of an organism to its environment are not
static and that adaptation may exhibit natural periodicity.
He also recognized that the very act of doing an experi-
ment in which responses are elicited to a series of stim-
uli can induce sequential dependency in responses. Like
Brunswik, he recognized that the organism and the en-
vironment form a dynamic system. Gregson’s concep-
tual framework may be illustrated graphically (see Fig-
ure 2). The figure highlights the point that the study
of organism-environment relationships is limited to mea-
sured stimulus-response relationships. Gregson treats the
portion inside the double dashed line as a closed subsys-
tem and regards it as the total scope of time series anal-
ysis. This closed subsystem contains all the quantitative
data available to the researcher who wants to investigate
organism-environment relationships.

Within this closed subsystem the various structures are
considered in terms of their functional linkages, each of
which may be the focus of one or more time series mod-
els. Using Gregson’s notation, we refer to the complete
set of linkages {l}, and the component linkages are then:

lc = current stimulus-response linkage.
ls = linkage within the stimulus series.
lr = linkage within the response series.
lsr = linkage from previous stimuli to the current re-

sponse bypassing the current stimulus.
lrs = linkage from previous responses to current stim-

ulus (this will be absent unless the stimuli are contingent
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Figure 3: Schematic representations of multi-cue multi-
trial judgment task. (a) Traditional view of judgment task
(outside time). (b) Judgment task viewed from time series
perspective. Note that the influence lines within previous
trials are not shown in b for visual clarity.

upon previous responses; such linkage can exist if feed-
back has been introduced by the environment, which in-
cludes the actions of the experimenter).

{lp} = past set of linkages, stimuli to responses and
responses to stimuli.

Each of these linkages may be extant, or absent, in a
time series model of current response (e.g., judgment)
generation. Given the set of linkages {l}, the general
problem of identification is to decide, using input-output
records and notions of causal relations provided by psy-
chological theory, which links are extant and which are
absent. The specific problem of identification is one of
deciding on the details of the algebraic structure and pa-
rameter values that most accurately represent what the
links do, given that it is known which are extant.

Various experimental designs may be represented us-
ing {l}. In most psychological experiments the focus in
on lc while ls is absent by design; the stimuli are pre-
sented in random order with the intent of reducing their

autocorrelation to zero. (Throughout the remainder of
this discussion ls will be assumed absent by design.) In
most psychological research the lr and lsr linkages are as-
sumed (usually implicitly) to be absent. In many operant
studies (and some judgment studies assessing the impact
of feedback on accuracy) the investigator may be inter-
ested in lrs. In Figure 2 lrs is shown as a dotted line be-
cause, while the organism may derive feedback from the
environment, the influence of such feedback cannot be
investigated unless the value of the feedback stimulus is
recorded from trial to trial. The {lp} represents what the
organism has learned through past interactions with its
environment. For those readers familiar with Brunswik’s
writings, {lp} may be analogous to what he called the
texture of the environment.

The various linkages in Figure 2 correspond to basic
time series models that may be applied to psychological
data (i.e., to stimulus-response relationships) in general.
If all linkages with the exception of lc are assumed ab-
sent, the model is considered to be outside time and in-
volves no time series analysis. If responses are hypoth-
esized to be generated by an autonomous process (i.e.,
a process that operates independently of the stimulus se-
ries), then only lr is assumed extant and the process is
identified by an autoregressive (AR) structure. When the
current response is hypothesized to be a function of cur-
rent and previous stimuli, (lc and lsr are assumed extant;
lr is assumed absent) the response-generating process is
identified by a moving-average (MA) structure. More
generally, when the current response is hypothesized to
be a function of current and previous stimuli, as well
as previous responses, all three types of linkage (lc, lsr,
and lr) are assumed extant and the process is identified
by an autoregressive-moving-average (ARMA) structure.
“The general identification problem may be productively
approached by assuming an ARMA structure and esti-
mating the parameters within it or by seeking directly
for a MA or AR solution; as the latter two are restricted
forms of ARMA, this can eventually give the same result”
(Gregson, 1983, p.27). The time series approach outlined
by Gregson thus incorporates the principles from relative
judgment models and response heuristic models; DeCarlo
and Cross (1990) develop this idea in detail although they
do not refer to Gregson’s work.

2.1.3 Incorporating time series into judgment anal-
ysis

Consider a judgment experiment in which the subject is
presented with a series of m profiles, each composed of k
cues, and makes a series of m judgments. Each profile-
judgment is here referred to as a trial, ranging from 1
to m. On the current trial t, judgment Y(t) is a func-
tion of the current cue values (X1 (t) . . . Xk (t)) and e(t),
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representing residual or unmodeled sources of influence
(see Figure 3a). Following Gregson, the solid lines are
here referred to as influence lines representing the im-
pact of the cues and that of the amalgamation of un-
modeled sources. In regression-based judgment models
(e.g., Hammond, Stewart, Brehmer & Steinmann, 1975)
the strengths of the cue influences are often estimated us-
ing ordinary least squares multiple regression (OLSMR)
coefficients and are assumed constant across trials; the in-
fluence of e(t) may be expressed as 1−R2. In other mod-
els of judgment proposed by investigators working within
the Brunswikian tradition (e.g., Dhami & Ayton, 1998,
2001; Gigerenzer, Hoffrage & Kleinbölting, 1991), the
strength of a cue’s influence can vary from trial to trial.
An assumption shared by all these models is that the cue
values from previous trials do not influence judgments on
the current trial. This assumption is represented by the
vertical lines demarcating the trials in Figure3a. In other
words, these judgment models are outside time, limited to
lc linkage; the lr and lsr are assumed absent. Subsequent
discussion will be limited to regression-based models be-
cause they assume (at least initially) a constant cue in-
fluence throughout the series of trials and because they
include a residual term (e(t)) that is conveniently defined
mathematically. These two qualities are important in the
proposed time-series-analytic approach developed below.

When considered inside time, the same judgment ex-
periment may be depicted as in Figure 3b. The lc, lsr
and lr linkages are assumed extant; ls is absent by de-
sign. The lightening of the influence lines, from the cur-
rent trial through the second previous trial, represents the
weakening impact of prior cues and judgments occurring
more distant in the series. Note that in regression-based
models of judgment Y(t) = Y ′

(t) + e(t), where Y ′
(t) is the

portion of the judgment that can be predicted from the cue
values (X1 (t) . . . Xk (t)) and their regression coefficients,
and e(t) = Y(t) - Y ′

(t) is the portion of the judgment that
cannot be so predicted. As such, the series e(t), e(t−1),
e(t−2), . . . corresponds to lr and represents the influence
of prior judgments with the effects of the cues partialed
out via lc. This source of influence captures the response
heuristic described above. To represent all these linkages
and their relationships mathematically a type of time se-
ries model known as a linear transfer function model may
be used.

A linear transfer function (LTF) model depicts the re-
lationship between an output series and one or more input
series. This class of time series models characterizes the
autocorrelation function of the output series and the auto-
correlation function of each input series (each of which is
zero by design in most judgment experiments), as well as
the cross-correlation functions between each input series
and the output series. A cross-correlation function de-
scribes how lagged values of an input series are correlated

with the output series. For example, over the series of tri-
als the correlation between the judgments and a cue’s val-
ues, where the cue series is lagged by one trial, defines a
first-order cross-correlation; when the cue series is lagged
by two trials we have a second-order cross-correlation,
and so on. For completion, the correlation between cues
and judgments concurrent on the same trial is referred to
as a zero-order cross-correlation. Linear transfer function
models consist of two parts; the first part describes the re-
lationships among the input and output series and the sec-
ond part depicts the autoregressive structure of the resid-
uals after cross-correlations have been fitted. Gregson’s
linkages (lc, lsr, and lr) may be elegantly represented in
this class of time series models.

I propose that a linear transfer function autoregressive-
moving-average model, incorporating general principles
from psychophysical models is the best way to depict se-
quential context effects that may be operating in multi-
cue judgment experiments involving several trials. Judg-
ment is modeled as a function of the current cue values
and the immediately preceding values of each cue. This
relationship corresponds to a relative judgment model
in psychophysics and is identified as a MA1 structure,
where 1 refers to a first-order cross-correlation. The MA1
structure of the model uses the values of each cue on
the current and immediately preceding trial throughout
the series to provide parameter estimates of the extent to
which the influence of the cue is modified by changes in
its consecutive values.

The linear transfer function model also includes an
AR1 error term to represent the portion of the judg-
ment process that cannot be predicted from the cue val-
ues and their MA1 parameters. Inclusion of this AR1
structure accommodates the gist of the response heuristic
model which suggests that people exhibit sequential con-
text effects originating in their responses, independently
of those operating in their perceptions of stimuli; or in
Gregson’s framework the lr linkage is assumed extant.
The model is specified as:

Y(t) = µ +
k∑

i=1

(
β0 iXi(t) − β1 iXi(t−1)

)
+

(
e(t)

1− ϕe(t−1)

)
(1)

where Y(t) is the value of the judgment on the current
trial, µ is the mean of the judgment series, Xi (t) is the
value of the ith cue on trial t, β0 i is a weighting coeffi-
cient for the ith cue on trial t, β1 i is a weighting coeffi-
cient for the ith cue on trial t - 1, e(t) is the residual on the
current trial, e(t−1) is the residual on trial t− 1, and ϕ is
an autoregressive weighting coefficient (limited to range
from –1 to 1) for e(t−1).
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In Equation 1 the influence the ith cue is conveyed us-
ing two parameters in order to represent possible sequen-
tial context effects. If the cue is used when forming a
judgment then the sum of the absolute values of its two
parameter estimates (β0 i and β1 i) will be greater than
zero. If the cue produces contrast effects during the judg-
ment process these two parameter estimates will have the
same valence (note that β1 i has a negative sign in Equa-
tion 1). If the cue produces assimilation, the two param-
eters will have opposite signs. In DeCarlo and Cross’s
(1990) time series model, assimilation versus contrast is
conveyed solely by the sign of β1 i because β0 i is always
positive owing to the fact that sensory magnitude is pos-
itively correlated with stimulus intensity. In many multi-
cue judgment tasks some cues will have negative correla-
tions with values on the judgment dimension and so the
signs of both β0 i and β1 i are necessary to distinguish
contrast from assimilation effects. The magnitude of β1 i

(positive or negative) estimates the extent to which the
cue’s influence changes due to differences in the cue’s
values on consecutive trials. This method of estimating
the change in a cue’s influence is more reliable than the
piecemeal approach used in Table 1 because the estimate
is based on data from all trials rather than subsets of trials.

Equation 1 also accommodates sequential context ef-
fects that may be operating in the response series inde-
pendently of the cues. If the judge has a tendency, in the
face of uncertainty, to guess in the direction of his or her
previous response, this form of assimilation will result in
a positive value of ϕ. If the judge tends to guess in the op-
posite direction (i.e., contrast) ϕ will be negative. Thus,
the approach assumes lc, lsr, and lr linkages are extant
(ls is absent by design) and the model provides the means
for quantifying contrast and assimilation operating within
the cue and judgment series.

As a proof of concept, Equation 1 was fitted to data
from a sample of nurse practitioners who performed
a prognostic judgment task, estimating patient risk for
CHD. The goals of this application are (1) to estab-
lish the utility of Gregson’s framework for studying
the dynamic structure of the organism-environment sys-
tem for examining prognostic judgments, (2) to show
that the linear-transfer-function autoregressive-moving-
average (LTF ARMA(1,1)) model can fit such data bet-
ter than OLSMR, and (3) to demonstrate that sequential
context effects exist in prognostic judgment tasks.

3 An illustrative application
3.1 Method
3.1.1 Subjects

Seventy-five nurse practitioners completed a prognostic
judgment task in which they made estimates of risk for

CHD for 80 patient profiles. Four of the nurse practition-
ers were male. The average age was 48.2 (SD = 6.8).
Most (81.3%) worked in primary care settings. On aver-
age, subjects had 8.9 years of practice experience (SD =
6.3).

3.1.2 Materials

Selection of Cues and Outcome Measure. The optimal
set of risk factors for predicting CHD were identified by
Anderson, Odell, Wilson, and Kannel (1991a) using a
sample of 5,573 patients followed for over 12 years as
part of the ongoing Framingham study of heart disease.
The equation of Anderson et al. provided regression co-
efficients for eight patient characteristics: gender, age,
smoking status, total cholesterol level, high-density lipid
level (HDL), systolic blood pressure (SBP), and whether
or not the patient has been diagnosed with diabetes or
left ventricular hypertrophy (LVH). This “gold standard”
for predicting CHD was published in the form of a clin-
ical worksheet later that same year (Anderson, Wilson,
Odell, & Kannel, 1991b). In the current study, judgments
of patient risk for CHD were made using a 0% to 100%
response scale.

Choice of Cue Values. A representative design was
used to construct patient profiles for the judgment task.
The risk-factor distributions reported by Anderson et al.
(1991a; 1991b) were used to generate a population of
cases with similar means, variances, and correlations
among the eight risk-factor cues. Eighty cases were ran-
domly sampled from this population and randomly or-
dered for presentation in the judgment task.

3.1.3 Procedure

The materials were presented to each subject in a booklet.
Booklets contained a cover page describing the purpose
of the study (“to understand how nurse practitioners form
judgments of patient risk for CHD”), instructions for the
judgment task, the series of patient profiles presented sep-
arately in tabular format, and a brief section requesting
basic demographic information. Nurse practitioners were
instructed to “Please read each profile carefully and make
an assessment of the patient’s risk for CHD within the
next 10 years on a scale of 0% to 100%.” Nurse prac-
titioners were tested individually and in small groups in
office and classroom settings. After obtaining informed
consent, instructions describing the judgment task and ac-
companying materials were read aloud to subjects. The
procedure took an average of 32 minutes (SD = 11.6) to
complete. All subjects received the profiles in the same
order.
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3.1.4 Preliminary analyses

Multiple-cue judgment analyses typically use standard-
ized coefficients as estimates of a subject’s cue weight-
ing strategies. Prior to fitting the model in Equation
1, all variables (cues and judgments) were standardized
for each subject individually to have means of 0 and
variances of 1. This was done as a matter of interpre-
tational convenience providing a common metric upon
which to compare parameters across individuals and also
because SAS’s PROC ARIMA does not provide standard-
ized parameter estimates. Second, for comparative pur-
poses, each individual’s judgments were regressed onto
the cues using ordinary least squares multiple regression
(OLSMR) and residuals were examined for serial depen-
dence using two tests described in the next paragraph.
Third, for each individual OLSMR was used to con-
firm that the functional relationships of all cues to judg-
ments were linear (i.e., there were no quadratic trends in
cue-judgment relationships). Fourth, the autocorrelation
function for each cue was assessed to confirm that ls link-
ages were absent by design. Fifth, Dickey-Fuller tests
(Dickey & Fuller, 1979) were used to confirm that all
judgment series were stationary prior to fitting the time
series model. Stationarity refers to a series having a con-
stant mean and variance.

There are various methods for assessing serial depen-
dence. One of the more well known methods is the
Durbin-Watson test (Durbin & Watson, 1950; 1951).
Cooksey (1996) discusses how the Durbin-Watson (DW)
test may be applied in judgment analysis. An advantage
of the DW test is that it is commonly available as an op-
tional test of residuals in OLSMR procedures of most
statistical packages (e.g., SAS and SPSS). A disadvan-
tage is that it does not assess serial dependence beyond
first-order autocorrelation. A second disadvantage of the
DW test is that the derivation of its standard errors (and
hence, critical values) is not straightforward. Cohen et al.
(2003) discuss the DW test in detail. An alternative, and
in the present application more useful, test is the Ljung-
Box statistic (Ljung & Box, 1978) that can be used to
assess a series for departures from “white noise” by si-
multaneously examining autocorrelations over a range of
predetermined orders. The LB test is a weighted sum of
squared autocorrelations. One criterion for identifying a
correct time series model is that serial dependence in the
residuals is reduced to zero (i.e., a white noise process).
The LB test was developed as a means to make such as-
sessments. The LB statistic is distributed as χ2 where a
nonsignificant result indicates the series is free from se-
rial dependence or does not differ significantly from a
white noise process. Based on the LB test, 26 individ-
uals exhibited serial dependence; the DW test identified
only 15 of these. Thus, it appears that when applied to

OLSMR residuals from a single subject, typical in judg-
ment analysis, the LB test may be more sensitive for de-
tecting serial dependence.

3.2 Results
3.2.1 Goodness of fit: Comparing OLSMR and LTF

ARMA(1,1) on the basis of their R2 values

The LTF ARMA(1,1) model was successfully fitted to 68
of the 75 subjects. The other seven required higher-order
autoregressive terms to identify the AR portion of their
judgment models and render the residuals as white noise.
These will be discussed later. Except where mentioned
explicitly, the remainder of this section focuses on the
analyses from 68 individuals. The model was fitted using
SAS’s PROC ARIMA; parameters were estimated using
conditional least squares rather than maximum-likelihood
because this method has been shown to perform better
when the number of trials is less than 100 (Yaffee, 2000,
pp. 192–204).

R2 values ranged from .552 to .928 with an average of
.800. F tests revealed that the R2 value for each subject
was significantly larger (p < .05) than his or her OLSMR
R2 value (these ranged from .490 to .908 with an aver-
age of .750). These tests took into account the differing
number of parameters between the two models. A second
method for comparing the fit of these two models focuses
on serial dependence in their residuals. The results of
these analyses are reported below when discussing tests
for serial dependence.

3.2.2 On determining whether a cue is used when
forming a judgment

Reliance on tests of significance when determining
whether a cue is being used by an individual in a judg-
ment task has been recently called into question (Beck-
stead, 2007). An alternative to significance tests for de-
termining whether or not a cue is influential is to focus
on effect sizes. In the current application if a change of
one standard deviation in a cue’s value produced at least
a .333 standard deviation change on the judgment scale,
the cue was considered to have been used by the subject.
Although arbitrary, this definition is somewhat conserva-
tive when considered in the context of traditional notions
of effect size (see Cohen, 1988). As each cue was rep-
resented by two parameters (β0 i and β1 i) the sum of the
absolute values of its two parameter estimates had to be
≥ .333. For purposes of illustration, in order to have been
considered as exhibiting contrast or assimilation the ab-
solute value of each parameter estimate had to contribute
at least .111 to this sum. Using these operational defini-
tions, the distribution of cue utilization was as follows:
five individuals used only one cue, 19 used two, 26 used
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Table 2: Number of Individuals Exhibiting Sequential
Context Effects on Each Patient Characteristic (Cue) used
in Prognostic Judgments of Coronary Heart Disease.

Cue Used Contrast Assimi-
lation

No
SCEs Total

Gender no 0 0 64 64

yes 1 0 3 4
Age no 0 0 50 50

yes 2 1 15 18
SBP no 0 0 40 40

yes 1 13 14 28
LVH no 0 0 43 43

yes 0 4 21 25
Choles-
terol

no 0 0 48 48

yes 2 3 15 20
HDL no 0 0 61 61

yes 1 2 4 7
Smoking no 0 0 28 28

yes 1 2 37 40
Diabetes no 0 0 11 11

yes 4 1 52 57

Note: To be counted as being used in judgment, a one
standard deviation change in the cue’s value had to pro-
duce a .333 standard deviation change on the judgment
scale. SCE = sequential context effect, SBP = systolic
blood pressure, LVH = left ventricular hypertrophy, HDL
= high-density lipids.

three, 12 used four, and six used five. For each subject
who used multiple cues, the cues used were rank ordered
according to their influence (1 being assigned to the most
influential cue). This was done in order to ascertain if se-
quential context effects occurred more frequently as cues
carried more influence.

3.2.3 Sequential context effects produced by cue se-
ries

Each cue was used by at least four of the subjects (see
Table 2). The most frequently used cue was whether or
not the patient had diabetes, and the least frequently used
was patient gender. Each of the cues produced assimila-
tion, contrast, or both, although with varying frequency
among subjects. The blood pressure (SBP) cue produced
sequential context effects, notably assimilation, for the
majority of subjects who used the cue. Why this should

be the case is not clear. Although purely speculative, it is
possible that nurse practitioners were more familiar with
the range of values of this cue in relation to heart disease
(perhaps it represents a defining characteristic) and that
this induced stronger memory traces or increased pro-
cessing of the information provided by the cue which
ultimately manifested as assimilation from one trial to
the next. Inspection of cue influence rankings revealed
that sequential context effects tended to be more com-
mon with higher ranks, that is, they occurred more often
for cues that carried more weight in the judgments. (See
Table 3.) In total there were 38 instances of sequential
context effects produced by the cue series (26 instances
of assimilation and 12 instances of contrast). These in-
stances were distributed among 30 individuals. Eighteen
subjects displayed evidence of assimilation effects only,
eight exhibited evidence of contrast effects only, and four
showed both assimilation and contrast produced by dif-
ferent cues.

3.2.4 Sequential context effects in judgments inde-
pendent of cue series

The LTF ARMA(1,1) model incorporated a parameter for
quantifying the autoregressive structure of the residuals,
that is, the degree of serial dependence in the judgment
series that was independent of the cue influences. The
results from 19 subjects included significant ϕ parame-
ters (p < .05). These parameter estimates ranged from
.264 to .766 with a mean of .433 indicating that assim-
ilation (not contrast) was operating autonomously in the
responses. When both β and ϕ parameters were consid-
ered, 39 subjects exhibited evidence of sequential context
effects in the judgment task. For nine of these individu-
als this was limited solely to assimilation effects in the
response series. Twenty exhibited sequential context ef-
fects produced by only the cue series, and 10 displayed
evidence of sequential context effects operating in both
cue and response series.

3.2.5 Comparing OLSMR and LTF ARMA(1,1) on
the basis of serial dependence in their residuals

Using the DW test, only 12 of the 39 subjects who
showed any form of sequential context effects in the time
series analysis screened positive for serial dependence in
their OLSMR residuals. The test missed 24 of the 30
who exhibited sequential context effects produced by the
cues series and missed seven of the 19 who showed as-
similation to previous responses. The DW test produced
no false positives. As noted above, the LB test appears
more sensitive than the DW test for detecting serial de-
pendence in OLSMR residuals. Sixteen of the 39 subjects
who showed sequential context screened positive for se-
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Table 3: Frequencies of sequential context effects produced by cue series according to influence rank.

Cue

Rank Gender Age SBP LVH Cholesterol HDL Smoking Diabetes

1 0/0 2/7 3/3 2/5 1/6 2/2 1/8 4/37

2 0/1 0/6 6/11 0/8 3/8 1/2 1/17 1/10

3 1/2 0/2 3/10 0/7 0/2 0/2 1/12 0/7

4 0/1 0/2 2/4 1/3 0/3 0/1 0/1 0/3

5 0/0 1/1 0/0 1/2 1/1 0/0 0/2 0/0

Note: Cues were rank ordered according to the size of their parameter estimates (largest assigned rank
of 1). Denominator is number of times cue appeared at each rank. Numerator is number of times cue
exhibited sequential context effect. SBP = systolic blood pressure, LVH = left ventricular hypertrophy,
HDL = high-density lipids.

rial dependence in OLSMR residuals using the LB test.
The test missed 21 of the 30 exhibiting sequential con-
text effects produced by the cues series and four of the 19
who showed assimilation to previous responses. The LB
test produced no false positives.

Given the higher sensitivity of the LB test, it was
used to make comparisons between the two analytic ap-
proaches. Applying the LB test to the residuals from
the LTF ARMA(1,1) analyses for the 16 subjects with
serial dependence in their OLSMR residuals revealed
that LTF ARMA(1,1) residuals were rendered as white
noise for all these subjects. Thus using serial depen-
dence in residuals as the criterion, it appears that the LTF
ARMA(1,1) model fit the judgment data better than the
OLSMR model did.

3.2.6 Identifying higher-order autocorrelated struc-
tures in judgments

The remaining seven of 75 individuals exhibited per-
sistent serial dependence in their data after fitting the
LTF ARMA(1,1) model based on LB tests. Although
atypical, such findings are not without precedent. Early
empirical evidence (Holland & Lockhead, 1968) in the
psychophysical realm suggested that autocorrelations up
to eighth-order may be operating in some serial judg-
ments. Later computer simulations by Gregson (1976)
suggested, however, that first- and second-order pro-
cesses are more psychologically plausible and that such
higher-order findings were likely the result of model mis-
specification.

Higher-order AR structures in the absence of all in-
tervening lower-order ones are known as periodic, sea-
sonal, or cyclic. For example, in economic models of
data recorded monthly, it is common to observe AR(12)
structures that reflect the monthly cyclicity in sales or

spending patterns over several years (i.e., December data
from year t are correlated with December data from year
t − 1, January data from year t with January data from
year t − 1, etc.). Although purely speculative, in self-
paced judgment tasks, like the one examined here, some
individuals may experience waxing and waning atten-
tion/concentration on the task from trial to trial, or they
may engage in self-monitoring efforts producing alternat-
ing response set bias. These cognitive processes might
possibly manifest as higher-order periodic AR structures.
Of course, such higher-order structures might also be the
result of unknown influences associated with conditions
of the experimental context.

Identifying such higher-order autoregressive structures
is largely an exploratory process. One exploratory ap-
proach uses SAS’s PROC AUTOREG employing its
backstep option to test the effects of including higher-
order autoregressive parameters on reducing serial depen-
dence in the residuals. This option removes nonsignif-
icant autoregressive parameters (analogous to backward
elimination in multiple regression) using Yule-Walker
equations. (See Brocklebank & Dickey, 2003 for math-
ematical details.) What remains in the model is the
most parsimonious autoregressive structure that accu-
rately (within predefined limits) fits the data. This ap-
proach was used on the data from these seven individ-
uals, testing for first- through eighth-order autoregres-
sive parameters. This exploratory process identified id-
iosyncratic higher-order AR structures (Table 4). Three
subjects (10, 12, and 42) showed evidence of pure pe-
riodicity; the others displayed more complex structures.
Despite these atypical and atheoretical AR structures,
the majority of these individuals showed evidence of se-
quential context effects produced by the cue series; three
showed only cue assimilation effects, two showed only
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Table 4: Idiosyncratic higher-order AR structures for
seven atypical individuals.

Subject: 8 10 12 31 42 62 75

AR
structure:

1,3,5 4 5 1,3 3 1,6 2,5,6

SCEs: none 3c,1a 1c 1a 2a 1a 1c

Note: AR = autoregressive error term in linear transfer
function autoregressive moving average model; SCE
= sequential context effects produced by cue series, c
= contrast, a = assimilation, and the values preceding
these letters are the number of cues that produced each
type of effect.

cue contrast effects, one showed both cue assimilation
and contrast effects, and one showed no sequential con-
text effects produced by the cue series.

3.2.7 A supplemental lens model analysis involving
time series

In judgment studies employing the full lens model, the
accuracy or achievement of the subject is defined relative
to the environment in which the judgments take place and
is quantified by the correlation of judgments with crite-
rion values across the set of trials. The lens model does
not represent accuracy on a trial-by-trial basis. If the lens
model is considered as a dynamic system in time, where
cue series represent input and the series of judgments rep-
resents output, then questions about the stability of the
subject’s accuracy may be addressed. For example one
might ask, do abrupt or large changes in the cue series
disrupt trial-by-trial accuracy of the judgment process?
Applied in this context, time series analysis can be used
to obtain insight into the how the judgment process adapts
(on a trial-by-trial basis) to changes in the environment.

In the present application, the criterion for accuracy
was CHD risk as calculated by the Framingham equation
(see Anderson, et al., 1991a). To address the question of
stability in accuracy, the eight cue values for each profile
were entered into the Framingham equation to obtain the
“correct” answer for each trial, Y ∗

(t). The error in judg-
ment on each trial was then defined by taking the absolute
value of the difference in Framingham risk estimate and
the judgment of patient risk provided by the subject. Each
cue series was differenced and then used to predict errors
in judgment using a standard multiple regression analy-
sis. Differencing a series refers to subtracting the value
on trial t - 1 from value on trial t in order to form a new se-
ries in which the values represent the amount of change in
the values of the original series from one trial to the next.
Stating the question more formally in terms of time se-

ries: does ∇Xi → E(t), where ∇Xi = |Xi (t) −Xi (t−1)|
and E(t) = |Y ∗

(t) − Y(t)| ? Furthermore, if such disrup-
tive effects are observed, do they occur more frequently
among cues that carried more influence in the judgment
task?

In this separate analysis, 23 of 68 subjects showed evi-
dence that changes in the cue series that they relied upon
when making risk judgments disrupted their judgment ac-
curacy. At least one cue had a significant (p < .05) effect
on accuracy for each subject. The accuracy of three sub-
jects was disrupted by two cues, yielding 26 instances of
disruption. Twelve of these were produced by the high-
est ranked cue and five by the second highest. Thus it
appears that abrupt or large trial-by-trial changes in the
value of cues that receive the most attention in prognostic
judgment tasks can disrupt the accuracy of the judgment
process.

4 Discussion

In the application above, a linear transfer func-
tion autoregressive-moving-average model (LTF
ARMA(1,1)) was successfully fitted to expert prog-
nostic judgments of CHD risk made by 68 of 75 nurse
practitioners. The general identification of the model
was theoretically anchored within Gregson’s (1983)
framework for studying the dynamic structure of the
organism-environment system. This framework proved
useful for conceptualizing the correspondence between
the various linkages (lc, lsr, and lr) assumed extant in
the judgment process and the model’s parameters. The
specific identification of the model, that is the hypoth-
esized MA1 structure for capturing sequential context
effects produced by the cue series, and the hypothesized
AR1 structure for accommodating assimilation in the
response series were based on principles taken from
magnitude scaling research in psychophysics (DeCarlo
& Cross, 1990). The analysis of differenced cue series as
predictors of trial-by-trial accuracy revealed that abrupt
or large changes in the cue values can disrupt the stability
of judgment accuracy. These applications demonstrated
how time series analysis can be productively incorporated
into the study of expert judgment.

Analysis of expert judgments is often conducted us-
ing ordinary least squares multiple regression (OLSMR).
This study compared OLSMR to a time series approach
for analyzing the data from a prognostic judgment task
involving risk of coronary heart disease. Two criteria
were used to evaluate the performance of these two an-
alytic approaches. First, based on comparisons of coef-
ficients of determination (R2) the time series model fit
significantly better for all subjects providing support for
its ability to more accurately represent such judgments.
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The second basis for comparing the goodness of fit for
the two approaches centered on each models’ ability to
remove serial dependence from the residuals. For the
subset of individuals identified by the LB test as show-
ing serial dependence in their OLSMR residuals, the time
series model effectively reduced each subject’s residual
series to white noise. Together these results support the
LTF ARMA(1,1) time series model as an accurate and in-
formative method for analyzing single-subject data from
multi-trial judgment experiments.

To the best of my knowledge, this is the first article
to examine sequential context effects operating in ex-
pert judgments, although Laming (1995) discusses simi-
lar ideas in the context of a retrospective analysis of cervi-
cal cancer screening by one expert. The analyses reported
here revealed the presence of sequential context effects in
judgments made by for 45 of 75 individual experts. Al-
though these effects were not universal, the fact that they
were shown by any individuals demonstrates that such ef-
fects can occur in prognostic judgments. (It is worth not-
ing here that if a more liberal operational definition of cue
usage, .250 rather than .333, were to have been used, the
number of subjects exhibiting any sequential context ef-
fects would have totaled 62 not 45.) One possible process
explanation for these sequential context effects involves
the formation and influence of memory traces from one
trial to the next, although the analyses reported here can-
not be used to support or refute such an explanation. The
findings do suggest that expert prognostic judgment tasks
can provide another experimental paradigm in which to
test the generality of such explanations.

When discussing time series modeling of stimulus-
response relationships in the realm of psychophysical
judgments, Gregson (1983) notes that is not unexpected
to find different subjects showing evidence of AR1, AR2,
MA1, MA2 and ARMA models operating in the same
judgment experiment. In the current application of time
series analysis to expert judgments, a confirmatory rather
than exploratory approach was taken; a single model,
theoretically based on relative judgment models and re-
sponse heuristics, was fitted to all subjects and the degree
and frequency of fit examined. The model was success-
fully fitted to 91% (68 of 75) of the sample of experts
examined here. Some subjects showed evidence of only
relative judgment processes operating in the cue series,
some showed evidence of only a response heuristic op-
erating, some showed evidence of both relative judgment
and response heuristic influences, and some showed no
evidence of sequential context effects at all. Future stud-
ies might examine personality variables and other indi-
vidual difference factors that differentiate among people
who exhibit various sequential context effects on expert
judgment tasks and those who do not. It would also be
interesting to explore key features of the judgment task,

such as the amount of environmental uncertainty, as a
moderator of these effects.

It is possible that the observed sequential context ef-
fects may have been induced by the experimental con-
text. Presenting “paper patients” on successive pages of
a booklet may have drawn attention to the values of pre-
ceding cues. This in turn may have caused some indi-
viduals to form memory traces of preceding cue values
which would otherwise not have been incorporated into
subsequent judgments. If this interpretation proves to be
correct the current application highlights the value of the
proposed time series model for isolating such laboratory
artifacts.

Another way to view the results is that the experimen-
tal context was sufficient to uncover sequential context
effects operating in several expert judges. It is possible
that presenting patient cue profiles in the experimental
setting, stripped of the accompanying social aspects of
the patient encounter, could have diminished the salience
of the cue values and the extent of their cognitive process-
ing. This in turn may have dampened sequential context
effects produced by the cue series. If so, it is reasonable
to expect sequential context effects to appear with greater
intensity and frequency in the clinical setting where the
salience of the information provided by the cues is in-
creased, and the clinician’s memory of preceding patient
encounters is perhaps stronger.

It is not being suggested that experts use a LTF
ARMA(1,1) model in their heads when making repeated
judgments. What is being suggested is that, if one accepts
the proposition that people’s judgments can be modeled
as though they are multiple regression equations, then
OLSMR may be insufficient to capture the complexity
of cognitive processes involved, because such models ex-
ist outside of time. Sequential context effects commonly
observed in studies of psychophysical judgment and re-
cently reported in strategic decision making do appear to
exist in expert prognostic judgments. Contrast and assim-
ilation were produced by cue series; the latter occurring
more frequently in the task examined here. Experts also
showed assimilation to prior responses that was indepen-
dent of the cue series’ influence. That is, when faced with
uncertainty they tended to guess in the direction of their
previous response.

In the current study all subjects received the series of
80 profiles in the same (random) order. This was done
intentionally to isolate individual differences in cognitive
processing for comparison. For instance, when two sub-
jects showed different weights for a given cue, we know
that this result was not due to differences in the order in
which the profiles were experienced. Similarly, when one
subject showed assimilation (or contrast) on a particular
cue and the other subject did not, we can rule out differ-
ences in the profile order as producing this result. Had
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each subject experienced a unique (and random) order-
ing of the profiles, this uniqueness would have been com-
pletely confounded with individual differences in the se-
quences of their responses.

Much has been written in psychology about how to
construct and analyze repeated-measures experiments in-
volving multiple subjects in order to minimize unwanted
sequential effects or serial dependence (e.g., Keppel,
1991; Kirk, 1995; Myers, 1979; Maxwell & Delaney,
2004). Counter-balancing the order of treatments or stim-
uli across subgroups or randomizing order for each sub-
ject are often proposed as solutions when data are ana-
lyzed in aggregate. These solutions do not offer much
solace to judgment analysts who conduct single-subject
repeated-measures analyses however. When single-
subject multiple regression analysis is conducted on judg-
ment data, as is typically the case in social judgment the-
ory paradigm (Brehmer & Joyce, 1988; Stewart, 2001) it
seems, at least in principle, that a fundamental assump-
tion of the regression model has been violated; the as-
sumption that the data (more formally the residuals from
the regression analysis) are independent does not appear
tenable. This putative nonindependence stems from serial
dependence or autocorrelation.

Serial dependence has two adverse consequences: (1)
the standard errors for the regression coefficients are too
small, leading to increased type I error when testing their
significance (although estimates of the coefficients them-
selves tend not to be biased), and (2) the R2 expressing
the goodness of fit for the regression equation is biased.
Some intuitive understanding for why the first conse-
quence occurs may be gained by considering that the suc-
cessive observations are dependent to some extent; thus,
they provide less information than the same number of in-
dependent observations would. For example, if one had
100 actual observations, but because of serial dependence
in the series there was only the equivalent of 50 indepen-
dent observations worth of information, then 50 should be
used in computing the standard errors but 100 gets used
because the dependencies are ignored. This loss in effi-
ciency of the OLSMR estimators for various degrees of
autocorrelation is illustrated by Johnston (1984, pp. 310–
313). The reason for the second consequence is a bit more
complicated to explain because R2 can be inflated or de-
flated depending on whether the serial dependence in the
residuals is accompanied by serial dependence in the pre-
dictor variables, and whether these autocorrelations are
of the same or different valences. In psychophysics in-
vestigators often generate many long series of random
stimuli, assess the autocorrelation in each and retain only
those series that are free from serial dependence for use in
their experiments. DeCarlo & Cross (1990, p. 387) show
that, under such conditions, correlated residuals add to
the size of the error variance and hence produce a de-

flated estimate of R2. (It is not common practice among
judgment analysts to assess the series of cue values used
in judgment tasks for serial dependence; simply random-
izing the order of a set of profiles does not guaranty an
autocorrelation of zero). Wonnacott & Wonnacott (1979,
pp. 206–208, 212–215) demonstrate that when there is a
positive autocorrelation in both the residual and predictor
series, the estimated regression line will fit the data very
well, leaving small residuals and thereby inflating the es-
timate of R2.

These consequences may be of special interest to re-
searchers working with Brunswik’s lens model who place
substantive interpretation on the value of Rs as a measure
of the subject’s cognitive control during the judgment
task, and to judgment researchers, in general, who often
rely on regression-weight significance tests to determine
the number of cues used by the subject (see Beckstead,
2007). By incorporating time series theory and analysis
into modeling human judgment the problematic statistical
conditions which result from violating the independence
assumption can be eliminated and additional insight into
the nature of cognitive processes that influence sequential
judgments can be gained. An alternative method, sug-
gested by one reviewer, is to analyze data in aggregate
using multi-level modeling techniques that incorporate an
autocorrelated error structure. While this approach can
handle the independence violation, it may obscure inter-
esting individual differences such as when different sub-
jects show assimilation or contrast to the same cue series.

Time series analysis, coupled with Gregson’s frame-
work for studying the dynamic structure of the organism-
environment system, is a powerful alternative for analyz-
ing human judgment, in keeping with the Brunswikian
tradition. Time series theory holds potential for extending
the lens model equation to accommodate dynamic aspects
of the organism-environment system such as the disrup-
tion of trial-by-trial accuracy by abrupt changes in cue
values.

Many theories of human judgment have been, and are
being, developed using experiments that involve present-
ing the subject with a long series of stimuli to be judged
and recording a series of responses. As such, there ex-
ists the possibility that cognitive processes involved in re-
sponding to sequential stimuli, but not necessarily limited
to contrast and assimilation, could be operating within
the individuals studied in these experiments. Whether or
not these cognitive processes are activated under natu-
ral conditions as part of an organism’s adaptation to its
changing environment is an interesting theoretical point
to consider. It may simply be the case that these pro-
cesses are an artifact induced by the sequential structure
typical of most judgment experiments. What is known,
based on the results presented here, is that such cogni-
tive processes can manifest as serial dependence in ex-
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pert prognostic judgment tasks. The application of time
series theory and analysis to existing data, as well as to
data from future experiments, holds potential for reveal-
ing additional insights into how sequential context effects
manifest in judgment tasks.
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