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Recalibrating probabilistic forecasts to improve their

accuracy

Ying Han∗ David V. Budescu†

Abstract

The accuracy of human forecasters is often reduced because of incomplete in-

formation and cognitive biases that affect the judges. One approach to improve the

accuracy of the forecasts is to recalibrate them by means of non-linear transformations

that are sensitive to the direction and the magnitude of the biases. Previous work on

recalibration has focused on binary forecasts. We propose an extension of this approach

by developing an algorithm that uses a single free parameter to recalibrate complete

subjective probability distributions. We illustrate the approach with data from the

quarterly Survey of Professional Forecasters (SPF) conducted by the European Central

Bank (ECB), document the potential benefits of this approach, and show how it can be

used in practical applications.

Keywords: forecasting, recalibration, extremization, Brier score, human forecasting,

subjective probability distributions

1 Introduction

Most forecasting activities involve the ability to reason under uncertainty and require some

level of probabilistic reasoning. This is true if one forecasts single quantities (e.g., the

value of the market at the end of the current year, or the number of COVID cases that will

be recorded next month in a certain country), but it is especially critical when generating

probabilistic forecasts. Limited cognitive ability, lack of complete and/or fully reliable

information and suboptimal processing of the information available can lead to the pervasive

miscalibration in estimating the target probabilities (e.g., Kahneman et al. 1982; Gilovich

et al. 2002). There is substantial empirical evidence that judges are often miscalibrated due
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to systematic biases (Lichtensten et al. 1982; Zhang & Maloney, 2011) and random errors

(Erev, Wallsten & Budescu, 1994). A large number of empirical studies have found that both

single point probabilities and probability interval estimates tend to be mostly overconfident

(e.g., Alpert & Raiffa, 1982; Budescu & Du, 2007; Juslin, Wennerholm & Olsson, 1999;

McKenzie, Liersch & Yaniv, 2008; Fischhoff, Slovi & Lichtenstein, 1977; Klayman et al.,

1999; Park & Budescu, 2015). Sometimes miscalibration carries over to specific expertise

domains (Christensen-Szalanski & Bushyhead, 1981; Du & Budescu, 2018).

More specifically judges tend to overestimate the probability of, and overweight, rare

events and underestimate and underweight highly probable events (Camerer & Ho, 1994;

Fischhoff, Slovic & Lichtenstein, 1977; Moore & Healy, 2008; Wu & Gonzalez, 1996) and

to avoid extreme probabilities, close to 0 or 1 (Juslin, Winman & Olsson, 2000). Ariely

et al. (2000) and Turner et al. (2014) have shown that this tendency of avoiding extreme

probability prediction can carry over to aggregated probability estimates.

Baron et al. (2014) attributed the lack of extremity in probability forecasting to two

distorting factors. The first, which they labeled an end-of-scale effect, is that the distribution

of the estimates near the true value (1 or 0) is not symmetric. Typically, the distribution

is regressive towards 0.5, leading to over- (under-) estimation of low (high) probabilities

(see analysis in Erev, Wallsten & Budescu, 1994). This causes forecasters1 to provide less

extreme estimates when the true probability is close to the two endpoints (0 and 1). The

second factor driving this bias is the forecasters’ tendency to mix individual confidence with

confidence in the best forecast. Baron et al. (2014) proposed that the extent of reduction in

the forecasting extremity is associated with the amount of information that the judge feels

is missing.

One natural solution to the problem of miscalibration is to “debias” judges and train them

to be better calibrated, but this has turned out to be difficult (Alpert & Raiffa, 1982; Koriat,

Lichtenstein & Fischhoff, 1980; Schall, Doll & Mohnen, 2017) and, often, impractical but

there are some success stories (e.g., Mellers et al., 2014). An alternative solution, which the

subject of this paper, is to recalibrate the judgements (e.g., Shlomi & Wallsten, 2010), i.e., to

transform the empirical probability estimates to improve their accuracy. This is a drastically

different approach, because the application of these non-linear transformations does not

involve the judge(s): They are applied by the users of the estimates or by intermediaries

(e.g., decision analysts) before using the forecasts to make actual decisions. For example, if

a Decision Maker (DM) makes periodical decisions regarding his/her investment portfolio

and believes that his/her financial advisors are systematically biased, he/she may recalibrate

the estimates hoping to reduce, if not fully eliminate, this bias before making his/her

decisions.

Various transformation methods have been developed and proved to enhance the fore-

casting accuracy (Ariely et al., 2000; Baron et al., 2014; Satopää et al., 2014; Turner et

al., 2014; Mandel, Karvetski & Dhami, 2018). Turner et al. (2014) discussed the Lin-

1We use the terms judge, forecaster and expert interchangeably throughout the paper.
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ear Log Odds (LLO) recalibration function, which has been widely used to compensate

the distortion of individual probability forecasts (Gonzalez & Wu, 1999; Tversky & Fox,

1995). The LLO transformation recalibrates the original probability p, by means of a linear

transformation of the original log odds, to obtain the recalibrated value, ?̂:

?̂ =

X?W

X?W + (1 − ?)W
. (1)

This formula is derived from the linear log-odds model:

log

(
?̂

1 − ?̂

)
= W log

(
?

1 − ?

)
+ g (2)

where W represents the slope and g represents the intercept and X = exp(g) in Equation

1. Turner et al. (2014) interpreted W as discriminability parameter which is manifested as

curvature of the LLO function. More specifically, when W increases (decreases), the curve

becomes steeper (flatter) in the middle of the range. The other parameter X was interpreted

as the overall response tendency parameter, representing the vertical distance of the curve

from zero.

The LLO function can be simplified by restrictions of its parameters to generate special

cases of the general family of transformations. When X = 1 and W = 1, ?̂ = ?, the function

represents no transformation, and when X = 1, LLO function becomes the well-known

Karmarkar equation (Karmarkar, 1978):

?̂ =

?W

?W + (1 − ?)W
(3)

This function has some attractive properties: (1) it generates probabilities (and does not

require any additional normalizations) for binary events, for any value of W; (2) ?̂ = ? for

three “natural” anchor points ? = 0, 0.5 and 1. The full LLO function and its simplified

version (Equation 3) have been applied in a large body of studies and shown to enhance the

accuracy of individual forecasts as well as aggregated forecasts (e.g., Atanasov et al., 2017;

Budescu et al., 1997; Baron et al., 2014; Erev et al., 1994; Han & Budescu, 2019; Mellers

et al., 2014; Satopää & Ungar, 2015; Shlomi & Wallsten, 2010; Turner et al., 2014).

Mellers et al. (2014) applied Karmarkar’s transformation to data generated by more

than 2,000 forecasters in a geopolitical forecasting tournament (Aggregative Contingent

Estimation ACE; https://www.iarpa.gov/research-programs/ace). They showed that recal-

ibration improved the quality of aggregated probability judgments with optimal W greater

than 1 (implying extremization of the original estimates). They also found some cases of

de-extremization, with parameters less than 1. Baron et al. (2014) also applied the same

transformation function to the dataset of Mellers et al (2014) and demonstrated that extrem-

ization can eliminate the two distorting effects (which cause less extremity in aggregated

probability forecasts) with different estimated parameters. They also found out that less

extremization (smaller W) is needed for experts than for non-expert groups and median

aggregation requires less extremization than mean aggregation.
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Turner et al. (2014) applied the full LLO function to a different group of forecasters

who participated in the ACE forecasting tournament. They compared a set of models which

varied in terms of whether (1) the transformation was applied before or after the aggregation,

(2) the aggregation was applied to original probability forecasts or log odds of forecasts,

and (3) hierarchical modeling of individual difference was utilized. They found that a

model that first transforms the raw probability estimates and then aggregates them using

log odds improves the forecasting quality the most, compared to the simple aggregation

and that the hierarchical modeling of individual difference slightly enhances the forecasting

quality. A few studies utilized different recalibration methods. Ranjan and Gneiting (2010)

applied beta transformation and Satopää et al. (2014) used a logit model to solve the lack of

sharpness of probability judgments and improve the accuracy of probability forecasts. In

the current paper we focus on the LLO function and seek to extend its use.

We should clarify that there is no single and “best” recalibration approach. The various

applications estimate parameters that seek to optimize one aspect of the forecasts, typi-

cally their accuracy. Naturally, if various people seek to optimize different features of the

forecasts, they may choose different approaches that can lead to different transformations.

Previous studies focused on the recalibration of single (point) probability forecasts associ-

ated with simple binary events (e.g., What is the probability that it will rain tomorrow in

city Z? What is the probability that candidate A will win next month election in country

Y?). This is, of course, a widely used elicitation format in forecasting. Yet recent studies

have focused on elicitation methods that seek to estimate complete subjective probability

distributions of continuous random variables in a relatively efficient way (Abbas et al.,

2008; Haran, Moore & Morewedge, 2010; Wallsten, Shlomi, Nataf & Tomlinson, 2016).

Abbas et al. (2008) discussed the Fixed Probability (FP) and the Fixed Value (FV) meth-

ods, both of which elicit points along the cumulative distribution of a target variable, - .

Haran, Moore and Morewedge (2010) formalized and validated the Subjective Probability

Interval Estimates (SPIES) in which judges are asked to allocate probabilities to several

predefined bins that represent a C-fold (mutually exclusive and exhaustive) partition of the

full range of the target variable. Several large-scale forecasting projects including the Sur-

vey of Professional Forecasters (SPF) of European Central Bank (ECB; Garcia, 2003) and

the Federal Reserve Bank of Philadelphia (Croushore, 1993) utilize this “bin” method to

collect expert forecasters’ judgments regarding macroeconomic indicators such as inflation

and GDP growth rate.

2 The current paper

In this paper, we describe an extension of Karmarkar’s transformation function that can

be applied simultaneously to any number of points, on the cumulative distribution, � (-)2,

of a random variable, - . These (� − 1) points on � (-) can be obtained by any of

2� (-) denotes the cumulative distribution function of random variable - .
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methods described earlier but, to fix ideas, it is probably best to think of the SPIES (bins)

method where judges assign probabilities to each of the � discrete bins. We illustrate

this recalibration approach by re-analyzing data from the quarterly Survey of Professional

Forecasters (SPF) conducted by the European Central Bank (ECB). We seek to determine

under what circumstances can the proposed recalibration method improve the accuracy of

the forecasts and what degree of improvement can be expected, and we illustrated how this

approach can be used in practice.

2.1 The transformation function

In this context recalibration means moving the distribution away from an uninformed

uniform distribution that assigns an equal probability, 1/�, to each of the � bins. In the

binary case the one-parameter Karmarkar function applies a linear transformation to the

log-odds of the event. Here we apply the same approach to the ratio of the odds inferred from

the probability assigned to any given bin, (
%(Bin)

1−%(Bin)
), to the odds under equal probability

(i.e., 1/(� − 1)), so for every bin the recalibrated probability %∗ is obtained as:

log

(
(� − 1) %∗ (Bin)

1 − %∗ (Bin)

)
= W log

(
(� − 1)% (Bin)

1 − % (Bin)

)
(4)

This implies the transformation function:

%∗ (Bin) =
[(� − 1)%(Bin)]W

[(� − 1)%(Bin)]W + (� − 1) (1 − % (Bin))W
(5)

In the binary case, � = 2, this formula recovers Karmarkar’s transformation (Equation

3). If the parameter W > 1, all probabilities > 1/� increase (i.e., move closer to 1) and

all probabilities < 1/� decrease (move closer to 0), so the recalibration extremizes the

distribution. If the parameter W < 1, the pattern is reversed, so the transformation de-

extremizes the distribution, and if W = 1 the distribution is not transformed. Three “anchor”

probabilities – 0, 1/� and 1 – are invariant under the transformation for all values of W.

This suggests that for any given �, all transformation curves cross at ?8 = 1/�. Figure 1

illustrates the effects of the transformation. Figures 1A and 1B apply various parameters

to the cases � = 3 and � = 5, respectively, Figures 1C and 1D display the effect of two

transformation (W = 0.5 and 2) for various values of�. Naturally, one can use more complex

recalibration functions with additional parameters, but we opted to focus on this simple,

intuitive and easy to interpret function.

2.2 The calibration function

Whether or not probability forecasts are transformed, ordinal forecasts (such as one implied

by the binning of a continuous variables) are assessed by the ordinal Brier score. This

scoring function depends on, and is sensitive to, the specific bin that includes the eventual

95

http://journal.sjdm.org/vol17.1.html


Judgment and Decision Making, Vol. 17, No. 1, January 2022 Recalibrating forecasts

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

P

P
*

Gamma

0.5

1

2

2.5

l.5

C = 3A

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

P

P
*

Gamma

0.5

1

2

2.5

l.5

C = 5B

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

P

P
*

C

2

3

4

5

Gamma = 0.5C

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

P

P
*

C

2

3

4

5

Gamma = 2D

Figure 1: The recalibration function for various numbers of bins and transformation param-

eters.

resolutions of the event. More specifically, if a forecaster assigns the same probability to

several bins, it will be scored differentially, as a function of its proximity to the bin of the

correct answer. Following Jose et al. (2009) the score is defined by considering all (� − 1)

binary partitions that preserve the ordering of the categories [�1, (1 − �1)]; [�2, (1 −

�2)]; · · · [��−1, (1 − ��−1)]3, (binary) Brier score for each of these partitions and, then,

averaging them. If the eventual outcome is in the R’th (1 ≤ R ≤ C) bin, it is possible to

3�8 denotes the cumulative probability of the first 8 bin(s), i.e., �2 denotes the cumulative probability of

the first 2 bins, specifically, the sum of the first two bin probabilities.

96

http://journal.sjdm.org/vol17.1.html


Judgment and Decision Making, Vol. 17, No. 1, January 2022 Recalibrating forecasts

show that:

When ' = 1 : �( = 2[

�−1∑

8=1

(1 − �8)
2]/(� − 1) (6)

When ' = � : �( = 2[

�−1∑

8=1

�8
2]/(� − 1) (7)

Otherwise: �( = 2[

'−1∑

8=1

�2
8 +

�−1∑

8='

(1 − �8)
2]/(� − 1) (8)

The last formula can be re-expressed in another form that highlights how the BS depends

not only on the distribution of forecasts, �8, but also on the bin of the correct response, ',

and the way its location “splits” the distribution over the � bins:

BS = 2[(� − ') +

�−1∑

8=1

�2
8 − 2

�−1∑

8='

�8]/(� − 1) (9)

2.3 The recalibration procedure

When recalibrating real forecasts, there are two options for the choice of recalibration

parameter W. One can apply a pre-determined value based on previous experience, experts’

advice, etc. Alternatively, one can estimate the optimal parameter W that maximizes the

accuracy of the transformed forecasts where accuracy is measured by the criterion of choice

(in our case, the Brier score). We focus on the latter approach and estimate optimal values of

W. The bins (categories) in the ECB data are ordinal, so it is more convenient to recalibrate

cumulative probabilities (If we recalibrate specific bin probabilities, we need to add one

more step of normalization to make the sum of � recalibrated bin probabilities equal to 1).

With these considerations in mind, we implemented the following recalibration proce-

dure. First, cumulative probabilities �8 for each valid case were computed based on the

probabilities assigned to the various bins (�8 =
∑8

1 %(bin)8). Second, the extremization

function (Equation 5) was applied to the cumulative probabilities �8 and the recalibration

parameter, W, was estimated by minimizing the corresponding ordinal Brier Score (BS).

Finally, the optimal parameter was applied to the relevant probabilistic forecasts and the

forecasting performance was evaluated by calculating the ordinal BS of the recalibrated

forecasts.

Consider one forecaster in the ECB data set: In 2001Q1, participant (ID # 1) assigned

probabilities to the 9 possible bins for the inflation of the current year: {0, 0, 0, 0.15, 0.50,

0.30, 0.05, 0, 0}. The 9 corresponding cumulative probabilities are {0, 0, 0, 0.15, 0.65,

0.95, 1, 1, 1}. Transformation function in Equation 5 was applied to these cumulative

probabilities, and transformed probabilities of all 9 cumulative probabilities were expressed

as a function including a single parameter W, i.e., �4 = 0.15, transformed cumulative

probability �∗
4
=

(8∗0.15)W

(8∗0.15)W+8∗0.85W
. The ordinal BS was expressed as a function of W by
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plugging in transformed cumulative probabilities �∗
1

to �∗
8

to Equation 8 (the ground truth

for this item was 2.35 which is in the 6th bin, hence Equation 8 is appropriate). The optimal

parameter W was estimated by minimizing the ordinal BS function (in this case, W = 0.62).4

The recalibrated cumulative distribution over the� = 9 bins after the optimal transformation

became {0, 0, 0, 0.13, 0.40, 0.74, 1, 1, 1}. The BS of the optimally recalibrated forecasts is

BS= 0.062, compared to BS = 0.112 for the original forecasts. The cumulative distributions

before and after transformation of this de-extremization example (W < 1) are plotted in the

upper 2 panels of Figure 2. Another example of extremization (W > 1), based on a different

forecaster (ID # 2) for the same event on the same round, is provided in the lower two

panels. In this case, the raw cumulative probabilities are {0, 0, 0, 0, 0, 0.7, 1, 1, 1}, and

after transformation based on optimal W = 3.91, the transformed cumulative probabilities

are {0, 0, 0, 0, 0, 0.99, 1, 1, 1}.

3 Data

The Survey of Professional Forecasters (SPF) is a quarterly survey conducted by the Euro-

pean Central Bank (ECB) since 1991. The experts forecast some macroeconomic indicators

for the European Union (EU). The experts are affiliated with financial or non-financial in-

stitutions in the EU. At each release of the survey, participants are asked to report their

forecasts about future HICP (Harmonised Index of Consumer Prices) inflation, the real

GDP growth rate and the unemployment rate of in the Euro zone.

The ECB survey elicits expectations for different forecasting horizons (forecasts of the

current year, next calendar year, year after next year and five/six5 years ahead of current

calendar year) for the three variables. The survey elicits both point estimates of these

quantities as well as full probability distributions of target quantities using the bin method

(Haran, Moore & Morewedge, 2010) (see sample questionnaire in Appendix A). We re-

analyze the probability distributions for the period starting on the first quarter of 2001 (2001

Q1) to the last quarter of 2017 (2017 Q4), i.e., 72 successive quarters.6 A total of 99 experts

forecasted at least once during this period, but not every expert forecasted all quantities

every quarter. Our data set consists of 14,117 forecasts, which translates into an average of

about 196 forecasts per target quantity per quarter and 49.02 forecasts per target quantity

and time horizon7 in a quarter. Some cases were removed for the following four reasons

(see details in Table 1):

1. Missing cases (no values were assigned to any bins).

4This optimization was realized by R function optim() with the optimization algorithm, the adjusted quasi

Newton method based on Byrd et al. (1995) with the lower bound of 0.

5Expectations of five years ahead of current calendar year are asked in the surveys administered in the first

and the second quarters, six years ahead in the Q3 and Q4 surveys.

6The data were downloaded from the ECB Statistical Data Warehouse https://sdw.ecb.europa.eu/.

7Not all forecast horizons are forecasted at every quarter. Changes in forecast horizon structure over time

are documented in Appendix B.
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Figure 2: Two examples of recalibration using the ECB inflation data.

2. The probability estimates of the � bins did not sum up to 1.

3. True values (ground truths) for the target quantities were not available at the time of

the analysis, e.g., probability estimates of year 5 in 2017 Q3 (forecasts of 2022).

4. The parameter estimation procedure failed.

The number of bins and their corresponding upper and lower bounds of all three indi-

cators are determined by the ECB and change over time, as shown in Table 2.
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Table 1: Reasons for excluding forecasts from the data set

Original

cases

Forecasts

missing

Violating

unitarity axiom

No ground

truth

Optimization

failure

Cases

analyzed

Inflation 14117 2473 617 653 2 10371

GDP 14117 2628 584 646 1 10257

Unemployment 14117 3321 527 573 1 9695

Table 2: The number of bins and their corresponding ranges for the various indicators.

Time period # of bins Range

Inflation 2001Q1–2008Q2 9 (0, 3.5)

2008Q3–2009Q1 10 (0, 4)

2009Q2–2009Q4 14 (–2, 4)

2010Q1–2017Q4 12 (–1, 4)

GDP 2001Q1–2008Q3 10 (0, 4)

2008Q4–2009Q1 12 (–1, 4)

2009Q2–2009Q4 24 (–6, 4)

2010Q1–2017Q4 12 (–1, 4)

Unemployment 2001Q1–2002Q1 13 (6.5, 12)

2002Q2–2009Q1 13 (5.5, 11)

2009Q2–2009Q4 21 (5.5, 15)

2010Q1–2017Q4 19 (6.5, 15)

4 Results

Basic descriptive statistics of re-calibration parameter and the corresponding BS of three

macroeconomic indicators are summarized in Table 3. The cumulative distributions of

estimated parameters of three indicators across all the cases are presented in Figure 3.

There is a considerable number of values close to 0, and a large number of very high values.

It appears that GDP requires the least amount of recalibration, and also a considerable

amount of cases are optimized with de-extremization (optimal W < 1). The cumulative

distribution of the re-calibrated Brier scores is displayed in Figure 4. These scores indicate

that GDP is the hardest indicator to predict and inflation is the most predictable. The

presence of many high values of parameters distorts the distribution, so we also present

(in Figure 5) the distribution of parameters based only on those cases where the estimated

parameters do not exceed 10. This eliminates between 10 and 15% of the cases for the

various indicators (Table 3).
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Table 3: Descriptive statistics of the recalibration parameter, W, and the corresponding Brier

Scores.

Variable forecasted n W < 10 Mean Median SD IQR

Recalibration

Parameter, W

Inflation 10371 0.85 7.111 0.914 17.555 4.076

GDP 10257 0.87 5.496 1.048 13.405 5.228

Unemployment 9695 0.9 5.495 0.733 19.947 1.973

Brier Score Inflation 10371 --- 0.105 0.041 0.165 0.128

GDP 10257 --- 0.192 0.069 0.25 0.218

Unemployment 9695 --- 0.122 0.024 0.228 0.119
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Figure 3: Cumulative distributions of the re-calibration parameter (W) of the three economic

indicators.

4.1 Re-calibration parameters and forecasting horizon

Descriptive statistics of re-calibration parameters of different forecasting horizons (FH) of

all three economic indicators are summarized in Tables 4–6. We present here only the

cases where W≤10. Analyses of the full data set yield similar results and are relegated to

Appendix C.
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Figure 4: Cumulative distributions of the recalibrated Brier Scores of three economic indi-

cators.
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Figure 5: Cumulative distributions the re-calibration parameter of the three indicators for

cases where W≤10.
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Several regularities stand out in these displays: (1) There is a general (but not strict8)

monotonic pattern of the mean parameter values – longer-term forecasting is optimized with

higher recalibration parameters compared to shorter forecasting horizons in inflation and

GDP. This pattern does not hold for unemployment rate where years 5 and 6 do not yield

higher estimated parameters than years 1, 2 and 3; (2) In almost all the cases, the variability

of the optimal parameters (as measured by their SDs and IQRs) increases as function of the

forecasting horizon (Here, again, the variability in the unemployment rates for years 5 and

6 are unusual); (3) The distributions of the estimated parameters are skewed to the right: In

most cases the median W is below 1, indicating that the majority to the forecasts are being

de-extremized to some degree but, on the other hand, a minority of cases induce vary large

extremization driving the mean W.

Table 4: Recalibration parameters for Inflation by forecasting horizon (FH) (W ≤ 10).

FH n Mean Median Balance SD IQR Skew

The current year 2994 1.43 0.86 –0.18 2.04 1.33 0.28

Next year 2841 1.14 0.63 –0.49 1.88 1.02 0.27

Year after next year 1359 1.7 0.76 –0.27 2.46 1.72 0.38

Year 5/6 1573 1.91 0.98 –0.02 2.42 2.49 0.38

Notes: Balance =

(cases with W>1−cases with W<1)

(cases with W>1+cases with W<1)
.

Skew = (Mean − Median)/(�.

Table 5: Recalibration parameters for GDP by forecasting horizon (FH) (W ≤ 10).

FH n Mean Median Balance SD IQR Skew

The current year 3059 1.44 0.74 –0.26 2.19 1.39 0.32

Next year 2791 2.06 0.91 –0.09 2.65 3 0.43

Year after next year 1428 1.84 0.91 –0.11 2.45 1.78 0.38

Year 5/6 1614 2.32 1.18 –0.24 2.54 2.91 0.45

Notes: Balance =

(cases with W>1−cases with W<1)

(cases with W>1+cases with W<1)
.

Skew = (Mean − Median)/(�

To confirm that forecasts of longer terms require higher recalibration, we combined the

four forecasting horizons into two classes, with Years 1 and 2 representing “short term” and

Years 3 and 5/6 representing “long term”, and compared parameters of the two classes for

all three economic indicators. Table 7 shows that long term forecasts always require larger

8The forecasting of next year’s GDP yields higher estimated average W than the forecasting of the year

after, which does not follow the general pattern.
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Table 6: Recalibration parameters for Unemployment by forecasting horizon (FH) (W ≤ 10)

FH n Mean Median Balance SD IQR Skew

The current year 3026 1.09 0.77 –0.24 1.6 1.22 0.2

Next year 2762 1.41 0.67 –0.21 2.1 1.73 0.35

Year after next year 1227 1.68 0.74 –0.15 2.28 2.6 0.41

Year 5/6 1738 0.54 0 –0.7 1.22 0.65 0.44

Notes: Balance =

(cases with W>1−cases with W<1)

(cases with W>1+cases with W<1)
.

Skew = (Mean − Median)/(�

parameters, indicating that estimates of distant events are likely to be more conservative

than those of closer events, therefore require greater extremization to optimize the accuracy.

This observation is confirmed by the significant t-tests between the two time horizons for

inflation (t(4,899) = –10.2, p < .05) and GDP (t(6,011) = –6.45, p < .05), but is not supported

by the unemployment forecasts, t(6,072) = 5.57, p > .05.

Table 7: Recalibration parameters (W) for the three indicators for short- and long-term fore-

casts.

Indicator Forecasted Forecast Horizon n Mean Median SD IQR

Inflation Short Term 5835 1.288 0.733 1.968 1.208

Long Term 2932 1.817 0.837 2.439 2.185

GDP Short Term 5850 1.736 0.828 2.441 2.084

Long Term 3042 2.094 1.071 2.511 2.147

Unemployment Short Term 5788 1.241 0.732 1.861 1.386

Long Term 2965 1.01 0 1.827 1.067

4.2 Brier score improvement and forecasting horizons

In this section we document the benefits of recalibration, in terms of Brier scores. Let

Relative Brier Score Difference (RBSD) measure the improvement in accuracy that can be

attributed to re-calibration. More specifically, let

RBSD =

Raw BS − Extremized BS

Raw BS
(10)

Higher (lower) RBSD indicates more (less) improvement in the forecasting quality. Overall,

recalibration significantly improved the accuracy of the forecasts (Mean RBSD = .569, .452

and .574 for the three indicators). Figures 6–8 summarize the RBSD for different forecasting
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horizons, showing that distant forecasting horizons yield lower RBSD and benefit less from

recalibration, compared to the closer forecasting horizons. In fact, recalibration is most

effective and beneficial for year 1 (Mean RBSD = .621, .539 and .623 for the three indicators).
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Figure 6: RBSD as a function of forecasting horizon (Inflation).

4.3 Practical applications involving out of sample re-calibration

In the previous sections we estimated optimal re-calibration parameters (W) for each forecast

and used these case-specific estimates to re-compute BS and illustrate the effectiveness of

the approach. These are, essentially, proofs of concept results but this analysis is analogous

to in-sample prediction and, as such, subject to overfitting the data. This is neither a practical

approach for predicting future events, nor the optimal method for testing the efficacy of the

approach in real-life applications.

In practical settings, one would estimate the optimal parameters based on past perfor-

mance. This is only possible after the ground truth is revealed which, in the cases studied

here, takes a long time. More precisely, the minimal waiting period is the target time
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Figure 7: RBSD as a function of forecasting horizon (GDP).

horizon. For example, if at time C we wish to predict the value of an indicator at time (C + :)

we need to rely on the optimal aggregate of the forecasts provided at time (C − :), which

resolve, and allow estimation of W, only at time C.

Another consideration that affects the best use of historical information is how to

best utilize case-specific estimates of the past quarters (the group of judges forecasting in

every quarter may also change over time, so it is impossible to generate individual-specific

parameters). To explore practical strategies for recalibrating forecasts, we compared the

performance of five different types of re-calibration parameters that “borrow” information

from other forecasts and forecasters.

1. Domain-specific: The median of all the case-specific parameters (Ws) (collapsing all

the time horizons and quarters) of any given economic indicator.

2. Quarter-specific: The median of all the case-specific parameters (Ws) (collapsing all

the time horizons) of the same quarter for each economic indicator.
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Figure 8: RBSD as a function of forecasting horizon (Unemployment).

3. Forecast horizon specific: The median of all the case-specific parameters (Ws) (col-

lapsing all the quarters) of the same forecasting horizon for each economic indicator.

4. Quarter & Forecast horizon specific: The median of all the case-specific parameters

(Ws) of the same forecasting horizon and the same quarter for each economic indicator.

5. Aggregate: Estimate the optimal parameter (W) for the mean probability distribution9

for any given quarter and FH for every indicator.

We calculated the parameters based on these five approaches, used them to re-calibrate

the forecasts, and we compared the BS obtained from the different selections to the per-

formance of two baselines: No recalibration (W = 1) and the optimal recalibration based

on the case-specific W. The results are summarized in Table 8. For all three indicators,

the aggregate W performs best (closest to the case specific upper bound) and the quarter &

9The mean aggregated parameter is computed in two steps: First, the aggregated forecast is obtained

by taking the average of assigned probabilities of the same bin across all judges; Second, the optimization

procedure is applied to obtain the optimal extremization parameter for the aggregated forecast.
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forecasting horizon specific W performs the second best. Both approaches systematically

outperform the original (untransformed) forecasts across all three domains.

Table 8: Brier scores of different types of recalibration parameters for three indicators.

Inflation GDP Unemployment

Mean Median Mean Median Mean Median

No extremization 0.217 0.14 0.299 0.18 0.219 0.109

Domain 0.2 0.123 0.3 0.184 0.204 0.111

Quarterly 0.179 0.1 0.367 0.252 0.184 0.102

FH 0.2 0.119 0.3 0.179 0.205 0.109

Quarterly & FH 0.141 0.076 0.219 0.11 0.159 0.084

Aggregated BS 0.092 0.064 0.15 0.063 0.046 0.032

Case-specific 0.105 0.041 0.192 0.069 0.122 0.024

Note: The best two methods are highlighted

Given these results, we estimated first the two top-performing W parameters (the optimal

aggregate W and the quarter & forecasting horizon specific W) in every quarter and for every

relevant time horizon for the three indicators and used these parameters to re-calibrate

the relevant forecasts (i.e., same time horizon for each indicator) for the next period. For

example, if forecasts made at 2002Q1 target one calendar year ahead, we estimated the best

W based on forecasts made a year earlier (2001Q1) as soon as the target events resolved (at

2002Q1) and used them to predict the next round of forecasts for the same time horizon

(2003Q1).

Table 9 presents the mean Brier scores across all relevant quarters for every time horizon

and indicator. The first and the second panels of the table show the original Brier scores

(untransformed) and the case-specific Brier scores as the lower and the upper benchmarks.

The third panel shows the Brier scores based on the recalibrated forecasts based on the

optimal aggregate W of the previous period and the fourth panel shows the scores based

on the quarter & forecasting horizon specific W of the previous period. Both sets of W

parameters estimated from the previous periods outperform the untransformed BS, but only

for short-term forecasts for the current year. For the longer horizons the performance of

the optimal parameters based on the previous periods does not outperform the baseline BS.

This pattern is consistent for all three indicators.

Table 10 focuses on the current year forecasts for the various indicators and displays

the number of individual forecasts, where applying one of the two approaches improved

or, conversely, caused a deterioration in the Brier score (we excluded cases where W = 1,

and the Brier score in unaltered.). In a significant majority of the cases, recalibration

using the two top-performing estimates of the W parameter from the previous period was
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Table 9: Performance of the optimal aggregated W and the quarter & forecasting horizon

specific W of the previous time period.

Economic Indicator

Time Horizon Inflation GDP Unemployment

Mean Original Brier Scores (W=1)

Current year 0.09 0.186 0.071

Next year 0.255 0.365 0.168

Year after next year 0.275 0.32 0.263

Year 5/6 0.32 0.364 0.527

Mean Case-specific Brier Scores

Current year 0.033 0.101 0.027

Next year 0.128 0.245 0.083

Year after next year 0.14 0.208 0.151

m Year 5/6 0.16 0.243 0.33

Mean Recalibrated Brier Scores Using Aggregated BS Ws Estimated in Previous Period

Current year 0.061 0.127 0.048

Next year 0.252 0.406 0.175

Year after next year 0.365 0.472 0.305

Year 5/6 0.333 0.369 0.594

Mean Recalibrated Brier Scores Using Quarterly & FH Ws Estimated in Previous Period

Current year 0.078 0.131 0.061

Next year 0.283 0.448 0.199

Year after next year 0.394 0.496 0.345

Year 5/6 0.428 0.385 0.588

Note: Cases where recalibration improved the Brier Scores are highlighted.

successful. Optimal aggregated W of previous period yields better (lower) BSs compared to

the untransformed baseline in at least 77% cases for the three indicators. Quarter & horizon

specific W’s of previous period improved the BSs in at least 69% for the three indicators.

The two sets of estimates of quarter and domain specific Ws are highly consistent, as

shown in Figure 9. After excluding a few extreme estimates, and concentrating only on

cases where W ≤ 10, the two sets correlate highly (r = 0.87). The aggregated W performed

better than quarter & horizon specific W and the out-sample recalibration worked best for

the GDP forecasts, for both methods.
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Table 10: Distribution of short term individual forecasts where recalibrations improved ac-

curacy

Economic Indicator

Inflation GDP Unemployment Total

Aggregated BS W’s Estimated in Previous Period

Number of forecasts 3259 3281 3127 9667

Better than baseline 2,497 (76.6%) 2,686 (81.9%) 2,426 (77.6%) 7,609 (78.7%)

Worse than baseline 762 (23.4%) 595(18.1%) 701 (22.4%) 2,058 (21.3%)

Balance 0.53 0.64 0.55 0.57

Quarterly & FH W’s Estimated in Previous Period

Number of forecasts 3211 3281 3083 9575

Better than baseline 2,222 (70%) 2,535 (77.3%) 2,115 (68.6%) 6,872 (71.8%)

Worse than baseline 989 (30%) 746 (22.7%) 968 (32.4%) 2,703 (28.2%)

Balance 0.38 0.55 0.37 0.44

Note: Balance =
Better−Worse
Better+Worse
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Figure 9: Joint distribution of two sets of out-of-sample, quarter and domain specific, esti-

mates of the recalibration parameters (all Ws ≤ 10).
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5 Beyond Brier Scores

Our approach was driven by the desire to improve the accuracy of the probabilistic fore-

casts, as measured by their Brier Scores. This choice is motivated and justified by the

fact that accuracy is, typically, the top desideratum of good forecasts, and that the Brier

Scores are considered by many the “gold standard”. For example, they are often used in

forecasting competitions (e.g., Himmelstein, Atanasov & Budescu, 2021; Mellers et al.,

2014). However, as some of the reviewers of this manuscript have pointed out, this is not

the sole criterion one could consider and, in fact, several appealing alternatives are well

documented (e.g., Steyvers, Wallsten, Merkle & Turner, 2014).

In this section we illustrate the effect of the recalibration on an alternative quality

measure. Many people prefer evaluating the quality of forecasts by comparing a single

best value, extracted from the distribution, to the ground truth. This approach is seen as

simpler and easier to interpret, because its scale is more intuitive than Brier. In this spirit,

we calculated the median of each distribution in our sample (Raw and Transformed form)

and calculated its Relative Absolute Distance (RAD) to the ground truth:

RAD =

|Median Estimate − Ground Truth|

|Ground Truth|

Figures 10–12 display the joint distributions of the Raw and Transformed RADs for

the three indicators. Most of the points lie below the respective diagonals indicating that

the recalibrated distributions provide more accurate predictions. Thus, on average, and in

most individual cases the medians inferred from the recalibrated distributions are closer to

the eventual outcomes. The proportion of cases where the recalibration improved the point

prediction is 76.02% (Mean improvement = 0.65, SD = 1.49) for Inflation, 78.16% (Mean

improvement = 0.48, SD = 1.01) for GDP and 72.23% (Mean improvement = 0.04, SD =

0.07) for Unemployment.

We should clarify that each quality criterion can, in principle, be used to derive an

optimal transformation (e.g., one could seek to derive distributions such that their RAD, or

other metrics, be minimized). We focused on the Brier score but this example illustrates

that this transformation can also benefit other relevant measures of quality.

6 Concluding remarks

There are several compelling examples in the forecasting literature (e.g., Baron et al., 2014;

Turner at al., 2014) illustrating the benefits of recalibration of individual forecasts, as well as

aggregates of multiple forecasts, of the target events. These examples involve binary events

and, as such, amount to recalibrating – extremizing or de-extremizing – a single probability.

In this paper we proposed, to our knowledge, the first extension of this approach that allows

one to recalibrate a cumulative probability function based on� of its quantiles in a consistent

and coherent way that is captured by its single parameter, W. The recalibration function
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Figure 11: Joint distribution of the Raw and Transformed RADs for GDP.

is defined relative to the uniform distribution and its impact is defined in relation to the

invariant “anchor”, Prob = 1/�, in the sense that probabilities below or above this anchor
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Figure 12: Joint distribution of the Raw and Transformed RADs for Unemployment.

are transformed in different directions. The recalibration function generalizes Karmarkar’s

transformation that was used often in the special case � = 2.

We discussed some of the properties of the proposed function and illustrated its use

by re-analyzing a large body of forecasts for three economic indicators made by almost

100 experts and spanning 72 quarters. This analysis confirmed that recalibration can be

highly beneficial (see Figures 6–8) and we found that its effects are not uniform, in the

sense that not all indicators benefit equally. It also clearly showed that, on average, longer

term forecasts require more aggressive recalibration. Finally, we have illustrated obvious

practical applications of our approach by showing how one can use recalibration parameters

estimated in previous periods to significantly increase the accuracy of future short-term

forecasts.

We make no claims of optimality or uniqueness regarding our approach. The method we

used was develop as a straightforward generalization of the simplest function used in binary

cases, using a single parameter. We expect that more complex function could improve

accuracy further, and we hope that future work in this area will explore alternative, possibly

more flexible and powerful, recalibration functions. One issue we did not study is how the

function operates when applied to distributions that are elicited at various levels of precision

(i.e., number of bins). In our dataset, the experts were typically given more than 10 bins (see

details in Table 2), and we observed that many tail bins were often assigned probabilities

of 0. One way to improve the recalibration process may be to develop algorithms that are

sensitive to the total number of bins and/or the way the judges use them.
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An interesting question that was raised by one of the reviewers of the paper is whether

one should consider forecast recalibration as a one-shot adjustment, or as an additional

component to be implemented periodically as part of the forecasting process? We believe

that the answer is somewhere in between these two extremes. In a perfectly stable and

stationary world, once a transformation function is identified it could be applied routinely

to all new forecasts in the same domain. However, recalibration is not perfect (see our

results), the estimation is susceptible to random errors and capitalization of chance and, at

least in principle, it could be improved as more data become available. And, of course, the

world is not stationary and the circumstances that drive the behavior of the target variables

of interest, may change over time making older recalibration parameters suboptimal or

obsolete.
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Appendix B: Forecast structure over time

Appendix C: Results of full dataset

This part includes the same analysis results as the subsection re-calibration parameters and

forecasting horizon, with the full data. Tables 11–14 correspond to Tables 4–7 in the main

manuscript.

Table 11: Inflation by FH (all Ws).

FH n Mean Median SD IQR

The current year 3402 5.53 1 14.5 2.7

Next year 3315 6.08 0.73 15.86 2.66

Year after next year 1646 8.57 0.91 19.81 5.32

Year 5/6 2008 10.29 1.4 21.93 7.47

Table 12: GDP by FH (all Ws).

FH n Mean Median SD IQR

The current year 3360 3.76 0.84 11.43 2.66

Next year 3289 5.98 1.12 13.19 6.45

Year after next year 1621 5.38 1.01 13.05 4.7

Year 5/6 1987 7.73 1.61 16.42 6.51
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Table 13: Unemployment by FH (all Ws).

FH n Mean Median SD IQR

The current year 3207 3.97 0.83 16.11 1.37

Next year 3135 6.87 0.84 23.09 2.77

Year after next year 1518 9.49 1.17 26.28 5.91

Year 5/6 1835 2.52 0 11.75 0.81

Table 14: Recalibration parameters for the three indicators for short and long term forecasts.

n Mean Median SD IQR

Inflation Short Term 6716 5.801 0.841 15.187 2.675

Long Term 3654 9.52 1.174 21.019 6.477

GDP Short Term 6649 4.856 0.965 12.381 4.393

Long Term 3608 6.675 1.234 15.041 5.819

Unemployment Short Term 6342 5.399 0.838 19.92 1.907

Long Term 3353 5.675 0.334 20 2.19
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