Online supplementary material for manuscript "Seven (weak and strong) helping effects systematically tested in separate evaluation, joint evaluation and forced choice."

This document includes:

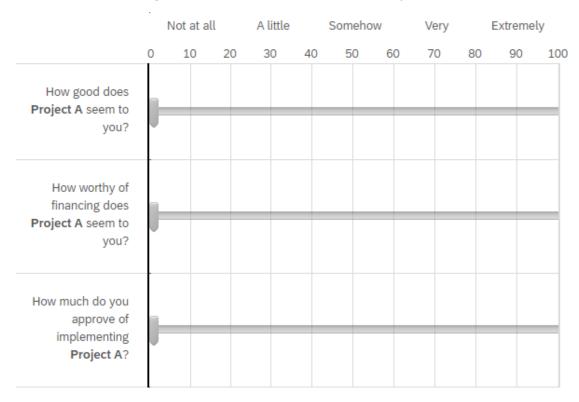
- 1. Stimuli material for each study. (Pages 2-44)
- 2. Additional results for each study (Pages 45-56)
- 3. Additional tables about comparisons of preferences (Pages 57-65)
- 4. Tables 4-10 with mean differences written out (Pages 66-71)
- 5. Screenshots of common language effect size calculations (Pages 72-91)
- 6. Additional and alternative tables (Pages 92-94)

Raw data and variable keys are uploaded on OSF https://osf.io/8fs46/?view_only=2f05b34b748642d08f645283e10062e4

Do not hesitate to point out mistakes and ambiguous points or give suggestions for how to improve this online supplementary material.

Identical introduction text, attractiveness-rating and resource allocations were used in eight of the ten studies (IVE1 and IVE2 were slightly different, see below)

Common introduction text:

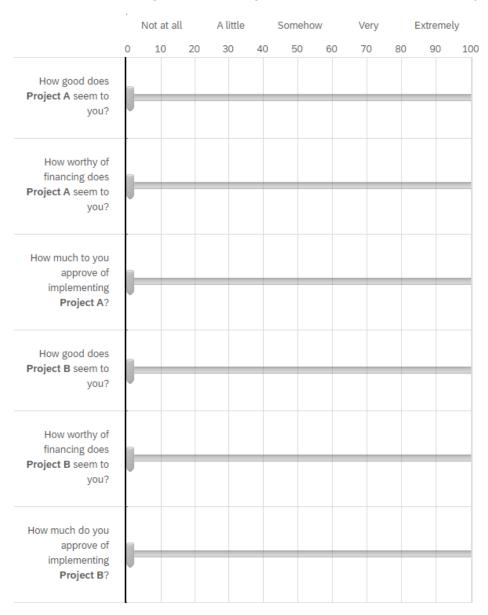

Welcome!

This study examines people's evaluation of medical help projects. You will read descriptions of two different projects and respond to a few questions.

This study is very short but will require your full attention. There are embedded attention checks questions, and an inaccurate response means that you cannot complete the HIT.

Common attractiveness-rating in Separate Evaluation (SE)

Please evaluate **Project A [B]** based on the information you have.


Common resource-allocation in Separate Evaluation (SE)

Please write how much of the budget you want to earmark to **Project A[B]** based on the information you have. The default allocation for a help project is 20% but if you think **Project A [B]** seems specifically important or worthy of financing you could earmark a higher percentage of the budget. The sum must add up to 100%.

Project A	0	%
Other projects	0	%
Total	0	%

Common attractiveness-rating in Joint Evaluation (JE)

Please evaluate **Project A** and **Project B** based on the information you have.

Common resource-allocation in Joint Evaluation (JE)

Please write how much of the budget you want to earmark to **Project A** and to **Project B** respectively. If you think one of the projects seems more important or worthy of financing you should give a percentage **larger than 50%** to that project. The sum must add up to 100%.

Project A	0	96
Project B	0	96
Total	0	96

Common forced choice

Your task is to choose which of the two helping projects to implement and which not to implement. If one project seems relatively better to you, you should choose that project. If both projects seem exactly equally good to you, you can make your choice by using the random number generator provided below.

Please write th (A or B)	e name of the	e project yo	u choose to ii	mplement

True Random Number Generator
Min: Max: 2
Generate Result:
Powered by RANDOM.ORG

Study PDE1 (4 out of 4)

Condition 1: A₆

	Project A
Who are affected by the disease?	People of all ages
In which country can the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	6 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100,000	6 ill patients can be treated for \$100,000 (100% of those in need)

Condition 2: A₄

	Project A	
Who are affected by the disease?	People of all ages	
In which country can the project be implemented?	USA (US patients will be treated)	
Number of ill patients currently in need of treatment	4 patients currently need treatment	
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	
Number of patients that can be treated for \$100,000	4 ill patients can be treated for \$100,000 (100% of those in need)	

Condition 3: B₆

	Project B
Who are affected by the disease?	People of all ages
In which country can the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100,000	6 ill patients can be treated for \$100,000 (6% of those in need)

Condition 4 and 6: A₆ vs. B₆

	Project A	Project B
Who are affected by the disease?	People of all ages	People of all ages
In which country can the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	6 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100,000	6 ill patients can be treated for \$100,000 (100% of those in need)	6 ill patients can be treated for \$100,000 (6% of those in need)

Condition 5 and 7: A₄ vs. B₆

	Project A	Project B
Who are affected by the disease?	People of all ages	People of all ages
In which country can the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	4 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100,000	4 ill patients can be treated for \$100,000 (100% of those in need)	6 ill patients can be treated for \$100,000 (6% of those in need)

- How many ill patients are currently in need of treatment (in **Project A[B]**)?
 - Response alternatives: 4/6/100 patients currently need treatment
- How many patients can **Project A[B]** treat for \$100,000?
 - Response alternatives: 4/6/10 patients can be treated for \$100,000
- How large percentage of those in need will receive treatment if **Project A** is implemented?
 - Response alternatives 6/50/100 % of those in need can be treated

Study PDE2 (4 out of 5)

Condition 1: A₆

	Project A
Who are affected by the disease?	People of all ages
In which country can the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	6 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100,000	6 ill patients can be treated for \$100,000 (100% of those in need)

Condition 2: A₄

	Project A
Who are affected by the disease?	People of all ages
In which country can the project be	USA
implemented?	(US patients will be treated)
Number of ill patients currently in need	5 patients currently need
of treatment	treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100,000	4 ill patients can be treated for \$100,000 (80% of those in need)

Condition 3: B₆

	Project B
Who are affected by the disease?	People of all ages
In which country can the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100,000	6 ill patients can be treated for \$100,000 (6% of those in need)

Condition 4 and 6: A₆ vs. B₆

	Project A	Project B
Who are affected by the disease?	People of all ages	People of all ages
In which country can the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	6 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100,000	6 ill patients can be treated for \$100,000 (100% of those in need)	6 ill patients can be treated for \$100,000 (6% of those in need)

Condition 5 and 7: A₄ vs. B₆

	Project A	Project B
Who are affected by the disease?	People of all ages	People of all ages
In which country can the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	5 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100,000	4 ill patients can be treated for \$100,000 (80% of those in need)	6 ill patients can be treated for \$100,000 (6% of those in need)

- How many ill patients are currently in need of treatment (in **Project A[B]**)?
 - Response alternatives: 5/6/100 patients currently need treatment
- How many patients can **Project A[B]** treat for \$100,000?
 - Response alternatives: 4/6/8 patients can be treated for \$100,000
- How large percentage of those in need will receive treatment if **Project A** is implemented?
 - Response alternatives 6/80/100 % of those in need can be treated

Study IGE1 (family)

Condition 1: A₃

	Project A	
Who are affected by the disease?	All adults	
Number of ill patients currently in need of treatment?	100 patients currently need treatment	
Do you know anyone affected by the disease?	YES, several of your relatives are suffering from the disease	
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	
Number of patients that can be treated for \$100.000	3 relatives of yours can be treated for \$100.000	

Condition 2: A₁

	Project A	
Who are affected by the disease?	All adults	
Number of ill patients currently in need	100 patients currently need	
of treatment?	treatment	
Do you know anyone affected by the	YES, several of your relatives	
disease?	are suffering from the disease	
	The average chance of survival	
How effective is the treatment?	increase from 20% to 80% for	
	patients that are treated.	
Number of patients that can be treated	1 relative of yours can be	
for \$100.000	treated for \$100.000	

Condition 3: B₃

	Project B	
Who are affected by the disease? All adults		
Number of ill patients currently in need of treatment?	100 patients currently need treatment	
Do you know anyone affected by the disease?	NO, you do not personally know anyone affected by the disease	
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	
Number of patients that can be treated for \$100.000	3 unknown patients can be treated for \$100.000	

Condition 4 and 6: A₃ vs. B₃

	Project A	Project B
Who are affected by the disease?	All adults	All adults
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
Do you know anyone affected by the disease?	YES, several of your relatives are suffering from the disease	NO, you do not personally know anyone affected by the disease
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	3 relatives of yours can be treated for \$100.000	3 unknown patients can be treated for \$100.000

Condition 5 and 7: A₃ vs. B₃

	Project A	Project B
Who are affected by the disease?	All adults	All adults
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
Do you know anyone affected by the disease?	YES, several of your relatives are suffering from the disease	NO, you do not personally know anyone affected by the disease
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	1 relative of yours can be treated for \$100.000	3 unknown patients can be treated for \$100.000

- Do you know anyone affected by the disease that **Project A[B]** can treat? YES, several relatives/MAYBE/NO, not anyone
- How many patients can **Project A[B]** treat for \$100.000?

 1/3/8 patients can be treated for \$100,000

Study IGE2 (nationality)

Condition 1: A₆

	Project A	
Who are affected by the disease?	People of all ages	
In which country will the project be implemented?	USA (US patients will be treated)	
Number of ill patients currently in need of treatment	100 patients currently need treatment	
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000	

Condition 2: A₄

	Project A	
Who are affected by the disease?	People of all ages	
In which country will the project be implemented?	USA (US patients will be treated)	
Number of ill patients currently in need of treatment	100 patients currently need treatment	
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	
Number of patients that can be treated for \$100.000	4 ill patients can be treated for \$100.000	

Condition 3: B₆

	Project B
Who are affected by the disease?	People of all ages
In which country will the project be implemented? Poland (Polish patients watreated)	
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment? The average chance of surincrease from 20% to 80% patients that are treatments.	
Number of patients that can be treated for \$100.000 6 ill patients can be to for \$100.000	

Condition 4 and 6: A₆ vs. B₆

	Project A	Project B
Who are affected by the disease?	People of all ages	People of all ages
In which country will the project be implemented?	USA (US patients will be treated)	Poland (Polish patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000

Condition 5 and 7: A₄ vs. B₆

	Project A	Project B
Who are affected by the disease?	People of all ages	People of all ages
In which country will the project be implemented?	USA (US patients will be treated)	Poland (Polish patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	4 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000

- Who are affected by the disease that Project A can treat?
 Only children are affected/Only adults are affected/People of all ages are affected
- In which country will **Project A** be implemented? *Poland/USA/Australia*
- How many patients can Project A treat for \$100.000?
 4/6/8 ill patients can be treated for \$100,000

Study EXISTENCE

Condition 1: A₆

	Project A
Who are affected by the disease?	Adults
In which country will the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
When can the treatments begin if the project is implemented?	The treatments can start right away
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000

Condition 2: A₄

	Project A
Who are affected by the disease?	Adults
In which country will the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
When can the treatments begin if the project is implemented?	The treatments can start right away
Number of patients that can be treated for \$100.000	4 ill patients can be treated for \$100.000

Condition 3: B₆

Condition 5. Do	
	Project B
Who are affected by the disease?	Adults
In which country will the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
When can the treatments begin if the project is implemented?	The treatments can start in about one year
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000

Condition 4 & 6: A₆ vs B₆

	Project A	Project B
Who are affected by the disease?	Adults	Adults
In which country will the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
When can the treatments begin if the project is implemented?	The treatments can start right away	The treatments can start in about one year
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000

Condition 5 & 7: A₄ vs B₆

	Project A	Project B
Who are affected by the disease?	Adults	Adults
In which country will the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
When can the treatments begin if the project is implemented?	The treatments can start right away	The treatments can start in about one year
Number of patients that can be treated for \$100.000	4 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000

- In which country will Project A[B] be implemented?
 Poland/USA/Australia
- When can the treatments begin if Project A[B] is implemented?
 Treatments can start right way/in about one year/in about five years
- How many patients can Project A[B] treat for \$100.000?
 4/6/8 ill patients can be treated for \$100,000

Study AGE

Condition 1: A₆

	Project A
Who are affected by the disease?	Only children and teenagers
In which country will the project be	USA
implemented?	(US patients will be treated)
Number of ill patients currently in need	100 patients currently need
of treatment	treatment
	The average chance of survival
How effective is the treatment?	increase from 20% to 80% for
	patients that are treated.
Number of patients that can be treated	6 ill patients can be treated
for \$100.000	for \$100.000

Condition 2: A₄

	Project A
Who are affected by the disease?	Only children and teenagers
In which country will the project be	USA
implemented?	(US patients will be treated)
Number of ill patients currently in need	100 patients currently need
of treatment	treatment
	The average chance of survival
How effective is the treatment?	increase from 20% to 80% for
	patients that are treated.
Number of patients that can be treated	4 ill patients can be treated
for \$100.000	for \$100.000

Condition 3: B₆

	Project B
Who are affected by the disease?	Only adults
In which country will the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000

Condition 4 & 6: A₆ vs B₆

	Project A	Project B	
Who are affected by the disease?	Only children and teenagers	Only adults	
In which country will the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)	
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment	
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.	
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000	

Condition 5 & 7: A₄ vs B₆

	Project A	Project B
Who are affected by the disease?	Only children and teenagers	Only adults
In which country will the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	4 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000

- Who are affected by the disease that Project A[B] can treat?
 Only children and teenagers are affected/Only adults are affected/People of all ages are affected
- In which country will **Project A[B]** be implemented? Poland/USA/Australia
- How many patients can Project A[B] treat for \$100.000?
 4/6/8 ill patients can be treated for \$100,000

Study INNOCENCE

Condition 1: A₆

	Project A
Who are affected by the disease?	Only adults who exercise regularly and eat nutritious food
In which country will the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000

Condition 2: A₄

	Project A
Who are affected by the disease?	Only adults who excercise regularly and eat nutritious food
In which country will the project be implemented?	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	4 ill patients can be treated for \$100.000

Condition 3: B₆

	Project B
Who are affected by the disease?	Only adults who eat unhealthy, smoke and drink alcohol
In which country will the project be implemented? USA (US patients will be trea	
Number of ill patients currently in need of treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000

Condition 4 & 6: A₆ vs B₆

	Project A	Project B
Who are affected by the disease?	Only adults who exercise regularly and eat nutritious food	Only adults who eat unhealthy, smoke and drink alcohol
In which country will the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000

Condition 5 & 7: A₄ vs B₆

	Project A	Project B
Who are affected by the disease?	Only adults who exercise regularly and eat nutritious food	Only adults who eat unhealthy, smoke and drink alcohol
In which country will the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	4 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000

- Who are affected by the disease that Project A[B] can treat?
 Only adults who exercise regularly and eat nutritious food/ Only adults who eat unhealthy, smoke and drink alcohol/ All adults are affected
- In which country will **Project A[B]** be implemented? Poland/USA/Australia
- How many patients can Project A[B] treat for \$100.000?
 4/6/8 ill patients can be treated for \$100,000

Study GENDER

Condition 1: A₆

	Project A
Who are affected by the disease?	Only women
In which country will the project be	USA
implemented?	(US patients will be treated)
Number of ill patients currently in need	100 patients currently need
of treatment	treatment
	The average chance of survival
How effective is the treatment?	increase from 20% to 80% for
	patients that are treated.
Number of patients that can be treated	6 ill patients can be treated
for \$100.000	for \$100.000

Condition 2: A₄

	Project A	
Who are affected by the disease?	Only women	
In which country will the project be implemented?	USA (US patients will be treated)	
Number of ill patients currently in need of treatment	-	
How effective is the treatment?	The average chance of survival increase from 20% to 80% for	
Number of patients that can be treated for \$100.000	patients that are treated. be treated 4 ill patients can be treated for \$100.000	

Condition 3: B₆

	Project B
Who are affected by the disease?	Only men
In which country will the project be	USA
implemented?	(US patients will be treated)
Number of ill patients currently in need	100 patients currently need
of treatment	treatment
	The average chance of survival
How effective is the treatment?	increase from 20% to 80% for
	patients that are treated.
Number of patients that can be treated	6 ill patients can be treated
for \$100.000	for \$100.000

Condition 4 & 6: A₆ vs B₆

	Project A	Project B
Who are affected by the disease?	Only women	Only men
In which country will the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	6 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000

Condition 5 & 7: A₄ vs B₆

	Project A	Project B
Who are affected by the disease?	Only women	Only men
In which country will the project be implemented?	USA (US patients will be treated)	USA (US patients will be treated)
Number of ill patients currently in need of treatment	100 patients currently need treatment	100 patients currently need treatment
How effective is the treatment?	The average chance of survival increase from 20% to 80% for patients that are treated.	The average chance of survival increase from 20% to 80% for patients that are treated.
Number of patients that can be treated for \$100.000	4 ill patients can be treated for \$100.000	6 ill patients can be treated for \$100.000

- Who are affected by the disease that Project A[B] can treat?
 Only women are affected/Only men are affected/ People of all genders are affected
- Who are affected by the disease that Project A[B] can treat?
 Poland/USA/Australia
- How many patients can Project A[B] treat for \$100.000?
 4/6/8 ill patients can be treated for \$100,000

Study IVE1 (Child cancer context)

Introduction text:

Welcome!

This study examines people's evaluation of medical help projects. You will read descriptions of hypothetical help projects and respond to a few questions. Please imagine yourself in the described situation.

This study is very short but will require your full attention. There are embedded attention check questions, and an inaccurate response means that you cannot complete the study.

Condition 1: A₃

There are currently around 10,000 children in your country who suffers from a rare but very serious cancer called "Type X". Untreated children with Type X cancer usually die within one year. Up until recently there were no good ways to treat Type X cancer, but a new advanced treatment has been developed and the preliminary results are promising. Around 75% of the treated children immediately get much better and there seems to be no side-effects linked to the treatment.

The only downside in that this new treatment is quite expensive. Some doctors have argued that the money spent on treating this type of cancer should be used to treat children in other, more cost-effective ways. Other doctors have defended the use of the treatment as it is the only available way to help children with Type X cancer.

Helping project A: You learn that three children living in your area have been diagnosed with Type X cancer in the past week. The infected children have been identified as William (a 1 year old boy), Hannah (a 2 year old girl) and Stephanie (a 4 year old girl). **Project A** would be able to provide a full dose of the new effective treatment to William, Hannah and Stephanie for \$600,000.

Pictures blurred for anonymity

William	Hannah	Stephanie
William is 1 year	Hannah is 2	Stephanie is 4
old and is	years old and is	years old and is
suffering from	suffering from	suffering from
Type X cancer.	Type X cancer.	Type X cancer.
He will receive a	She will receive	She will receive
full dose of	a full dose of	a full dose of
treatment if	treatment if	treatment if
Project A is	Project A is	Project A is
implemented.	implémented.	implémented.

Rating: Please evaluate **Project A** which can treat William, Hannah and Stephanie for \$600,000.

Allocation: Please write how much of the budget you want to earmark for treating William, Hannah and Stephanie. The default allocation is 20% but if you think treating William, Hannah and Stephanie seems specifically important or worthy of financing you should earmark a higher percentage of the budget. The sum must add up to 100%.

Condition 2: A₁

There are currently around 10,000 children in your country who suffers from a rare but very serious cancer called "Type X". Untreated children with Type X cancer usually die within one year. Up until recently there were no good ways to treat Type X cancer, but a new advanced treatment has been developed and the preliminary results are promising. Around 75% of the treated children immediately get much better and there seems to be no side-effects linked to the treatment.

The only downside in that this new treatment is quite expensive. Some doctors have argued that the money spent on treating this type of cancer should be used to treat children in other, more cost-effective ways. Other doctors have defended the use of the treatment as it is the only available way to help children with Type X cancer.

Helping Project A: You learn that one child living in your area has been diagnosed with Type X cancer in the past week. The infected child has been identified as Hannah (a 2 year old girl). **Project A** would be able to provide a full dose of the new effective treatment to Hannah for \$600,000.

Pictures blurred for anonymity

Hannah

Hannah is 2 years old and is suffering from Type X cancer. She will receive a full dose of treatment if Project A is implemented.

Rating: Please evaluate **Project A**, which can treat Hannah for \$600,000.

Allocation: Please write how much of the budget you want to earmark for treating Hannah. The default allocation is 20% but if you think treating Hannah seems specifically important or worthy of financing you should earmark a higher percentage of the budget. The sum must add up to 100%.

Condition 3: B₃

There are currently around 10,000 children in your country who suffers from a rare but very serious cancer called "Type X". Untreated children with Type X cancer usually die within one year. Up until recently there were no good ways to treat Type X cancer, but a new advanced treatment has been developed and the preliminary results are promising. Around 75% of the treated children immediately get much better and there seems to be no side-effects linked to the treatment.

The only downside in that this new treatment is quite expensive. Some doctors have argued that the money spent on treating this type of cancer should be used to treat children in other, more cost-effective ways. Other doctors have defended the use of the treatment as it is the only available way to help children with Type X cancer.

Helping Project A: You learn that three children living in your area have been diagnosed with Type X cancer in the past week. You know nothing about these children. **Project A** would be able to provide a full dose of the new effective treatment to these three unknown children for \$600,000.

Rating: Please evaluate **Project A** which can treat three unknown children for \$600,000.

Allocation: Please write how much of the budget you want to earmark for treating three unknown children. <u>The default allocation is 20%</u> but if you think treating the three children seems specifically important or worthy of financing you should earmark a higher percentage of the budget. The sum must add up to 100%.

Condition 4 & 6: A₃ vs B₃

Project A is

implemented.

There are currently around 10,000 children in your country who suffers from Type X cancer. Untreated children with this type of cancer usually die within a one year. Up until recently there were no good ways to treat this type of cancer, but new advanced treatments have been developed and the preliminary results are promising. Around 75% of the treated children immediately get much better and there seems to be no side-effects linked to any of the treatments.

The only downside is that the new treatments are quite expensive. Some doctors have argued that the money spent on treating Type X cancer should be used to treat children in other, more cost-effective ways. Other doctors have defended the use of these treatments as they are the only available way to help children with Type X cancer.

Helping Project A: You learn that three children living in your area have been diagnosed with Type X cancer in the past week. The infected children have been identified as William (a 1 year old boy), Hannah (a 2 year old girl) and Stephanie (a 4 year old girl). **Project A** would be able to provide a full dose of the new effective treatment to William, Hannah and Stephanie for \$600,000.

Pictures blurred for anonymity

Hannah	Stephanie
Hannah is 2	Stephanie is 4
years old and is	years old and is
suffering from	suffering from
Type X cancer.	Type X cancer.
She will receive	She will receive
a full dose of	a full dose of
treatment if	treatment if
	Hannah is 2 years old and is suffering from Type X cancer. She will receive a full dose of

Project A is

implemented.

Helping Project B: At the same time, you learn that three other children living in your area have been diagnosed with Type X cancer in the past week. You have no further information about these children. **Project B** would be able to provide a full dose of the new effective treatment to these three unknown children for \$600,000.

Project A is

implemented.

Rating: Please evaluate **Project A** which can treat William, Hannah and Stephanie for \$600.000. Also, please evaluate **Project B** which can treat three unknown children for \$600,000.

Allocation: Please write how much of the budget you want to earmark for treating William, Hannah and Stephanie (**Project A**), and how much you want to earmark for treating three unknown children (**Project B**). If you think one of the projects seems more important or worthy of financing, you should give a percentage **larger than 50%** to that suggestion. The sum must add up to 100%.

Choice: Your task is to choose which of the two projects to implement and which not to implement. **Project A** can treat William, Hannah and Stephanie whereas **Project B** can treat three unknown children. If one project seems relatively better to you, you should choose that project. If both projects seem exactly equally good to you, you can make your choice by using the random number generator provided below.

Ple	ease write the name o	of the project that you choose to implement (A or B
	True Random Number Generator	
	Min: Max: 2 Generate	
	Result: Powered by RANDOM.ORG	

Condition 5 & 7: A₁ vs B₃

There are currently around 10,000 children in your country who suffers from a rare but very serious cancer called "Type X". Untreated children with this type of cancer usually die within a one year. Up until recently there were no good ways to treat this type of cancer, but new advanced treatments have been developed and the preliminary results are promising. Around 75% of the treated children immediately get much better and there seems to be no side-effects linked to any of the treatments.

The only downside is that the new treatments are quite expensive. Some doctors have argued that the money spent on treating Type X cancer should be used to treat children in other, more cost-effective ways. Other doctors have defended the use of these treatments as they are the only available way to help children with Type X cancer.

Helping Project A: You learn that one child living in your area have been diagnosed with Type X cancer in the past week. The infected child have been identified as Hannah (a 2 year old girl). **Project A** would be able to provide a full dose of the new effective treatment to Hannah for \$600,000.

Pictures blurred for anonymity

Hannah

Hannah is 2 years old and is suffering from Type X cancer. She will receive a full dose of treatment if Project A is implemented.

Helping Project B: At the same time, you learn that three other children living in your area have been diagnosed with Type X cancer in the past week. You have no further information about these children. **Project B** would be able to provide a full dose of the new effective treatment to these three unknown children for \$600,000.

Rating: Please evaluate **Project A** which can treat Hannah for \$600.000. Also, please evaluate **Project B** which can treat three unknown children for \$600,000.

Allocation: Please write how much of the budget you want to earmark for treating Hannah (**Project A**), and how much you want to earmark for treating three unknown children (**Project B**). If you think one of the suggestions seems more important or worthy of financing, you should give a percentage **larger than 50%** to that suggestion. The sum must add up to 100%.

Choice: Your task is to choose which of the two projects to implement and which not to implement. **Project A** can treat Hannah whereas **Project B** can treat three unknown children. If one project seems relatively better to you, you should choose that project. If both projects seem exactly equally good to you, you can make your choice by using the random number generator provided below.

Ple	ease write the name o	of the project that you choose to implement (A or B)
	True Random Number Generator	
	Min: Max: 2 Generate Result:	
	Powered by RANDOM.ORG	

Attention check questions in IVE1

- Do you have any identifying information about the children that **Project A[B]** can treat?
 - Yes, name age and picture / No
- How many ill children can **Project A[B]** treat for \$600,000 and 48 workhours? 1 ill child/3 ill children can be treated for \$600,000 and 48 workhours

Study IVE2 (COVID-19 context)

Introduction text:

Welcome!

As of now (spring 2020), the COVID-19 disease (aka Corona) is causing a pandemic that is affecting the whole world. This study examines people's evaluation of hypothetical medical help projects in a COVID-19 context. You will read descriptions of help projects and respond to a few questions. Please note that the information that you will read is completely fictional. However, for the sake of the study, please imagine yourself in the described situation.

This study is very short but will require your full attention. There are embedded attention check questions, and an inaccurate response means that you cannot complete the study.

Condition 1: A₃

Please imagine that there exist a patient group with a unique gene variation. Patients with this gene variation become much more intensely sick when infected with COVID-19, and the mortality rate for this group is close to 100% even when receiving ordinary intensive care treatment.

However, for this specific patient group only, there exist a new advanced treatment that seems very promising. Around 75% of the treated patients with the unique gene variation immediately get much better and there seems to be no negative side-effects linked to the treatment.

The downside is that this new advanced treatment is very expensive and require a lot of workhours by caregivers. Some people have argued that the resources necessary for treating this patient group, would be used more efficiently if spent on ordinary intensive care treatment for other infected patients. Other people have defended the use of the treatment as it is the only available way to help infected patients from this patient group.

Helping project A: You learn that three patients from this patient group have been infected in your area in the past days. The infected patients have been identified as Daniel (a 35 year old man), Lina (a 35 year old woman) and Stephan (a 70 year old man). **Project A** would be able to provide a full dose of the new effective treatment to Daniel, Lina and Stephan for \$600,000 and 48 workhours.

Pictures blurred for anonymity

Daniel is a 35 year old man without kids. He belongs to the vulnerable patient group and was recently diagnosed with COVID-19. Daniel will receive a full dose of treatment if Project A is implemented.

Lina is a 35 year old woman without kids. She belongs to the vulnerable patient group and was recently diagnosed with COVID-19. Lina will receive a full dose of treatment if Project A is implemented.

Stephan is a 70 year old man without kids. He belongs to the vulnerable patient group and was recently diagnosed with COVID-19. Stephan will receive a full dose of treatment if Project A is implemented.

Rating: Please evaluate **Project A**, which can treat Daniel, Lina and Stephan for \$600,000 and 48 workhours.

Allocation: Please write how much of the available resources you want to earmark for treating Daniel, Lina and Stephan. <u>The default allocation is 20%</u> but if you think treating Daniel, Lina and Stephan seems specifically important or worthy of financing you should earmark a higher percentage of the available resources. The sum must add up to 100%.

Condition 2: A₁ (To control for individual-specific effects, we randomized which of the three patients that was presented in this condition)

Please imagine that there exist a patient group with a unique gene variation. Patients with this gene variation become much more intensely sick when infected with COVID-19, and the mortality rate for this group is close to 100% even when receiving ordinary intensive care treatment.

However, for this specific patient group only, there exist a new advanced treatment that seems very promising. Around 75% of the treated patients with the unique gene variation immediately get much better and there seems to be no negative side-effects linked to the treatment.

The downside is that this new advanced treatment is very expensive and require a lot of workhours by caregivers. Some people have argued that the resources necessary for treating this patient group, would be used more efficiently if spent on ordinary intensive care treatment for other infected patients. Other people have defended the use of the treatment as it is the only available way to help infected patients from this patient group.

Helping project A: You learn that one patient from this patient group have been infected in your area in the past days. The infected patient has been identified as Lina (a 35 year old woman) [Daniel...] [Stephan...]. **Project A** would be able to provide a full dose of the new effective treatment to Lina [Daniel] [Stephan] for \$600,000 and 48 workhours.

Pictures blurred for anonymity

Lina

Lina is a 35 year old woman without kids. She belongs to the vulnerable patient group and was recently diagnosed with COVID-19. Lina will receive a full dose of treatment if Project A is implemented.

Rating: Please evaluate **Project A**, which can treat Lina for \$600,000 and 48 workhours.

Allocation: Please write how much of the available resources you want to earmark for treating Lina. <u>The default allocation is 20%</u> but if you think treating Lina seems specifically important or worthy of financing you should earmark a higher percentage of the available resources. The sum must add up to 100%.

Condition 3: B₃ (Note that all projects were labeled "Project A" in separate evaluation in the IVE-studies)

Please imagine that there exist a patient group with a unique gene variation. Patients with this gene variation become much more intensely sick when infected with COVID-19, and the mortality rate for this group is close to 100% even when receiving ordinary intensive care treatment.

However, for this specific patient group only, there exist a new advanced treatment that seems very promising. Around 75% of the treated patients with the unique gene variation immediately get much better and there seems to be no negative side-effects linked to the treatment.

The downside is that this new advanced treatment is very expensive and require a lot of workhours by caregivers. Some people have argued that the resources necessary for treating this patient group, would be used more efficiently if spent on ordinary intensive care treatment for other infected patients. Other people have defended the use of the treatment as it is the only available way to help infected patients from this patient group.

Helping project A: You learn that three patients from this patient group have been infected in your area in the past days. You know nothing about these patients. **Project A** would be able to provide a full dose of the new effective treatment to these three unknown patients for \$600,000 and 48 workhours.

Rating: Please evaluate **Project A**, which can treat three unknown patients for \$600,000 and 48 workhours.

Allocation: Please write how much of the available resources you want to earmark for treating three unknown patients. **The default allocation is 20%** but if you think treating the three patients seems specifically important or worthy of financing you should earmark a higher percentage of the available resources. The sum must add up to 100%.

Condition 4 & 6: A₃ vs B₃ (We varied whether the identified patient project or the statistical patient project were presented first (Project A) and second (Project B).

Please imagine that there exist a patient group with a unique gene variation. Patients with this gene variation become much more intensely sick when infected with COVID-19, and the mortality rate for this group is close to 100% even when receiving ordinary intensive care treatment.

However, for this specific patient group only, there exist a new advanced treatment that seems very promising. Around 75% of the treated patients with the unique gene variation immediately get much better and there seems to be no negative side-effects linked to the treatment.

The downside is that this new advanced treatment is very expensive and require a lot of workhours by caregivers. Some people have argued that the resources necessary for treating this patient group, would be used more efficiently if spent on ordinary intensive care treatment for other infected patients. Other people have defended the use of the treatment as it is the only available way to help infected patients from this patient group.

Helping project A: You learn that three patients from this patient group have been infected in your area in the past days. The infected patients have been identified as Daniel (a 35 year old man), Lina (a 35 year old woman) and Stephan (a 70 year old man). **Project A** would be able to provide a full dose of the new effective treatment to Daniel, Lina and Stephan for \$600,000 and 48 workhours.

Pictures blurred for anonymity

Daniel

Daniel is a 35 year old man without kids. He belongs to the vulnerable patient group and was recently diagnosed with COVID-19. Daniel will receive a full dose of treatment if Project A is implemented.

Lina

Lina is a 35 year old woman without kids. She belongs to the vulnerable patient group and was recently diagnosed with COVID-19. Lina will receive a full dose of treatment if Project A is implemented.

Stephan
Stephan is a 70

year old man without kids. He belongs to the vulnerable patient group and was recently diagnosed with COVID-19. Stephan will receive a full dose of treatment if Project A is implemented.

Helping project B: At the same time, you learn that three other patients from this patient group have been infected in your area in the past days. You know nothing about these patients. **Project B** would be able to provide a full dose of the new effective treatment to these three unknown patients for \$600,000 and 48 workhours.

Rating: Please evaluate **Project A**, which can treat Daniel, Lina and Stephan for \$600,000 and 48 workhours.

Also, please evaluate **Project B**, which can treat three unknown patients for \$600,000 and 48 workhours.

Allocation: Please write how much of the available resources you want to earmark for treating Daniel, Lina and Stephan (**Project A**), and how much you want to earmark for treating three unknown patients (**Project B**). If you think one of the projects seems more important or worthy of financing, you should give a percentage **larger than 50%** to that project. The sum must add up to 100%.

Choice: Your task is to choose which of the two projects to implement and which not to implement. **Project A** can treat Daniel, Lina and Stephan whereas **Project B** can treat three unknown patients. If one project seems relatively better to you, you should choose that project. If both projects seem exactly equally good to you, you can make your choice by using the random number generator provided below.

Ple	ease write the name o	of the project that you choose to implement (A or B)
	True Random Number Generator	
	Min: Max: 2 Generate	
	Result: Powered by RANDOM.ORG	

Condition 5 & 7: A₃ vs B₃ (We varied whether the identified patient project or the statistical patient project were presented first (Project A) and second (Project B). We also randomized which of the three patients that was presented in this condition).

Please imagine that there exist a patient group with a unique gene variation. Patients with this gene variation become much more intensely sick when infected with COVID-19, and the mortality rate for this group is close to 100% even when receiving ordinary intensive care treatment.

However, for this specific patient group only, there exist a new advanced treatment that seems very promising. Around 75% of the treated patients with the unique gene variation immediately get much better and there seems to be no negative side-effects linked to the treatment.

The downside is that this new advanced treatment is very expensive and require a lot of workhours by caregivers. Some people have argued that the resources necessary for treating this patient group, would be used more efficiently if spent on ordinary intensive care treatment for other infected patients. Other people have defended the use of the treatment as it is the only available way to help infected patients from this patient group.

Helping project A: You learn that three patients from this patient group have been infected in your area in the past days. You know nothing about these patients. **Project A** would be able to provide a full dose of the new effective treatment to these three unknown patients for \$600,000 and 48 workhours.

Helping project B: At the same time, you learn that one patient from this patient group have been infected in your area in the past days. The infected patient has been identified as Stephan (a 70 year old man) [Lina] [Daniel]. **Project B** would be able to provide a full dose of the new effective treatment to Stephan [Lina] [Daniel] for \$600,000 and 48 workhours.

Pictures blurred for anonymity

Stephan

Stephan is a 70 year old man without kids. He belongs to the vulnerable patient group and was recently diagnosed with COVID-19. Stephan will receive a full dose of treatment if Project B is implemented.

B)

Rating: Please evaluate **Project A**, which can treat three unknown patients for \$600,000 and 48 workhours.

Also, please evaluate **Project B**, which can treat Stephan [Lina] [Daniel] for \$600,000 and 48 workhours.

Allocation: Please write how much of the available resources you want to earmark for treating three unknown patients (**Project A**), and how much you want to earmark for treating Stephan [Lina] [Daniel] (**Project B**). If you think one of the projects seems more important or worthy of financing, you should give a percentage **larger than 50%** to that project. The sum must add up to 100%.

Choice: Your task is to choose which of the two projects to implement and which not to implement. **Project A** can treat three unknown patients whereas **Project B** can treat Stephan [Lina] [Daniel]. If one project seems relatively better to you, you should choose that project. If both projects seem exactly equally good to you, you can make your choice by using the random number generator provided below.

PI	ease write the name o	of the project that you choose to implement (A or
	True Random Number Generator	
	Min:	
	Generate Result:	
	Powered by RANDOM.ORG	

Attention check questions in IVE2

 Do you have any identifying information about the patients that Project A can treat?

Yes, name age and picture / No

How many patients can Project A treat for \$600,000 and 48 workhours?
 1 ill patient/3 ill patients can be treated for \$600,000 and 48 workhours

Additional analyses

The following pages contain tables (one table for each conducted study) including additional descriptive and inferential statistics. Attractiveness-ratings are presented in the upper part and allocations in the lower part of each table.

One purpose of these tables is to present the non-parametric tests that corresponds to the parametric tests reported in the manuscript. Mann-Whitney tests were used when comparing independent means (between-groups) and Wilcoxon tests used when comparing dependent means (within-subjects). z-values and p-values for each test.

Another purpose of these tables is to report evaluations of the "secondary" projects that participants in the SE-conditions read <u>after</u> reading and responding to the first help project. The Mean (SD) and median of the secondary projects are italicized in the tables. The tables also include within-subject tests (parametric and non-parametric) where participants' evaluations on the "primary" and "secondary" projects are compared. This represents a SE-JE hybrid as the same participant evaluated both projects, but sequentially rather than at the same time.

Positive t and z-values indicate a helping effect (Project A preferred over Project B) whereas negative t and z-values indicate a reversed effect.

Equal rating % indicate the percentage of participants who evaluated the two projects the read about as exactly equally attractive (ratings), or allocated equally much resources to both projects.

PDE1	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings					
A_6	$\mathbf{M} = 79.25$		M = 74.64	$\mathbf{M} = 80.17$	
(6 out of 6)	SD = 20.71		SD = 24.37	SD = 18.55	
	Mdn = 84.33		Mdn = 79.00	$\mathbf{Mdn} = 81.17$	
A_4		$\mathbf{M} = 73.37$			$\mathbf{M} = 79.88$
(4 out of 4)		SD = 26.42			SD = 19.23
		Mdn = 81.67			Mdn = 85.00
B_6	M = 41.83	M = 45.79	M = 44.23	M = 57.28	$\mathbf{M} = 63.44$
(6 out of 100)	SD = 28.75	SD = 30.21	SD = 27.59	SD = 24.83	SD = 27.28
	Mdn = 38.33	Mdn = 46.67	Mdn = 41.83	Mdn = 60.5	$\mathbf{Mdn} = 68.67$
Equal rating %	6.6%	5.9%	4.6%	9.3%	6.7%
A compared to B ₆	t(389)=14.21	t(395)=10.75			
(between-groups)	p <.001	p <.001			
Non-parametric	z = 11.73	z = 9.71			
equivalent	p < .001	p < .001			
A compared to B ₆	t(196)= 17.13	t(202)=11.95	t(196)=17.13	t(63)=5.86	t(74)=4.11
(within-subjects)	p <.001	p <.001	p <.001	p <.001	p <.001
Non-parametric	z = 11.10	z = 9.79	z = 10.62	z = 5.11	z = 3.49
equivalent	p < .001	p < .001	p < .001	p < .001	p < .001
•					•
Allocations					
A_6	M = 51.25		M = 52.21	M = 68.17	
(6 out of 6)	SD = 30.58		SD = 29.86	SD = 22.74	
	Mdn = 50%		Mdn = 50%	Mdn = 70%	
A_4		M = 43.67			M = 54.47
(4 out of 4)		SD = 29.26			SD = 28.12
		Mdn = 35%			Mdn = 50%
B ₆	M = 28.95	M = 28.86	M = 28.30	M = 31.83	M = 45.53
(6 out of 100)	SD = 26.88	SD = 24.24	SD = 19.06	SD = 22.74	SD = 28.12
,	Mdn = 20%	Mdn = 20%	Mdn = 20%	Mdn = 30%	Mdn = 50%
Equal rating %	22.3%	22.7%	10.8%	18.8%	12.0%
A compared to B ₆	t(389)=8.89	t(395)=6.17			
(between-groups)	p <.001	p <.001			
Non-parametric	z = 7.53	z = 5.19			
equivalent	p < .001	p < .001			
A compared to B ₆	t(196)=9.93	t(202)=7.21	t(196)= 11.71	t(63)=6.39,	t(74) = 1.37
(within-subjects)	p <.001	p <.001	p <.001	p <.001	p = .173
Non-parametric	z = 8.69	z = 6.77	z = 10.08	z = 5.01	z = 1.49
equivalent	p < .001	p < .001	p < .001	p < .001	p = .136

PDE2	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings					· · · · · · · · · · · · · · · · · · ·
A_6	M =78.38		M =75.23	M =83.05	
(6 out of 6)	SD = 21.64		SD = 23.89	SD = 20.37	
	$\mathbf{Mdn} = 85.00$		Mdn = 80.17	Mdn = 88.33	
A_4		M = 73.83			M =70.01
(4 out of 5)		SD = 20.50			SD = 23.40
		$\mathbf{Mdn} = 79.67$			Mdn = 76.50
B ₆	M =46.33	M =46.38	M =49.92	M =54.09	M =57.53
(6 out of 100)	SD = 27.59	SD = 29.78	SD = 25.95	SD = 28.99	SD = 30.08
	Mdn = 50.00	Mdn = 48.00	Mdn = 49.83	Mdn = 50.33	Mdn = 61.00
Equal rating %	4.6%	5.1%	4.0%	15.8%	9.7%
A compared to B ₆	t(348)=11.26,	t(369)=9.89,			
(between-groups)	p <.001	p <.001			
Non-parametric	z = 9.90	z = 8.80			
equivalent	p < .001	p < .001			
A compared to B ₆	t(173)=15.19,	t(194)=12.31,	t(175) = -11.66,	t(56)=6.66,	t(61)=2.71,
(within-subjects)	p <.001	p <.001	p <.001	p <.001	p = .008
Non-parametric	z = 10.60	z = 9.58	z = -9.42	z = 5.03	z = 2.30
equivalent	p < .001	p < .001	p < .001	p < .001	p = .021
Allocations					
A_6	$\mathbf{M=}49.24$		M = 51.51	M = 66.30	
(6 out of 6)	SD=27.81		SD = 28.36	SD = 26.80	
	Mdn= 50%		<i>Mdn</i> = 50%	Mdn=70%	
A_4		M = 46.38			M=50.74
(4 out of 5)		SD=28.11			SD=29.37
		Mdn=40%			Mdn=50%
B_6	M = 29.63	M = 29.48	$\mathbf{M} = 33.70$	$\mathbf{M} = 33.70$	M=49.26
(6 out of 100)	SD = 25.15	SD = 24.15	SD= 22.19	SD = 26.80	SD= 29.37
	<i>Mdn</i> = 20%	<i>Mdn</i> = 20%	Mdn=25%	Mdn=30%	Mdn=50%
Equal rating %	17.2%	23.1%	26.1%	22.8%	11.3%
A compared to B ₆	t(348) = 5.78	t(369) = 4.79			
(between-groups)	p <.001	p <.001			
Non-parametric	z = 5.50	z = 4.39			
equivalent	p < .001	p < .001	(4 = -)	/=	(41) 2.52
A compared to B ₆	t(173) = 9.09	t(194) = 7.74	t(175)=8.38	t(56) = 4.59,	t(61) = 0.20
(within-subjects)	p <.001	p <.001	p <.001	p <.001	p = .843
Non-parametric	z = 7.90	z = 6.74	z = 7.49	z = 3.85	z = 0.27
equivalent	p < .001	p < .001	p < .001	p < .001	p = .791

IGE1	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings			,		, ,
A_3	M = 72.54		M = 72.30	M = 79.59	
(3 relatives)	SD = 23.07		SD = 22.41	SD = 22.26	
,	$\mathbf{Mdn} = 75.50$		Mdn = 76.17	Mdn = 89.33	
A_1		M = 70.25			M =70.62
(1 relative)		SD = 25.18			SD = 19.46
,		$\mathbf{Mdn} = 74.67$			$\mathbf{Mdn} = 75.17$
B ₃	M = 69.94	M = 73.65	M =63.42	M =71.88	M =75.57
(3 non-relatives)	SD = 23.36	SD = 24.06	SD = 24.65	SD = 24.09	SD = 20.52
	Mdn = 73.33	Mdn = 79.33	Mdn = 66.17	$\mathbf{Mdn} = 76.00$	$\mathbf{Mdn} = 80.50$
Equal rating %	21.2%	11.7%	10.7%	23.3%	8.3%
A compared to B ₃	t(374) = 3.71,	t(374) = 2.65,			
(between-groups)	p <.001,	p = .008			
Non-parametric	z = 3.83	z = 3.14			
equivalent	p < .001	p = .002			
A compared to B ₃	t(197)=2.89,	t(197) = -3.27	t(177)=8.03,	t(72) = 2.96,	t(71) = -2.03,
(within-subjects)	p =.004	p =.001	p <.001	p = .004	p = .046
Non-parametric	z = 2.83	z = -4.43	z = 8.27	z = 3.61	z = 2.15
equivalent	p = .005	p < .001	p < .001	p < .001	p = .031
Allocations					
A_3	M = 52.68		M = 52.65	M= 62.66	
(3 relatives)	SD=25.66		SD = 24.42	SD= 19.11	
	Mdn= 50%		<i>Mdn</i> = 50%	Mdn=55%	
A_1		M = 50.14			M = 53.83
(1 relative)		SD=25.75			SD = 23.39
		Mdn= 50%			Mdn=50%
\mathbf{B}_3	M = 45.58	M = 52.74	$\mathbf{M} = 41.22$	M = 37.34	M = 46.17
(3 non-relatives)	SD = 23.43	SD = 25.30	SD=23.50	SD =19.11	SD = 23.39
	<i>Mdn</i> = 50%	<i>Mdn</i> = 50%	Mdn=35%	Mdn=45%	Mdn=50%
Equal rating %	51.0%	35.4%	35.4%	34.2%	19.4%
A compared to B ₃	t(374) = 4.50	t(374) = 3.49			
(between-groups)	p <.001	p = .001			
Non-parametric	z = 4.34	z = 3.46			
equivalent	p < .001	p = .001			
A compared to B ₃	t(197) = 4.84	t(197) = -2.02	t(177) = 8.36	t(72) = 5.66	t(71) = 1.39
(within-subjects)	p <.001	p =.045	p <.001	p < .001	p = .169
Non-parametric	z = 4.84	z = -3.78	z = 7.70	z = 4.80	z = 1.22
equivalent	p < .001	p < .001	p < .001	p < .001	p = .221

IGE2	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings					
A_6	M= 69.79		M = 73.29	M =76.04	
(6 fellow citizens)	SD = 24.87		SD = 25.07	SD = 20.98	
	Mdn = 75.33		Mdn = 80.00	$\mathbf{Mdn} = 82.00$	
A_4		M = 68.40			M = 70.82
(4 fellow citizens)		SD = 25.64			SD= 19.44
		Mdn = 74.00			Mdn = 72.33
B_6	M = 66.46	M = 71.00	M = 71.51	M = 72.83	M=75.26
(6 foreigners)	SD = 26.56	SD = 24.88	SD = 25.60	SD = 24.08	SD=19.96
	Mdn = 73.33	Mdn = 76.33	Mdn = 79.00	$\mathbf{Mdn} = 76.67$	$\mathbf{Mdn} = 78.00$
Equal rating %	18.1%	14.0%	29.4%	40.0%	13.6%
A compared to B ₆	t(391) = -0.68,	t(392) = -1.21,			
(between-groups)	p = .499	p = .229			
Non-parametric	z = -0.94	z = -1.40			
equivalent	p = .348	p = .161			
A compared to B ₆	t(198)=3.74	t(199) = -3.75	t(193)=3.58	t(64) = 1.58	t(65) = -4.16
(within-subjects)	p <.001	p <.001	p <.001	p = .120	p < .001
Non-parametric	z = 3.75	z = -4.44	z = 3.61	z = 0.23	z = -4.12
equivalent	p <.001	p <.001	p <.001	p = .818	p <.001
Allocations					
A_6	$\mathbf{M} = 38.24$		M = 42.28	$\mathbf{M} = 56.89$	
(6 fellow citizens)	SD = 23.28		SD = 23.45	SD = 15.03	
	Mdn = 30.00		Mdn = 37.50	$\mathbf{Mdn} = 50.00$	
A_4		$\mathbf{M} = 42.27$			$\mathbf{M} = 49.47$
(4 fellow citizens)		SD = 27.50			SD = 19.42
		Mdn = 35.00			$\mathbf{Mdn} = 47.50$
B_6	M = 35.05	M = 42.31	M = 40.14	M = 43.11	$\mathbf{M} = 50.53$
(6 foreigners)	SD = 23.14	SD = 25.53	SD = 23.15	SD = 15.03	SD = 19.42
	Mdn = 30.00	Mdn = 35.00	$\mathbf{Mdn} = 30.00$	$\mathbf{Mdn} = 50.00$	$\mathbf{Mdn} = 52.50$
Equal rating %	63.3%	41.5%	70.1%	70.1%	27.3%
A compared to B ₆	t(391) = -0.81	t(392) = 0.83			
(between-groups)	p = .418	p = .407			
Non-parametric	z = -1.16	z = 0.33			
equivalent	p = .247	p = .740	(122)		
A compared to B ₆	t(198)=3.52	t(199) = -0.05	t(193)=2.65	t(64) = 3.70	t(65) = -0.22
(within-subjects)	p =.001	p = .964	p =.009	p <.001	p = .825
Non-parametric	z = 3.72	z = -1.82	z = 3.21	z = 3.31	z = -1.09
equivalent	p <.001	p =.069	p = .001	p = .001	p = .278

EXISTENCE	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings					
A_6	M= 72.79		M = 78.01	M = 81.46	
(6 existing	SD = 21.09		SD = 21.94	SD= 19.17	
patients)	$\mathbf{Mdn} = 77.33$		Mdn = 85.00	Mdn = 87.33	
A_4		M = 68.96			M = 80.08
(4 existing		SD= 24.69			SD= 17.88
patients)		$\mathbf{Mdn} = 74.00$			Mdn = 82.67
B ₆	M = 56.80	M = 62.18	M = 69.95	M = 57.72	M=70.59
(6 future patients)	SD = 24.29	SD = 25.27	SD = 23.89	SD = 22.99	SD = 19.53
	Mdn = 60.00	Mdn = 66.67	$\mathbf{Mdn} = 75.00$	Mdn = 62.33	Mdn = 75.00
Equal rating %	5.9%	7.6%	12.3%	2.8%	4.2%
A compared to B ₆	t(447) = 1.34	t(448) = -0.43			
(between-groups)	p = .182	p = .668			
Non-parametric	z = 0.94	z = -0.29			
equivalent	p = .348	p = .768			
A compared to B ₆	t(221)=14.63	t(222) = 5.47	t(226) = 9.92	t(70) = 9.71	t(70) = 4.21,
(within-subjects)	p <.001	p <.001	p < .001	p <.001	p <.001
Non-parametric	z = 11.54	z = 5.20	z = 9.95	z = 7.06	z = 3.30
equivalent	p <.001	p <.001	p <.001	p <.001	p = .001
•					
Allocations					
A_6	M = 45.39		M = 52.73	M = 77.45	
(6 existing	SD = 24.22		SD = 25.33	SD = 13.03	
patients)	Mdn = 42.50		Mdn = 50.00	Mdn = 75.00	
A_4		M = 43.97			M = 59.99
(4 existing		SD = 23.97			SD=21.22
patients)		$\mathbf{Mdn} = 40.00$			Mdn = 60.00
B_6	M = 32.13	M = 38.17	$\mathbf{M} = 44.02$	M = 22.55	M= 40.01
(6 future patients)	SD = 20.84	SD = 22.30	SD= 24.64	SD = 13.03	SD=21.22
	Mdn = 25.00	Mdn = 30.00	Mdn = 40.00	Mdn = 25.00	Mdn = 40.00
Equal rating %	27.0%	26.5%	26.9%	2.8%	19.7%
A compared to B ₆	t(447) = 0.59	t(448) = -0.02			
(between-groups)	p = .553	p = .983			
Non-parametric	z = 0.78	z = -0.06			
equivalent	p = .433	p = .949			
A compared to B ₆	t(221) = 10.18	t(222)=4.49	t(226)=7.29	t(70) = 17.76	t(70) = 3.97
(within-subjects)	p <.001	p <.001	p <.001	p <.001	p <.001
Non-parametric	z = 9.68	z = 4.70	z = 8.08	z = 7.24	z = 3.89
equivalent	p <.001	p <.001	p <.001	p <.001	p <.001

AGE	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings	, ,				
A_6	M= 68.97		M = 71.49	M = 75.48	
(6 children and	SD = 26.32		SD = 24.02	SD = 21.83	
teenagers)	$\mathbf{Mdn} = 75.67$		Mdn = 76.00	$\mathbf{Mdn} = 80.00$	
A ₄		M = 65.38			M = 73.68
(4 children and		SD = 27.57			SD= 21.11
teenagers)		Mdn = 71.67			Mdn = 76.00
B ₆	M = 66.13	M = 68.61	M = 67.45	M = 72.13	M= 76.24
(6 adults)	SD = 27.08	SD = 25.74	SD = 24.97	SD = 23.65	SD = 20.35
,	Mdn = 70.33	Mdn = 77.00	Mdn = 73.00	$\mathbf{Mdn} = 73.67$	$\mathbf{Mdn} = 80.00$
Equal rating %	17.1%	11.3%	14.1%	32.9%	19.4%
A compared to B ₆	t(433) = 0.62	t(432) = -0.82			
(between-groups)	p = .538	p = .414			
Non-parametric	z = 0.94	z = -0.44			
equivalent	p = .349	p = .662			
A compared to B ₆	t(221)=5.44	t(220) = -4.68	t(212) = 5.98	t(72) = 2.18	t(66) = -1.65
(within-subjects)	p <.001	p <.001	p <.001	p = .032	p = .103
Non-parametric	z = 5.96	z = -5.34	z = 7.07	z = 2.80	z = -2.20
equivalent	p <.001	p <.001	p <.001	p = .005	p = .027
Allocations					
A_6	M = 41.15		M = 45.77	$\mathbf{M} = 60.15$	
(6 children and	SD = 24.43		SD = 23.74	SD = 12.98	
teenagers)	Mdn = 35.00		Mdn = 40.00	$\mathbf{Mdn} = 60.00$	
A_4		$\mathbf{M} = 39.99$			$\mathbf{M} = 52.10$
(4 children and		SD=24.56			SD=18.00
teenagers)		Mdn = 35.00			$\mathbf{Mdn} = 50.00$
B_6	M = 37.27	M = 39.90	$\mathbf{M} = 40.74$	$\mathbf{M} = 39.85$	M = 47.90
(6 adults)	SD = 22.45	SD = 23.02	SD=23.18	SD = 12.98	SD=18.00
	Mdn = 30.00	Mdn = 30.00	Mdn = 35.00	$\mathbf{Mdn} = 40.00$	$\mathbf{Mdn} = 50.00$
Equal rating %	58.6%	43.4%	40.4%	32.9%	23.9%
A compared to B ₆	t(433) = 0.18	t(432) = -0.33			
(between-groups)	p = .856	p = .744			
Non-parametric	z = 0.11	z = -0.47			
equivalent	p = .910	p = .638			
A compared to B ₆	t(221)=4.28	t(220)=0.08	t(212) = 4.85	t(72) = 6.68	t(66) = 0.96
(within-subjects)	p <.001	p = .937	p <.001	p < .001	p = .342
Non-parametric	z = 4.83	z = -1.00	z = 5.74	z = 5.53	z = 0.96
equivalent	p <.001	p = .319	p <.001	p <.001	p = .338

INNOCENCE	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings			,		
A_6	M= 63.80		M = 66.67	M =70.29	
(6 gymmers)	SD = 25.30		SD = 26.09	SD=22.58	
,	$\mathbf{Mdn} = 70.00$		Mdn = 73.67	$\mathbf{Mdn} = 75.00$	
A_4		M = 64.75			M = 62.81
(4 gymmers)		SD = 25.95			SD = 22.01
,		$\mathbf{Mdn} = 69.67$			Mdn = 65.67
B ₆	M = 57.89	M = 64.50	M = 65.41	M = 62.96	M= 69.30
(6 smokers)	SD = 27.68	SD = 24.73	SD = 23.74	SD = 26.16	SD = 18.42
	Mdn = 65.00	Mdn = 66.33	Mdn = 69.00	$\mathbf{Mdn} = 68.00$	Mdn = 69.33
Equal rating %	8.8%	6.6%	10.6%	10.6%	8.6%
A compared to B ₆	t(431) = -0.69	t(429) = -0.28			
(between-groups)	p = .494	p = .782			
Non-parametric	z = -0.41	z = -0.11			
equivalent	p = .682	p = .909			
A compared to B ₆	t(214)=5.04	t(212)=0.20	t(217)=0.88	t(84) = 2.12	t(80) = -2.28
(within-subjects)	p <.001	p = .845	p = .381	p = .037	p = .025
Non-parametric	z = 4.59	z = 0.34	z = 3.18	z = 2.12	z = -2.31
equivalent	p <.001	p = .737	p = .001	p = .034	p = .021
Allocations					
A_6	M = 39.53		M = 45.59	$\mathbf{M} = 58.49$	
(6 gymmers)	SD = 22.30		SD = 23.83	SD = 19.05	
	Mdn = 35.00		Mdn = 50.00	$\mathbf{Mdn} = 60.00$	
A_4		$\mathbf{M} = 44.06$			$\mathbf{M} = 49.51$
(4 gymmers)		SD=24.48			SD = 16.73
		$\mathbf{Mdn} = 45.00$			$\mathbf{Mdn} = 50.00$
B_6	M = 36.37	M = 42.46	$\mathbf{M} = 43.59$	$\mathbf{M} = 41.51$	M = 50.49
(6 smokers)	SD = 23.48	SD = 24.71	SD = 24.17	SD = 19.05	SD = 16.73
	Mdn = 30.00	Mdn = 40.00	Mdn =45.00	$\mathbf{Mdn} = 40.00$	$\mathbf{Mdn} = 50.00$
Equal rating %	34.0%	31.0%	35.3%	24.7%	21.0%
A compared to B ₆	t(431) = -1.82	t(429) = 0.20			
(between-groups)	p = .070	p = .843			
Non-parametric	z = -1.73	z = 0.30			
equivalent	p = .083	p = .765			
A compared to B ₆	t(214)=2.81	t(212)=1.29	t(217)=1.30	t(84) = 4.11	t(80) = -0.27
(within-subjects)	p = .005	p = .199	p = .196	p < .001	p = .791
Non-parametric	z = 3.41	z = 1.60	z = 2.00	z = 3.78	z = -0.22
equivalent	p = .001	p = .110	p = .045	p < .001	p = .828

GENDER	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings					
A_6	M = 70.16		M = 71.47	$\mathbf{M} = 70.69$	
(6 females)	SD = 26.57		SD = 22.85	SD=22.68	
	$\mathbf{Mdn} = 76.67$		Mdn = 76.83	$\mathbf{Mdn} = 72.00$	
A_4		$\mathbf{M} = 66.81$			M = 65.59
(4 females)		SD = 27.00			SD = 21.58
		Mdn = 73.33			Mdn = 67.50
B ₆	M = 69.42	M = 69.37	$\mathbf{M} = 70.72$	M = 69.71	M= 73.48
(6 males)	SD = 27.38	SD = 25.60	SD = 22.96	SD = 23.32	SD= 19.71
	Mdn = 77.83	Mdn = 74.33	Mdn = 75.50	$\mathbf{Mdn} = 73.67$	Mdn = 77.83
Equal rating %	27.0%	13.0%	23.4%	45.3%	9.5%
A compared to B ₆	t(442) = -0.24,	t(439) = -1.63			
(between-groups)	p = .813	p = .103			
Non-parametric	z = 0.58	z = -1.04			
equivalent	p = .565	p = .297			
A compared to B ₆	t(225)=1.21	t(222) = -4.31	t(217)=1.92	t(74) = 1.50	t(73) = -5.67
(within-subjects)	p = .228	p <.001	p = .056	p = .138	p < .001
Non-parametric	z = 1.38	z = -5.98	z = 1.67	z = 0.86	z = -5.66
equivalent	p = .167	p < .001	p = .095	p = .389	p < .001
Allocations					
A_6	M = 41.71		M = 42.91	M = 50.72	
(6 females)	SD = 24.91		SD = 23.68	SD=4.01	
	Mdn = 35.00		Mdn = 40.00	$\mathbf{Mdn} = 50.00$	
A_4		$\mathbf{M} = 40.94$			M = 43.65
(4 females)		SD = 24.77			SD=9.94
		Mdn = 35.00			Mdn = 45.00
B_6	M = 40.51	M = 43.10	$\mathbf{M} = 42.86$	$\mathbf{M} = 49.28$	M = 56.35
(6 males)	SD = 23.77	SD = 23.96	SD = 24.03	SD = 4.01	SD=9.94
	Mdn = 35.00	Mdn = 40.00	$\mathbf{Mdn} = 40.00$	$\mathbf{Mdn} = 50.00$	Mdn = 55.00
Equal rating %	81.9%	51.1%	78.9%	84.0%	27.0%
A compared to B ₆	t(442) = -0.49	t(439) = -0.82			
(between-groups)	p = .622	p = .410			
Non-parametric	z = -0.57	z = -0.89			
equivalent	p = .567	p = .374			
A compared to B ₆	t(225) = 1.74	t(222) = -3.08	t(217) = 0.09	t(74) = 1.56	t(73) = -5.47
(within-subjects)	p = .084	p = .002	p = .928	p = .124	p < .001
Non-parametric	z = 2.05	z = -3.53	z = 1.10	z = 1.79	z = -4.85
equivalent	p = .040	p < .001	p = .273	p = .074	p <.001

IVE1	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings					
A ₃	M= 87.25			M = 89.27	
(3 identified	SD = 14.56			SD = 12.31	
children)	Mdn = 92.00			Mdn = 91.67	
A_1		M = 80.12			M = 63.35
(1 identified child)		SD = 19.07			SD = 23.18
		$\mathbf{Mdn} = 83.67$			Mdn = 67.33
B_6			M = 79.53	$\mathbf{M} = 84.49$	M= 86.77
(3 non-identified			SD = 19.54	SD = 17.69	SD = 13.58
children)			$\mathbf{Mdn} = 82.50$	$\mathbf{Mdn} = 89.17$	Mdn = 90.00
Equal rating %				45.3%	7.7%
A compared to B ₃	t(385) = 4.41	t(389) = 0.30			
(between-groups)	p < .001	p = .764			
Non-parametric	z = 4.28	z = 0.20			
equivalent	p < .001	p = .845			
A compared to B ₆				t(63) = 3.49	t(64) = -8.11
(within-subjects)				p = .001	p < .001
Non-parametric				z = 3.24	z = -6.06
equivalent				p = .001	p < .001
Allocations					
A_3	M = 59.12			$\mathbf{M} = 55.86$	
(3 identified	SD = 29.50			SD = 12.46	
children)	$\mathbf{Mdn} = 55.00$			$\mathbf{Mdn} = 50.00$	
A_1		$\mathbf{M} = 56.58$			$\mathbf{M} = 30.98$
(1 identified child)		SD=28.98			SD= 14.96
		$\mathbf{Mdn} = 50.00$			Mdn = 25.00
B ₆			$\mathbf{M} = 54.65$	$\mathbf{M} = 44.14$	M = 69.02
(3 non-identified			SD=28.68	SD = 12.46	SD= 14.96
children)			$\mathbf{Mdn} = 50.00$	$\mathbf{Mdn} = 50.00$	Mdn = 75.00
Equal rating %				70.3%	13.8%
A compared to B ₃	t(385) = 1.51	t(389) = 0.66			
(between-groups)	p = .132	p = .510			
Non-parametric	z = 1.43	z = 0.54			
equivalent	p = .152	p = .589			
A compared to B ₆				t(63) = 3.76	t(64) = -10.25
(within-subjects)				p < .001	p < .001
Non-parametric				z = 3.87	z = -6.32
equivalent				p < .001	p < .001

IVE2	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
	(SE)	(SE)	(SE)	(JE-weak)	(JE-strong)
Ratings					· · · · · · · · · · · · · · · · · · ·
A ₃	M= 70.10			M = 77.48	
(3 identified	SD = 23.28			SD = 20.20	
patients)	$\mathbf{Mdn} = 73.67$			$\mathbf{Mdn} = 80.00$	
A_1		M = 56.21			M = 49.15
(1 identified		SD=28.05			SD = 27.50
patient)		Mdn = 59.33			Mdn = 50.00
B ₃			M = 60.18	M = 72.49	M= 76.82
(3 non-identified			SD = 27.35	SD = 23.70	SD= 19.39
patients)			Mdn = 65.33	$\mathbf{Mdn} = 78.00$	Mdn = 81.67
Equal rating %				34.8%	5.4%
A compared to B ₃	t(445) = 4.13	t(471) = -1.55			
(between-groups)	p < .001	p = .121			
Non-parametric	z = 3.73	z = -1.58			
equivalent	p < .001	p = .114			
A compared to B ₆				t(88) = 2.93	t(128) = -12.56
(within-subjects)				p = .006	p < .001
Non-parametric				z = 2.57	z = -8.89
equivalent				p = .010	p < .001
Allocations					
A_3	M = 32.71			$\mathbf{M} = 52.84$	
(3 identified	SD = 19.50			SD = 10.37	
patients)	Mdn = 30.00			Mdn = 50.00	
A_1		$\mathbf{M} = 27.93$			$\mathbf{M} = 28.26$
(1 identified		SD=18.98			SD = 15.39
patient)		Mdn = 20.00			Mdn = 25.00
B ₃			M = 33.11	M = 47.16	M = 71.74
(3 non-identified			SD = 21.46	SD = 10.37	SD= 15.39
patients)			$\mathbf{Mdn} = 25.00$	Mdn = 50.00	Mdn = 75.00
Equal rating %				66.3%	10.1%
A compared to B ₃	t(445) = -0.21	t(471) = -2.79			
(between-groups)	p = .836	p = .006			
Non-parametric	z = -0.40	z = -2.67			
equivalent	p = .689	p = .007			
A compared to B ₆				t(88) = 2.59	t(128) = -16.04
(within-subjects)				p = .011	p < .001
Non-parametric				z = 2.60	z = -8.84
equivalent				p = .009	p < .001

Additional descriptive data for IVE2 (which balanced presentation order and the identity of the single identified patient).

	n	Mean rating	Mean	Mean	Mean
		to id project	rating to	allocation to	allocation to
		1 3	non-id	id project	non-id
			project		project
C1: A ₃ (SE)	223	70.10 (23.28)		32.71	
3 identified patient				(19.50)	
C2: A ₁ (SE)	249	56.21		27.93	
1 identified patient		(28.05)		(19.98)	
Lina	82	60.64 (29.03)		27.88	
				(17.91)	
Daniel	84	58.31 (28.79)		31.07	
Stephan	83	49.72 (25.32)		(22.55)	
Stephan	63	49.72 (23.32)		(15.43)	
C3: B ₃ (SE)	224		60.18	(13.13)	33.11
3 non-identified			(26.98)		(21.46)
C4: A ₃ vs B ₃ (JE)	89	77.48	72.49	52.84	47.16
		(20.20)	(23.70)	(10.37)	(10.37)
3 id vs. 3 non-id	44	75.05	69.38	55.03	44.98
		(21.86)	(26.17)	(11.27)	(11.27)
3 non-id vs. 3 id	45	79.86	75.53	50.71	49.29
		(18.37)	(20.84)	(9.02)	(9.02)
C5: A_1 vs B_3 (JE)	129	49.15	76.82	28.26	71.74
		(27.50)	(19.39)	(15.39)	(15.39)
Lina vs 3 non-id	22	46.20	78.95	28.32	71.68
		(24.20)	(19.67)	(12.81)	(12.81)
Daniel vs 3 non-id	21	53.11	79.51	34.05	65.95
		(23.98)	(17.47)	(16.25)	(16.25)
Stephan vs 3 non-id	21	54.49	81.78	26.43	73.57
2 1 1	21	(35.61)	(24.00)	(14.15)	(14.15)
3 non-id vs Lina	21	48.51	71.81	25.62	74.38
3 non-id vs Daniel	22	(27.84) 40.17	(17.25) 73.33	(15.38) 26.82	(15.38) 73.18
3 Holl-ld vs Daillei	22	(25.77)	(18.79)	(17.70)	(17.70)
3 non-id vs Stephan	22	52.80	75.65	28.36	71.64
3 non-id vs Stephan	22	(26.72)	(18.78)	(15.93)	(15.93)
		(20.72)	(10.70)	(13.73)	(13.73)
				% choosing	% choosing
				id project	non-id project
C6: A ₃ vs B ₃ (CHOICE)	91		1	64.8%	35.2%
3id vs. 3 non-id	46			65.2%	34.8%
3 non-id vs. 3 id	45			64.4%	35.6%
C7: A ₁ vs B ₃ (CHOICE)	130			13.1%	86.9%
Lina vs 3 non-id	23			34.8%	65.2%
Daniel vs 3 non-id	22			0%	100%
Stephan vs 3 non-id	22			18.2%	21.8%
3 non-id vs Lina	20			15.0%	85.0%
3 non-id vs Daniel	22			4.5%	95.5%
3 non-id vs Stephan	21			4.8%	95.2%

The following tables illustrate the comparison between preferences expressed with forced choices against preferences inferred from attractiveness ratings or allocations (in joint evaluation). Participants who rated the projects as equally attractive or allocated resources 50-50 were split so that exactly half preferred each project (when an uneven number did so, one was excluded).

PDE1 weak		
	Prefer Project A	Prefer Project B
Rating	47	17
Allocation	49	15
Choice	57	11
Rating vs Choice	X ² = 2.13, p = .145	
Allocation vs Choice	X ² = 1.10, p = .294	
PDE2 weak		
	Prefer Project A	Prefer Project B
Rating	42	14
Allocation	41	15
Choice	43	13
Rating vs Choice	X ² = 0.05, p = .825	
Allocation vs Choice	X ² = 0.19, p = .663	
PDE weak aggregated		
	Prefer Project A	Prefer Project B
Rating	89	31
Allocation	90	30
Choice	100	24
Rating vs Choice	X ² = 1.47, p = .226	
Allocation vs Choice	X ² = 1.13, p = .288	

PDE1 strong		
	Prefer Project A	Prefer Project B
Rating	45	29
Allocation	41	33
Choice	33	38
Rating vs Choice	X ² = 2.99, p = .084	
Allocation vs Choice	X ² = 1.16, p = .282	
PDE2 strong		
	Prefer Project A	Prefer Project B
Rating	35	27
Allocation	30	31
Choice	22	36
Rating vs Choice	X ² = 4.12, p = .042	
Allocation vs Choice	X ² = 1.53, p = .216	
PDE strong aggregated		
	Prefer Project A	Prefer Project B
Rating	80	56
Allocation	71	64
Choice	55	74
Rating vs Choice	X ² = 6.94, p = .008	
Allocation vs Choice	$X^2 = 2.62$, p = .105	

IGE1 weak		
	Prefer Project A	Prefer Project B
Rating	48	24
Allocation	53	19
Choice	60	10
Rating vs Choice	X ² = 7.07, p = .007	
Allocation vs Choice	X ² = 3.20, p = .074	
IGE2 weak		
	Prefer Project A	Prefer Project B
Rating	32	33
Allocation	41	24
Choice	57	10
Rating vs Choice	X ² = 19.30, p < .001	
Allocation vs Choice	X ² = 8.35, p = .004	
IGE weak aggregated		
	Prefer Project A	Prefer Project B
Rating	80	57
Allocation	94	43
Choice	117	20
Rating vs Choice	X ² = 24.73, p < .001	
Allocation vs Choice	X ² = 10.90, p < .001	

IGE1 strong		
	Prefer Project A	Prefer Project B
Rating	27	45
Allocation	38	34
Choice	52	22
Rating vs Choice	X ² = 15.78, p < .001	
Allocation vs Choice	X ² = 4.72, p = .030	
IGE2 strong		
	Prefer Project A	Prefer Project B
Rating	18	47
Allocation	24	42
Choice	30	34
Rating vs Choice	X ² = 5.08, p = .024	
Allocation vs Choice	X ² = 1.48, p = .224	
IGE strong aggregated		
	Prefer Project A	Prefer Project B
Rating	45	92
Allocation	62	76
Choice	82	56
Rating vs Choice	X ² = 19.53, p < .001	
Allocation vs Choice	X ² = 5.81, p = .016	

IVE1 weak		
	Prefer Project A	Prefer Project B
Rating	38	25
Allocation	41	22
Choice	45	17
Rating vs Choice	X ² = 2.11, p = .147	
Allocation vs Choice	X ² = 0.82, p = .365	
IVE2 weak		
	Prefer Project A	Prefer Project B
Rating	52	36
Allocation	52	36
Choice	59	32
Rating vs Choice	X ² = 0.63, p = .429	
Allocation vs Choice	X ² = 0.63, p = .429	
IVE weak aggregated		
	Prefer Project A	Prefer Project B
Rating	90	51
Allocation	93	58
Choice	104	49
Rating vs Choice	X ² = 0.56, p = .454	
Allocation vs Choice	X ² = 1.36, p = .244	

IVE1 strong		
	Prefer Project A	Prefer Project B
Rating	7	57
Allocation	7	57
Choice	9	59
Rating vs Choice	X ² = 0.16, p = .686	
Allocation vs Choice	X ² = 0.16, p = .686	
IVE2 strong		
	Prefer Project A	Prefer Project B
Rating	10	118
Allocation	10	118
Choice	17	113
Rating vs Choice	X ² = 1.91, p = .167	
Allocation vs Choice	X ² = 1.91, p = .167	
IVE strong aggregated		
	Prefer Project A	Prefer Project B
Rating	17	175
Allocation	17	175
Choice	26	172
Rating vs Choice	X ² = 1.82, p = .178	
Allocation vs Choice	X ² = 1.82, p = .178	

Existence weak		
	Prefer Project A	Prefer Project B
Rating	67	4
Allocation	70	1
Choice	67	1
Rating vs Choice	X ² = 1.74, p = .188	
Allocation vs Choice	X ² < 0.01, p = .975	

Existence strong			
	Prefer Project A	Prefer Project B	
Rating	44	26	
Allocation	46	25	
Choice	55	14	
Rating vs Choice	$X^2 = 4.82$, p = .028		
Allocation vs Choice	$X^2 = 3.88 p = .049$		

Age weak		
	Prefer Project A	Prefer Project B
Rating	45	28
Allocation	58	15
Choice	63	8
Rating vs Choice	X ² = 14.09, p < .001	
Allocation vs Choice	$X^2 = 2.31 p = .129$	

Age strong		
	Prefer Project A	Prefer Project B
Rating	25	41
Allocation	35	32
Choice	41	27
Rating vs Choice	$X^2 = 6.73$, p = .009	
Allocation vs Choice	$X^2 = 0.89 p = .345$	

Innocence weak		
	Prefer Project A	Prefer Project B
Rating	50	34
Allocation	56	28
Choice	65	15
Rating vs Choice	X ² = 9.23, p = .002	
Allocation vs Choice	$X^2 = 4.50 p = .034$	

Innocence strong			
	Prefer Project A	Prefer Project B	
Rating	31	49	
Allocation	41	39	
Choice	53	37	
Rating vs Choice	$X^2 = 6.87$, p = .009		
Allocation vs Choice	$X^2 = 1.00 p = .317$		

Gender weak		
	Prefer Project A	Prefer Project B
Rating	39	36
Allocation	40	34
Choice	62	18
Rating vs Choice	X ² = 11.09, p < .001	
Allocation vs Choice	$X^2 = 9.45$, p = .002	

Gender strong		
	Prefer Project A	Prefer Project B
Rating	13	60
Allocation	19	55
Choice	23	52
Rating vs Choice	X ² = 3.32, p = .068	
Allocation vs Choice	$X^2 = 0.46 p = .498$	

The tables below are contains the same information as the tables in the manuscript, but have the mean differences (Project A minus Project B) written out. A positive mean difference indicates a helping effect, a negative mean difference indicate a reversed helping effect. A zero mean difference indicate no effect. By comparing mean differences in SE and JE, it is possible to say if joint evaluation reduces or increases each helping effect.

Table 4: Results for the weak and strong Proportion Dominance Effect (PDE) in separate (SE) and joint (JE) evaluation.

	Project A	Project B	Mean difference (A – B)	Test	Percentage
Weak effect	A(X)	B(X)			
PDE1	6 of 6	6 of 100			
SE rating	79.25 (20.71)	44.24 (27.59)	+35.01	t(389) = 14.20, p < .001	84.49%
JE rating	80.17(18.55)	57.28 (24.83)	+22.89	t(63) = 5.86, p < .001	76.79%
Difference			+12.12 (SE)		
SE allocation	51.25 (30.58)	28.30 (19.06)	+22.95	t(389) = 8.90, p < .001	73.79%
JE allocation	68.17 (22.74)	31.83 (22.74)	+36.34	t(63) = 6.39, p < .001	78.79%
Difference			-13.39 (JE)		
PDE2	6 of 6	6 of 100			
SE rating	78.38 (21.04)	49.92 (25.95)	+28.46	t(348) = 11.26, p <.001	80.29%
JE rating	83.05 (20.37)	54.09 (28.99)	+28.96	t(56) = 6.66, p <.001	81.11%
Difference			-0.50 (=)		
SE allocation	49.24 (27.81)	33.70 (22.19)	+15.54	t(348) = 5.78, p <.001	66.89%
JE allocation	66.30 (26.80)	33.70 (26.80)	+32.60	t(56) = 4.59, p <.001	72.85%
Difference			-17.06 (JE)		
Strong effect	A(X-2)	B(X)			
PDE1	4 of 4	6 of 100			
SE rating	73.37 (26.42)	44.24 (27.59)	+29.13	t(395) = 10.75, p < .001	77.71%
JE rating	79.88 (19.23)	63.44 (27.28)	+16.44	t(74) = 4.19, p < .001	68.57%
Difference			+12.69 (SE)		
SE allocation	43.67 (29.26)	28.30 (19.06)	+15.37	t(395) = 6.17, p < .001	67.01%
JE allocation	54.47 (28.12)	45.53 (28.12)	+8.94	t(74) = 1.38, p = .173	56.32%
Difference			+6.43 (SE)		
PDE2	4 of 5	6 of 100			
SE rating	73.83 (20.50)	49.92 (25.95)	+23.91	t(369) = 9.89, p <.001	76.52%
JE rating	70.01 (23.40)	57.53 (30.08)	+12.48	t(61) = 2.72, p = .009	63.52%
Difference			+ 11.43 (SE)		
SE allocation	46.38 (28.11)	33.70 (22.19)	+12.68	t(369) = 4.79, p <.001	63.84%
JE allocation	50.74 (29.37)	49.26 (29.37)	+1.48	t(61) = 0.20, p = .843	51.01%
Difference			+ 11.20 (SE)		

Table 5: Results for the weak and strong Ingroup Effect (IGE) in separate (SE) and joint (JE) evaluation.

	Project A	Project B	Mean difference (A – B)	Test	Percentage
Weak effect	A(X)	B(X)			
IGE1	3 relatives	3 unknown			
SE rating	72.54 (23.07)	63.42 (24.65)	+9.12	t[374] = 3.71, p < .001	60.65%
JE rating	79.59 (22.26)	71.88 (24.09)	+7.71	t[72] = 2.96, p = .004	63.53%
Difference			+1.41 (=)		
SE allocation	52.68 (25.66)	41.22 (23.50)	+11.46	t[374] = 4.50, p < .001	62.91%
JE allocation	62.66 (19.11)	37.34 (19.11)	+25.32	t[72] = 5.66, p < .001	74.62%
Difference			-13.86 (JE)		
IGE2	6 US	6 Polish			
SE rating	69.79 (24.87)	71.51 (25.60)	-1.72	t[391] = -0.68, p = .499	48.08%
JE rating	76.04 (20.98)	72.83 (24.08)	+3.21	t[64] = 1.58, p = .120	57.73%
Difference			-4.93 (=)		
SE allocation	38.24 (23.28)	40.14 (23.15)	-1.90	t(391) = -0.81, p = .418	47.69%
JE allocation	56.89 (15.03)	43.11 (15.03)	+13.78	t[64] = 3.70, p < .001	67.67%
Difference			-15.68 (JE)		
Strong effect	A(X-2)	B(X)			
IGE1	1 relative	3 unknown			
SE rating	70.25 (25.18)	63.42 (24.65)	+6.83	t[374] = 2.65, p =.008	57.68%
JE rating	70.62 (19.46)	75.57 (20.52)	-4.95	t[71] = -2.03, p = .046	40.54%
Difference			+11.78 (SE)		
SE allocation	50.14 (25.75)	41.22 (23.50)	+8.92	t[374] = 3.49, p = .001	60.10%
JE allocation	53.83 (23.39)	46.17 (23.39)	+7.66	t[71] = 1.39, p = .169	56.50%
Difference			+1.26 (=)		
IGE2	4 US	6 Polish			
SE rating	68.40 (25.64)	71.51 (25.60)	-3.11	t[392] = -1.21, p = .229	46.58%
JE rating	70.82 (19.44)	75.26 (19.96)	-4.44	t[65] = -4.16, p <.001	30.38%
Difference		,	+1.33 (=)	·	
SE allocation	42.27 (27.50)	40.14 (23.15)	+2.13	t[392] = 0.83, p = .407	52.36%
JE allocation	49.47 (19.42)	50.53 (19.42)	-1.06	t[65] = -0.22, p =.825	48.91%
Difference			+3.19 (=)		

Table 6: Results for the weak and strong Identified Victim Effect (IVE) in separate (SE) and joint (JE) evaluation.

	Project A	Project B	Mean difference (A – B)	Test	Percentage
Weak effect	A(X)	B(X)			
IVE1	3 identified	3 statistical			
SE rating	87.25 (14.56)	79.53 (19.54)	+7.72	t[385] = 4.41, p <.001	62.43%
JE rating	89.27 (12.31)	84.49 (17.69)	+4.78	t[63] = 3.49, p <.001	66.87%
Difference			+2.94 (=)		
SE allocation	59.12 (29.50)	54.65 (28.68)	+4.47	t[385] = 1.51, p = .132	54.33%
JE allocation	55.86 (12.46)	44.14 (12.46)	+11.72	t[63] = 3.76, p <.001	68.09%
Difference			-7.25 (JE)		
IVE2	3 identified	3 statistical			
SE rating	70.10 (23.28)	60.18 (27.35)	+9.92	t[445] = 4.13, p <.001	60.88%
JE rating	77.48 (20.20)	72.49 (23.70)	+4.99	t[88] = 2.83, p =.006	61.79%
Difference			+4.93 (=)		
SE allocation	32.71 (19.50)	33.11 (21.46)	-0.40	t[445] = -0.21, p = .836	49.45%
JE allocation	52.84 (10.37)	47.16 (10.37)	+5.68	t[88] = 2.59, p =.011	60.79%
Difference			-6.08 (JE)		
Strong effect	A(X-2)	B(X)			
IVE1	1 identified	3 statistical			
SE rating	80.12 (19.07)	79.53 (19.54)	+0.59	t[389] = 0.30, p = .764	50.86%
JE rating	63.35 (23.18)	86.77 (13.58)	-23.42	t[64] = -8.11, p < .001	15.73%
Difference			+24.01 (SE)		
SE allocation	56.58 (28.98)	54.65 (28.68)	+1.93	t[389] = 0.66, p = .510	51.89%
JE allocation	30.98 (14.96)	69.02 (14.96)	-38.04	t[64] = -10.25, p < .001	10.18%
Difference			+39.97 (SE)		
IVE2	1 identified	3 statistical			
SE rating	56.21 (28.05)	60.18 (27.35)	-3.97	t[471] = -1.55, p = .121	45.96%
JE rating	49.15 (27.50)	76.82 (19.39)	-27.67	t[128] = -12.56, p < .001	13.43%
Difference			+23.70 (SE)		
SE allocation	27.93 (18.98)	33.11 (21.46)	-5.18	t[471] = -2.79, p = .006	42.83%
JE allocation	28.26 (15.39)	71.74 (15.39)	-43.48	t(128) = -16.04, p < .001	7.89%
Difference			+38.30 (SE)		

Table 7: Results for the weak and strong Existence Effect in separate (SE) and joint (JE) evaluation.

	Project A	Project B	Mean difference (A – B)	Test	Percentag e
Weak effect	A(X)	B(X)	,		
	6 now	6 in one year			
SE rating	72.79 (21.09)	69.95 (23.89)	+2.84	t[447] = 1.34, p = .182	53.55%
JE rating	81.46 (19.17)	57.72 (22.99)	+23.74	t(70) = 9.71, p < .001	87.54%
Difference			-20.90 (JE)		
SE allocation	45.39 (24.22)	44.02 (24.64)	+1.37	t[447] = 0.59, p = .553	51.58%
JE allocation	77.45 (13.03)	22.55 (13.03)	+54.90	t(70) = 17.76, p < .001	98.24%
Difference			-53.53 (JE)		
Strong effect	A(X)	B(X-2)			
	4 now	6 in one year			
SE rating	68.96 (24.69)	69.95 (23.89)	-0.99	t[448] = -0.43, p = .668	48.85%
JE rating	80.08 (17.88)	70.59 (19.53)	+9.49	t[70] = 4.21, p < .001	69.13%
Difference			-10.48 (JE)		
SE allocation	43.97 (23.97)	44.02 (24.64)	-0.05	t(448) = -0.02, p = .983	49.94%
JE allocation	59.99 (21.22)	40.01 (21.22)	+19.98	t[70] = 3.97, p < .001	68.11%
Difference			-20.03 (JE)		

Table 8: Results for the weak and strong Age Effect in separate (SE) and joint (JE) evaluation.

	Project A	Project B	Mean difference (A – B)	Test	Percentage
Weak effect	A(X)	B(X)			
	6 children	6 adults			
SE rating	68.97 (26.32)	67.45 (24.97)	+1.52	t[433] = 0.62, p = .538	51.67%
JE rating	75.48 (21.83)	72.13 (23.65)	+3.35	t[72] = 2.18, p = .032	60.06%
Difference			-1.83 (=)		
SE allocation	41.15 (24.43)	40.74 (23.18)	+0.41	t[433] = 0.18, p = .856	50.49%
JE allocation	60.15 (12.98)	39.85 (12.98)	+20.30	t[72] = 6.68, p < .001	78.29%
Difference			-19.89 (JE)		
Strong effect	A(X-2)	B(X)			
	4 children	6 adults			
SE rating	65.38 (27.57)	67.45 (24.97)	-2.07	t[432] = -0.82, p = .414	47.78%
JE rating	73.68 (21.11)	76.24 (20.35)	-2.56	t[66] = -1.65, p = .103	42.01%
Difference			+0.49 (=)		
SE allocation	39.99 (24.56)	40.74 (23.18)	-0.75	t[432] = -0.33, p = .744	49.11%
JE allocation	52.10 (18.00)	47.90 (18.00)	+4.20	t[66] = 0.96, p = .342	54.64%
Difference			-4.95 (=)		

Table 9: Results for the weak and strong Innocence Effect in separate (SE) and joint (JE) evaluation.

	Project A	Project B	Mean difference (A – B)	Test	Percentage
Weak effect	A(X)	B(X)			
	6 gymmers	6 smokers			
SE rating	63.80 (25.30)	65.41 (23.75)	-1.61	t[431] = -0.69, p = .494	48.15%
JE rating	70.29 (22.58)	62.96 (26.16)	+7.33	t[84] = 2.12, p = .037	59.10%
Difference			-8.94 (JE)		
SE allocation	39.53 (22.30)	43.59 (24.17)	-4.06	t[431] = -1.82, p = .070	45.09%
JE allocation	58.49 (19.05)	41.51 (19.05)	+16.98	t[84] = 4.11, p < .001	67.21%
Difference			-21.04 (JE)		
Strong effect	A(X-2)	B(X)			
	4 gymmers	6 smokers			
SE rating	64.75 (25.95)	65.41 (23.75)	-0.66	t[429] = -0.28, p = .782	49.25%
JE rating	62.81 (22.01)	69.30 (18.42)	-6.49	t[80] = -2.28, p = .025	40.00%
Difference			+5.83 (SE)		
SE allocation	44.06 (24.48)	43.59 (24.17)	+0.43	t[429] = 0.20, p = .843	50.54%
JE allocation	49.51 (16.73)	50.49 (16.73)	-0.98	t[80] = -0.27, p = .791	48.83%
Difference			+1.41 (=)		

Table 10: Results for the weak and strong Gender Effect in separate (SE) and joint (JE) evaluation.

	Project A	Project B	Mean difference (A – B)	Test	Percentage
Weak effect	A(X)	B(X)			
	6 women	6 men			
SE rating	70.16 (26.57)	70.72 (22.96)	-0.56	t[442] = -0.24, p = .813	49.37%
JE rating	70.69 (22.68)	69.71 (23.32)	+0.98	t[74] = 1.50, p = .138	56.86%
Difference			-1.54 (=)		
SE allocation	41.71 (24.91)	42.86 (24.03)	-1.15	t(442) = -0.49, p = .622	48.68%
JE allocation	50.72 (4.01)	49.28 (4.01)	+1.44	t[74] = 1.56, p = .124	57.12%
Difference			-2.59 (=)		
Strong effect	A(X-2)	B(X)			
	4 women	6 men			
SE rating	66.81 (27.00)	70.72 (22.96)	-3.91	t[439] = -1.63, p = .103	45.61%
JE rating	65.59 (21.58)	73.48 (19.71)	-7.89	t[73] = -5.67, p < .001	25.47%
Difference			+3.98 (=)		
SE allocation	40.94 (24.77)	42.86 (24.03)	-1.92	t[439] = -0.82, p = .410	47.78%
JE allocation	43.65 (9.94)	56.35 (9.94)	-12.70	t[73] = -5.47, p < .001	26.15%
Difference			+10.78 (SE)		

The following pages include common language effect size calculations done with the spreadsheet provided by Lakens. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4:863. doi:10.3389/fpsyg.2013.00863. Note that I have subtracted the CL effect size from 100 for reversed effects (when the mean is higher for Project B) in order to illustrate the direction of the effect.

PDE1 – weak effect – rating - SE

		Weak PDE1 rati	ing SE									
	Independent Samples											
Mean group 1	79,25	Mean group 2	44,24	95% CI M _{diff}	30,15376733	Cohen's d _s	1,436750173					
SD group 1	20,71	SD group 2	27,59	[Low; High]	39,86623267	Cohen's d	1,440438883					
n group 1	197	n group 2	194	t	14,20452965	Hedges's g _s	1,433978308					
				df	389	CL effect size	0,844909272					
				р	0,00							

PDE2 – weak effect – rating – SE

		Weak PDE2 rat	ing SE									
	Independent Samples											
Mean group 1	78,38	Mean group 2	49,92	95% CI M _{diff}	23,49589458	Cohen's d _s	1,204047446					
SD group 1	21,04	SD group 2	25,95	[Low; High]	33,42410542	Cohen's d	1,207502395					
n group 1	174	n group 2	176	t	11,26264867	Hedges's g _s	1,201450651					
				df	348	CL effect size	0,802864013					
				р	0,00							

PDE1 – weak effect – allocation – SE

		Weak PDE1 allo	ocation SE								
	Independent Samples										
Mean group 1	51,25	Mean group 2	28,3	95% CI M _{diff}	17,89159736	Cohen's d _s	0,899194793				
SD group 1	30,58	SD group 2	19,06	[Low; High]	28,00840264	Cohen's d	0,901503384				
n group 1	197	n group 2	194	t	8,889951314	Hedges's g _s	0,897460012				
				df	389	CL effect size	0,737906844				
				р	0,00						

PDE2 – weak effect – allocation - SE

		Weak PDE2 allo	ocation SE									
	Independent Samples											
Mean group 1	49,24	Mean group 2	33,7	95% CI M _{diff}	10,24695371	Cohen's d _s	0,618104671					
SD group 1	27,81	SD group 2	22,19	[Low; High]	20,83304629	Cohen's d	0,619878289					
n group 1	174	n group 2	176	t	5,781745374	Hedges's g _s	0,616771591					
				df	348	CL effect size	0,668867124					
				р	0,00							

PDE1 – weak effect – rating - JE

	Weak PDE1 rati	ing JE										
	Correlated (or Dependent) Samples											
Mean 1	80,17	Mean 2	57,28	M_{diff}	22,89	Cohen's d _z	0,731891326					
SD1	18,55	SD 2	24,83	S _{diff}	31,27513496	Cohen's d _{rm}	1,044837352					
n pairs	64	r	-0,019	SE _{diff}	3,90939187	Hedges g _{rm}	1,038605718					
				95% CI M _{diff}	15,0777	Cohen's d _{av}	1,055325035					
				[Low; High]	30,7023	Hedges g _{av}	1,049030849					
t	5,855130608	df	63	р	0,00	Recommended:	Grm					
						CL effect size	0,76788255					

PDE2 – weak effect – rating - JE

	Weak PDE2 rati	ing JE										
	Correlated (or Dependent) Samples											
Mean 1	83,05	Mean 2	54,09	M_{diff}	28,96	Cohen's d _z	0,881960374					
SD1	20,37	SD 2	28,99	S _{diff}	32,83594235	Cohen's d _{rm}	1,149935638					
n pairs	57	r	0,15	SE _{diff}	4,349226812	Hedges g _{rm}	1,14221795					
				95% CI M _{diff}	20,2475	Cohen's d _{av}	1,173419773					
				[Low; High]	37,6725	Hedges g _{av}	1,165544473					
t	6,658654803	df	56	р	0,00	Recommended:	Grm					
						CL effect size	0,811100882					

PDE1 – weak effect – allocation - JE

	Weak PDE1 allo	ocation JE									
·	Correlated (or Dependent) Samples										
Mean 1	68,17	Mean 2	31,83	M _{diff}	36,34	Cohen's d _z	0,799032542				
SD 1	22,74	SD 2	22,74	S _{diff}	45,48	Cohen's d _{rm}	1,598065084				
n pairs	64	r	-1	SE _{diff}		Hedges g _{rm}	1,58853388				
				95% CI M _{diff}	24,9794	Cohen's d _{av}	1,598065084				
				[Low; High]	47,7006	Hedges g _{av}	1,58853388				
t	6,392260334	df	63	р	0,00	Recommended:	Gav				
						CL effect size	0,787864228				

PDE2 – weak effect – allocation - JE

	Wool, DDF2 all	antina IF					
_	Weak PDE2 allo						
			Correlated (or	Dependent) S	amples		
Mean 1	66,3	Mean 2	33,7	M_{diff}	32,6	Cohen's d _z	0,608208955
SD 1	26,8	SD 2	26,8	S _{diff}	53,6	Cohen's d _{rm}	1,21641791
n pairs	57	r	-1	SE _{diff}	7,099493434	Hedges g _{rm}	1,208254032
				95% CI M _{diff}	18,3780	Cohen's d _{av}	1,21641791
				[Low; High]	46,8220	Hedges g _{av}	1,208254032
t	4,591876914	df	56	р	0,00	Recommended:	Gav
						CL effect size	0,728475552

PDE1 – strong effect – rating - SE

		Strong PDE1 rat	ting SE									
	Independent Samples											
Mean group 1	73,37	Mean group 2	44,24	95% CI M _{diff}	23,7955907	Cohen's d _s	1,07896856					
SD group 1	26,42	SD group 2	27,59	[Low; High]	34,4644093	Cohen's d	1,081696677					
n group 1	203	n group 2	194	t	10,74638562	Hedges's g _s	1,076918589					
				df	395	CL effect size	0,777139909					
				р	0,00							

PDE2 – strong effect – rating – SE

		Strong PDE2 ra	ting SE									
	Independent Samples											
Mean group 1	73,83	Mean group 2	49,92	95% CI M _{diff}	19,10081028	Cohen's d _s	1,028628531					
SD group 1	20,5	SD group 2	25,95	[Low; High]	28,71918972	Cohen's d	1,031412375					
n group 1	195	n group 2	176	t	9,893392769	Hedges's g _s	1,026536405					
				df	369	CL effect size	0,765160878					
				р	0,00							

PDE1 – strong effect – allocation – SE

		Strong PDE1 all									
	Independent Samples										
Mean group 1	43,67	Mean group 2	28,3	95% CI M _{diff}	10,51832124	Cohen's d _s	0,619611749				
SD group 1	29,26	SD group 2	19,06	[Low; High]	20,22167876	Cohen's d	0,621178406				
n group 1	203	n group 2	194	t	6,171251911	Hedges's g _s	0,618434526				
				df	395	CL effect size	0,67008375				
				р	0,00						

PDE2 – strong effect – allocation – SE

		Strong PDE2 all					
			dent Samples				
Mean group 1	46,38	Mean group 2	33,7	95% CI M _{diff}	7,533451808	Cohen's d _s	0,497752551
SD group 1	28,11	SD group 2	22,19	[Low; High]	17,82654819	Cohen's d	0,499099651
n group 1	195	n group 2	176	t	4,787405115	Hedges's g _s	0,496740173
				df	369	CL effect size	0,638353699
				р	0,00		

PDE1 – strong effect – rating - JE

	Strong PDE1 ra	ting JE									
	Correlated (or Dependent) Samples										
Mean 1	79,88	Mean 2	63,44	M_{diff}	16,44	Cohen's d _z	0,483757605				
SD 1	19,23	SD 2	27,28	S _{diff}	33,98396185	Cohen's d _{rm}	0,697349634				
n pairs	75	r	-0,039	SE _{diff}	3,924129905	Hedges g _{rm}	0,693809788				
				95% CI M _{diff}	8,6210	Cohen's d _{av}	0,706944743				
				[Low; High]	24,2590	Hedges g _{av}	0,703356191				
t	4,189463754	df	74	р	0,00	Recommended:	Grm				
						CL effect size	0,685721047				

 ${\tt PDE2-strong\ effect-rating-JE}$

	Strong PDE2 rat	ting JE									
	Correlated (or Dependent) Samples										
Mean 1	70,01	Mean 2	57,53	M_{diff}	12,48	Cohen's d _z	0,345528341				
SD 1	23,4	SD 2	30,08	S _{diff}	36,11860019	Cohen's d _{rm}	0,462285413				
n pairs	62	r	0,105	SE _{diff}	4,587066812	Hedges g _{rm}	0,459437659				
				95% CI M _{diff}	3,3076	Cohen's d _{av}	0,46671653				
				[Low; High]	21,6524	Hedges g _{av}	0,463841479				
t	2,720692877	df	61	р	0,01	Recommended:	Grm				
						CL effect size	0,635151396				

PDE1 – strong effect – allocation - JE

	Strong PDE1 all	ocation JE									
	Correlated (or Dependent) Samples										
Mean 1	54,47	Mean 2	45,53	M_{diff}	8,94	Cohen's d _z	0,158961593				
SD 1	28,12	SD 2	28,12	S _{diff}	56,24	Cohen's d _{rm}	0,317923186				
n pairs	75	r	-1	SE _{diff}	6,494035828	Hedges g _{rm}	0,316309363				
				95% CI M _{diff}	-3,9996	Cohen's d _{av}	0,317923186				
				[Low; High]	21,8796	Hedges g _{av}	0,316309363				
t	1,376647779	df	74	р	0,17	Recommended:	Gav				
						CL effect size	0,563150433				

 ${\tt PDE2-strong\ effect-allocation-JE}$

	Strong PDE2 all	ocation JE								
	Correlated (or Dependent) Samples									
Mean 1	50,74	Mean 2	49,26	M_{diff}	1,48	Cohen's d _z	0,025195778			
SD 1	29,37	SD 2	29,37	S _{diff}	58,74	Cohen's d _{rm}	0,050391556			
n pairs	62	r	-1	SE _{diff}	7,45998746	Hedges g _{rm}	0,050081136			
				95% CI M _{diff}	-13,4372	Cohen's d _{av}	0,050391556			
				[Low; High]	16,3972	Hedges g _{av}	0,050081136			
t	0,198391754	df	61	р	0,84	Recommended:	Gav			
						CL effect size	0,510050598			

IGE1 – weak effect – rating - SE

		Weak IGE1 rati	ng SE									
	Independent Samples											
Mean group 1	72,54	Mean group 2	63,42	95% CI M _{diff}	4,262887626	Cohen's d _s	0,382697788					
SD group 1	23,07	SD group 2	24,65	[Low; High]	13,97711237	Cohen's d	0,383719679					
n group 1	198	n group 2	178	t	3,705140024	Hedges's g _s	0,381929832					
				df	374	CL effect size	0,606469559					
				р	0,00							

IGE 2 – weak effect – rating – SE

		Weak IGE2 ratn	ıg SE									
	Independent Samples											
Mean group 1	69,79	Mean group 2	71,51	95% CI M _{diff}	-6,73326114	Cohen's d _s	0,068162284					
SD group 1	24,87	SD group 2	25,6	[Low; High]	3,29326114	Cohen's d	0,068336836					
n group 1	198	n group 2	194	t	-0,674737058	Hedges's g _s	0,068031119					
				df	390	CL effect size	0,519217935					
				р	0,50							

IGE1 – weak effect – allocation – SE

		Weak IGE1 allo	cation SE								
Independent Samples											
Mean group 1	52,68	Mean group 2	41,22	95% CI M _{diff}	6,474687581	Cohen's d _s	0,46469483				
SD group 1	25,66	SD group 2	23,5	[Low; High]	16,44531242	Cohen's d	0,465935673				
n group 1	198	n group 2	178	t	4,499005404	Hedges's g _s	0,463762332				
				df	374	CL effect size	0,629057649				
				р	0,00						

IGE 2 – weak effect – allocation - SE

		Weak IGE2 allo	cation SE									
	Independent Samples											
Mean group 1	38,24	Mean group 2	40,14	95% CI M _{diff}	-6,504879594	Cohen's d _s	0,081840385					
SD group 1	23,28	SD group 2	23,15	[Low; High]	2,704879594	Cohen's d	0,082049428					
n group 1	199	n group 2	194	t	-0,811145549	Hedges's g _s	0,081683301					
				df	391	CL effect size	0,523074692					
				р	0,42							

IGE 1 – weak effect – rating - JE

	Correlated (or Dependent) Samples										
Mean 1	79,59	Mean 2	71,88	M_{diff}	7,71	Cohen's d _z	0,345947689				
SD 1	22,26	SD 2	24,09	S _{diff}	22,28660647	Cohen's d _{rm}	0,331821366				
n pairs	73	r	0,54	SE _{diff}	2,608449988	Hedges g _{rm}	0,330090124				
				95% CI M _{diff}	2,5101	Cohen's d _{av}	0,332686084				
				[Low; High]	12,9099	Hedges g _{av}	0,330950331				
t	2,955778349	df	72	р	0,00	Recommended:	Gav				
						CL effect size	0,635308986				

IGE 2 – weak effect – rating - JE

	Weak IGE2 ratii	ng JE									
	Correlated (or Dependent) Samples										
Mean 1	76,04	Mean 2	72,83	M_{diff}	3,21	Cohen's d _z	0,194884777				
SD 1	20,98	SD 2	24,08	S _{diff}	16,47127109	Cohen's d _{rm}	0,140262895				
n pairs	65	r	0,741	SE _{diff}	2,043009738	Hedges g _{rm}	0,139439433				
				95% CI M _{diff}	-0,8714	Cohen's d _{av}	0,142476698				
				[Low; High]	7,2914	Hedges g _{av}	0,14164024				
t	1,571211307	df	64	р	0,12	Recommended:	Gav				
						CL effect size	0,577258424				

IGE 1 – weak effect – allocation - JE

	Weak IGE1 allo	cation SE									
	Correlated (or Dependent) Samples										
Mean 1	62,66	Mean 2	37,34	M_{diff}	25,32	Cohen's d _z	0,662480377				
SD 1	19,11	SD 2	19,11	S _{diff}	38,22	Cohen's d _{rm}	1,324960754				
n pairs	73	r	-1	SE _{diff}	4,473312646	Hedges g _{rm}	1,318047915				
				95% CI M _{diff}	16,4026	Cohen's d _{av}	1,324960754				
				[Low; High]	34,2374	Hedges g _{av}	1,318047915				
t	5,66023482	df	72	р	0,00	Recommended:	Gav				
						CL effect size	0,746168297				

IGE 2 – weak effect – allocation - JE

	Weak IGE2 allo	cation JE									
	Correlated (or Dependent) Samples										
Mean 1	56,89	Mean 2	43,11	M_{diff}	13,78	Cohen's d _z	0,4584165				
SD 1	15,03	SD 2	15,03	S _{diff}	30,06	Cohen's d _{rm}	0,916833001				
n pairs	65	r	-1	SE _{diff}	3,728484122	Hedges g _{rm}	0,911450419				
				95% CI M _{diff}	6,3315	Cohen's d _{av}	0,916833001				
				[Low; High]	21,2285	Hedges g _{av}	0,911450419				
t	3,695871982	df	64	р	0,00	Recommended:	Gav				
						CL effect size	0,67667338				

IGE 1 – strong effect – rating - SE

		Strong IGE1 rat	ing SE				
			dent Samples				
Mean group 1	70,25	Mean group 2	63,42	95% CI M _{diff}	1,772373547	Cohen's d _s	0,273960783
SD group 1	25,18	SD group 2	24,65	[Low; High]	11,88762645	Cohen's d	0,274692322
n group 1	198	n group 2	178	t	2,652388112	Hedges's g _s	0,273411029
				df	374	CL effect size	0,576845372
				р	0,01		

IGE 2 – strong effect – rating – SE

		Strong IGE2 rat	ing SE								
	Independent Samples										
Mean group 1	68,4	Mean group 2	71,51	95% CI M _{diff}	-8,185716895	Cohen's d _s	0,121388052				
SD group 1	25,64	SD group 2	25,6	[Low; High]	1,965716895	Cohen's d	0,121697321				
n group 1	200	n group 2	194	t	-1,204602317	Hedges's g _s	0,121155656				
				df	392	CL effect size	0,534201344				
				р	0,23						

IGE 1 – strong effect – allocation – SE

		Strong IGE1 allo	ocation SE				
Mean group 1	50,14	Mean group 2	41,22	95% CI M _{diff}	3,925634009	Cohen's d _s	0,360977094
SD group 1	25,75	SD group 2	23,5	[Low; High]	13,91436599	Cohen's d	0,361940986
n group 1	198	n group 2	178	t	3,494848207	Hedges's g _s	0,360252725
				df	374	CL effect size	0,600974732
				р	0,00		

 ${\sf IGE~2-strong~effect-allocation-SE}$

		Strong IGE2 allo	ocation SE									
	Independent Samples											
Mean group 1	42,27	Mean group 2	40,14	95% CI M _{diff}	-2,899258629	Cohen's d _s	0,083688999					
SD group 1	27,5	SD group 2	23,15	[Low; High]	7,159258629	Cohen's d	0,08390222					
n group 1	200	n group 2	194	t	0,830493285	Hedges's g _s	0,083528778					
				df	392	CL effect size	0,523625192					
				р	0,41							

IGE 1 – strong effect – rating - JE

	Strong IGE1 rat	ing SE										
	Correlated (or Dependent) Samples											
Mean 1	70,62	Mean 2	75,57	M_{diff}	4,95	Cohen's d _z	0,239380145					
SD 1	19,46	SD 2	20,52	S _{diff}	20,67840675	Cohen's d _{rm}	0,247385221					
n pairs	72	r	0,466	SE _{diff}	2,436973606	Hedges g _{rm}	0,246076305					
				95% CI M _{diff}	0,0908	Cohen's d _{av}	0,247623812					
				[Low; High]	9,8092	Hedges g _{av}	0,246313633					
t	2,031207883	df	71	р	0,05	Recommended:	Gav					
						CL effect size	0,594594588					

IGE 2 – strong effect – rating - JE

	Strong IGE2 rating JE										
	Correlated (or Dependent) Samples										
Mean 1	70,82	Mean 2	75,26	M_{diff}	4,44	Cohen's d _z	0,513472566				
SD 1	19,44	SD 2	19,96	S _{diff}	8,647005308	Cohen's d _{rm}	0,224992405				
n pairs	66	r	0,904	SE _{diff}	1,064372776	Hedges g _{rm}	0,223691871				
				95% CI M _{diff}	2,3143	Cohen's d _{av}	0,225380711				
				[Low; High]	6,5657	Hedges g _{av}	0,224077932				
t	4,171470842	df	65	р	0,00	Recommended:	Gav				
						CL effect size	0,696189602				

IGE 1 – strong effect – allocation - JE

	Strong IGE1 allo	ocation SE										
	Correlated (or Dependent) Samples											
Mean 1	53,83	Mean 2	46,17	M_{diff}	7,66	Cohen's d _z	0,16374519					
SD 1	23,39	SD 2	23,39	S _{diff}	46,78	Cohen's d _{rm}	0,327490381					
n pairs	72	r	-1	SE _{diff}	5,513075871	Hedges g _{rm}	0,325757627					
				95% CI M _{diff}	-3,3328	Cohen's d _{av}	0,327490381					
				[Low; High]	18,6528	Hedges g _{av}	0,325757627					
t	1,389424013	df	71	р	0,17	Recommended:	Gav					
						CL effect size	0,56503413					

IGE 2 – strong effect – allocation – JE

	Strong IGE2 allo	ocation JE										
	Correlated (or Dependent) Samples											
Mean 1	49,47	Mean 2	50,53	M_{diff}	1,06	Cohen's d _z	0,027291452					
SD 1	19,42	SD 2	19,42	S _{diff}	38,84	Cohen's d _{rm}	0,054582904					
n pairs	66	r	-1	SE _{diff}	4,78087351	Hedges g _{rm}	0,054267396					
				95% CI M _{diff}	-8,4881	Cohen's d _{av}	0,054582904					
				[Low; High]	10,6081	Hedges g _{av}	0,054267396					
t	0,221716805	df	65	р	0,83	Recommended:	Gav					
						CL effect size	0,510886363					

IVE1 – weak effect – rating - SE

		Weak IVE1 rati	ng SE								
	Independent Samples										
Mean group 1	87,25	Mean group 2	79,53	95% CI M _{diff}	4,271812046	Cohen's d _s	0,448533349				
SD group 1	14,56	SD group 2	19,54	[Low; High]	11,16818795	Cohen's d	0,449696861				
n group 1	195	n group 2	192	t	4,41171223	Hedges's g _s	0,447659015				
				df	385	CL effect size	0,624305121				
				р	0,00						

IVE 2 – weak effect – rating – SE

		Weak IVE2 rati	ng SE				
Mean group 1	70,1	Mean group 2	60,18	95% CI M _{diff}	5,199290906	Cohen's d _s	0,390532422
SD group 1	23,28	SD group 2	27,35	[Low; High]	14,64070909	Cohen's d	0,391409039
n group 1	223	n group 2	224	t	4,128381028	Hedges's g _s	0,389873851
				df	445	CL effect size	0,608801882
				р	0,00		

IVE 1 – weak effect – allocation – SE

		Weak IVE1 allo	cation SE				
			Independ	dent Samples			
Mean group 1	59,12	Mean group 2	54,65	95% CI M _{diff}	-1,344902961	Cohen's d _s	0,153628924
SD group 1	29,5	SD group 2	28,68	[Low; High]	10,28490296	Cohen's d	0,154027443
n group 1	195	n group 2	192	t	1,511072934	Hedges's g _s	0,153329453
				df	385	CL effect size	0,543257562
				р	0,13		

IVE 2 – weak effect – allocation - SE

		Weak IVE2 allo	cation SE								
	Independent Samples										
Mean group 1	32,71	Mean group 2	33,11	95% CI M _{diff}	-4,211434164	Cohen's d _s	0,019506835				
SD group 1	19,5	SD group 2	21,46	[Low; High]	3,411434164	Cohen's d	0,019550621				
n group 1	223	n group 2	224	t	-0,206209885	Hedges's g _s	0,019473939				
				df	445	CL effect size	0,505503192				
				р	0,84						

IVE 1 – weak effect – rating - JE

		٠.										
	Correlated (or Dependent) Samples											
Mean 1	89,27	Mean 2	84,49	M_{diff}	4,78	Cohen's d _z	0,436407386					
SD 1	12,31	SD 2	17,69	S _{diff}	10,95306853	Cohen's d _{rm}	0,282150116					
n pairs	64	r	0,791	SE _{diff}	1,369133566	Hedges g _{rm}	0,280467312					
				95% CI M _{diff}	2,0440	Cohen's d _{av}	0,318666667					
				[Low; High]	7,5160	Hedges g _{av}	0,31676607					
t	3,491259084	df	63	р	0,00	Recommended:	Gav					
						CL effect size	0,668729409					

IVE 2 – weak effect – rating - JE

	Weak IVE2 ratio										
	Correlated (or Dependent) Samples										
Mean 1	77,48	Mean 2	72,49	M_{diff}	4,99	Cohen's d _z	0,300083147				
SD 1	20,2	SD 2	23,7	S _{diff}	16,62872455	Cohen's d _{rm}	0,222951883				
n pairs	89	r	0,724	SE _{diff}	1,762641277	Hedges g _{rm}	0,222000453				
				95% CI M _{diff}	1,4871	Cohen's d _{av}	0,227334852				
				[Low; High]	8,4929	Hedges g _{av}	0,226364717				
t	2,830978751	df	88	р	0,01	Recommended:	Gav				
						CL effect size	0,617943133				

IVE 1 – weak effect – allocation - JE

	Weak IVE1 allocation JE										
	Correlated (or Dependent) Samples										
Mean 1	55,86	Mean 2	44,14	M _{diff}	11,72	Cohen's d _z	0,470304976				
SD 1	12,46	SD 2	12,46	S _{diff}	24,92	Cohen's d _{rm}	0,940609952				
n pairs	64	r	-1	SE _{diff}	3,115	Hedges g _{rm}	0,934999952				
				95% CI M _{diff}	5,4952	Cohen's d _{av}	0,940609952				
				[Low; High]	17,9448	Hedges g _{av}	0,934999952				
t	3,762439807	df	63	р	0,00	Recommended:	Gav				
						CL effect size	0,680931429				

IVE 2 – weak effect – allocation - JE

	Weak IVE2 allocation JE										
	Correlated (or Dependent) Samples										
Mean 1	52,84	Mean 2	47,16	M_{diff}	5,68	Cohen's d _z	0,273866924				
SD 1	10,37	SD 2	10,37	S _{diff}	20,74	Cohen's d _{rm}	0,547733848				
n pairs	89	r	-1	SE _{diff}	2,198435603	Hedges g _{rm}	0,545396434				
				95% CI M _{diff}	1,3111	Cohen's d _{av}	0,547733848				
				[Low; High]	10,0489	Hedges g _{av}	0,545396434				
t	2,583655392	df	88	р	0,01	Recommended:	Gav				
						CL effect size	0,607906554				

IVE 1 – strong effect – rating - SE

		Strong IVE1 rat	ing SE				
			Independ	dent Samples			
Mean group 1	80,12	Mean group 2	79,53	95% CI M _{diff}	-3,250689863	Cohen's d _s	0,030566462
SD group 1	19,07	SD group 2	19,54	[Low; High]	4,430689863	Cohen's d	0,030644938
n group 1	199	n group 2	192	t	0,302157894	Hedges's g _s	0,030507491
				df	389	CL effect size	0,50862008
				р	0,76		

IVE 2 – strong effect – rating – SE

		Strong IVE2 rat	ing SE								
	Independent Samples										
Mean group 1	56,21	Mean group 2	60,18	95% CI M _{diff}	-8,979526237	Cohen's d _s	0,143213859				
SD group 1	28,05	SD group 2	27,35	[Low; High]	1,039526237	Cohen's d	0,1435176				
n group 1	249	n group 2	224	t	-1,555171035	Hedges's g _s	0,14298569				
				df	471	CL effect size	0,540357882				
				р	0,12						

IVE 1 – strong effect – allocation – SE

		Strong IVE1 allo	ocation SE								
	Independent Samples										
Mean group 1	56,58	Mean group 2	54,65	95% CI M _{diff}	-3,803538212	Cohen's d _s	0,066936983				
SD group 1	28,98	SD group 2	28,68	[Low; High]	7,663538212	Cohen's d	0,067108837				
n group 1	199	n group 2	192	t	0,66169051	Hedges's g _s	0,066807844				
				df	389	CL effect size	0,518877292				
				р	0,51						

IVE 2 – strong effect – allocation – SE

		Strong IVE2 allo	ocation SE								
	Independent Samples										
Mean group 1	27,93	Mean group 2	33,11	95% CI M _{diff}	-8,857617595	Cohen's d _s	0,256534889				
SD group 1	18,98	SD group 2	21,46	[Low; High]	-1,502382405	Cohen's d	0,257078972				
n group 1	249	n group 2	224	t	-2,785733397	Hedges's g _s	0,256126177				
				df	471	CL effect size	0,571740997				
				р	0,01						

IVE 1 – strong effect – rating - JE

	Strong IVE1 rat	ing JE								
	Correlated (or Dependent) Samples									
Mean 1	63,35	Mean 2	86,77	M_{diff}	23,42	Cohen's d _z	1,005695278			
SD 1	23,18	SD 2	13,58	S _{diff}	23,28737194	Cohen's d _{rm}	1,202636636			
n pairs	65	r	0,285	SE _{diff}	2,888442998	Hedges g _{rm}	1,195576147			
				95% CI M _{diff}	17,6497	Cohen's d _{av}	1,274211099			
				[Low; High]	29,1903	Hedges g _{av}	1,266730408			
t	8,108174548	df	64	р	0,00	Recommended:	Grm			
						CL effect size	0,842718912			

IVE 2 – strong effect – rating - JE

	Strong IVE2 rat	ing JE									
	Correlated (or Dependent) Samples										
Mean 1	49,15	Mean 2	76,82	M_{diff}	27,67	Cohen's d _z	1,106217531				
SD 1	27,5	SD 2	19,39	S _{diff}	25,01316353	Cohen's d _{rm}	1,133535657				
n pairs	129	r	0,475	SE _{diff}	2,20228625	Hedges g _{rm}	1,130211506				
				95% CI M _{diff}	23,3124	Cohen's d _{av}	1,180209				
				[Low; High]	32,0276	Hedges g _{av}	1,176747976				
t	12,56421593	df	128	р	0,00	Recommended:	Gav				
						CL effect size	0,865683812				

IVE 1 – strong effect – allocation - JE

	Strong IVE1 allo	ocation JE									
	Correlated (or Dependent) Samples										
Mean 1	30,98	Mean 2	69,02	M_{diff}	38,04	Cohen's d _z	1,271390374				
SD 1	14,96	SD 2	14,96	S _{diff}	29,92	Cohen's d _{rm}	2,542780749				
n pairs	65	r	-1	SE _{diff}	3,711119259	Hedges g _{rm}	2,527852486				
				95% CI M _{diff}	30,6262	Cohen's d _{av}	2,542780749				
				[Low; High]	45,4538	Hedges g _{av}	2,527852486				
t	10,2502769	df	64	р	0,00	Recommended:	Gav				
						CL effect size	0,898205097				

IVE 2 – strong effect – allocation - JE

	Strong IVE2 allo	ocation JE									
	Correlated (or Dependent) Samples										
Mean 1	28,26	Mean 2	71,74	M_{diff}	43,48	Cohen's d _z	1,412605588				
SD 1	15,39	SD 2	15,39	S _{diff}	30,78	Cohen's d _{rm}	2,825211176				
n pairs	129	r	-1	SE _{diff}	2,71002789	Hedges g _{rm}	2,816926099				
				95% CI M _{diff}	38,1177	Cohen's d _{av}	2,825211176				
				[Low; High]	48,8423	Hedges g _{av}	2,816926099				
t	16,04411533	df	128	р	0,00	Recommended:	Gav				
						CL effect size	0,921114137				

Existence – weak effect – rating - SE

		Weak Existence	e rating SE								
	Independent Samples										
Mean group 1	72,79	Mean group 2	69,95	95% CI M _{diff}	-1,337231367	Cohen's d _s	0,125947058				
SD group 1	21,09	SD group 2	23,89	[Low; High]	7,017231367	Cohen's d	0,126228505				
n group 1	222	n group 2	227	t	1,334302419	Hedges's g _s	0,125735619				
				df	447	CL effect size	0,535506637				
				р	0,18						

Existence – weak effect – allocation – SE

		Weak Existence	e allocatio								
	Independent Samples										
Mean group 1	45,39	Mean group 2	44,02	95% CI M _{diff}	-3,161659644	Cohen's d _s	0,056071129				
SD group 1	24,22	SD group 2	24,64	[Low; High]	5,901659644	Cohen's d	0,056196428				
n group 1	222	n group 2	227	t	0,594026131	Hedges's g _s	0,055976998				
				df	447	CL effect size	0,51581475				
				р	0,55						

Existence – weak effect – rating - JE

	Weak Existence	e rating JE									
	Correlated (or Dependent) Samples										
Mean 1	81,46	Mean 2	57,72	M_{diff}	23,74	Cohen's d _z	1,152290856				
SD 1	19,17	SD 2	22,99	S _{diff}	20,60243721	Cohen's d _{rm}	1,111229059				
n pairs	71	r	0,535	SE _{diff}	2,44505946	Hedges g _{rm}	1,105265396				
				95% CI M _{diff}	18,8635	Cohen's d _{av}	1,126185958				
				[Low; High]	28,6165	Hedges g _{av}	1,120142026				
t	9,709375331	df	70	р	0,00	Recommended:	Gav				
						CL effect size	0,875399213				

Existence – weak effect – allocation - JE

	Weak Existence	e allocatio	n JE							
	Correlated (or Dependent) Samples									
Mean 1	77,45	Mean 2	22,55	M_{diff}	54,9	Cohen's d _z	2,106676899			
SD 1	13,03	SD 2	13,03	S _{diff}	26,06	Cohen's d _{rm}	4,213353799			
n pairs	71	r	-1	SE _{diff}	3,092753001	Hedges g _{rm}	4,190741882			
				95% CI M _{diff}	48,7317	Cohen's d _{av}	4,213353799			
				[Low; High]	61,0683	Hedges g _{av}	4,190741882			
t	17,75117508	df	70	р	0,00	Recommended:	Gav			
						CL effect size	0,982427202			

Existence – strong effect – rating - SE

		Strong Existen										
	Independent Samples											
Mean group 1	68,96	Mean group 2	69,95	95% CI M _{diff}	-5,492086086	Cohen's d _s	0,04075798					
SD group 1	24,69	SD group 2	23,89	[Low; High]	3,512086086	Cohen's d	0,040848856					
n group 1	223	n group 2	227	t	-0,432286578	Hedges's g _s	0,040689708					
				df	448	CL effect size	0,511494333					
				р	0,67							

Existence – strong effect – allocation – SE

		Strong Existend										
	Independent Samples											
Mean group 1	43,97	Mean group 2	44,02	95% CI M _{diff}	-4,553472606	Cohen's d _s	0,002056741					
SD group 1	23,97	SD group 2	24,64	[Low; High]	4,453472606	Cohen's d	0,002061327					
n group 1	223	n group 2	227	t	-0,021814176	Hedges's g _s	0,002053296					
				df	448	CL effect size	0,500580267					
				р	0,98							

Existence – strong effect – rating - JE

	Strong Existen	ce rating JE									
	Correlated (or Dependent) Samples										
Mean 1	80,08	Mean 2	70,59	M _{diff}	9,49	Cohen's d _z	0,499475063				
SD 1	17,88	SD 2	19,53	S _{diff}	18,99994754	Cohen's d _{rm}	0,505926573				
n pairs	71	r	0,487	SE _{diff}	2,254878924	Hedges g _{rm}	0,503211404				
				95% CI M _{diff}	4,9928	Cohen's d _{av}	0,507350976				
				[Low; High]	13,9872	Hedges g _{av}	0,504628162				
t	4,208651692	df	70	р	0,00	Recommended:	Gav				
						CL effect size	0,691277625				

Existence – strong effect – allocation - JE

	Strong Existend	ce allocatio	n JE								
	Correlated (or Dependent) Samples										
Mean 1	59,99	Mean 2	40,01	M_{diff}	19,98	Cohen's d _z	0,470782281				
SD 1	21,22	SD 2	21,22	S _{diff}	42,44	Cohen's d _{rm}	0,941564562				
n pairs	71	r	-1	SE _{diff}	5,036701357	Hedges g _{rm}	0,936511442				
				95% CI M _{diff}	9,9346	Cohen's d _{av}	0,941564562				
				[Low; High]	30,0254	Hedges g _{av}	0,936511442				
t	3,966882009	df	70	р	0,00	Recommended:	Gav				
						CL effect size	0,68110189				

Age – weak effect – rating - SE

		Weak Age ratir	ng SE						
Independent Samples									
Mean group 1	68,97	Mean group 2	67,45	95% CI M _{diff}	-3,313466061	Cohen's d _s	0,059217927		
SD group 1	26,32	SD group 2	24,97	[Low; High]	6,353466061	Cohen's d	0,059354531		
n group 1	222	n group 2	213	t	0,617411703	Hedges's g _s	0,059115296		
				df	433	CL effect size	0,51670931		
				р	0,54				

Age – weak effect – allocation – SE

		Weak Age allo	cation SE								
	Independent Samples										
Mean group 1	41,15	Mean group 2	40,74	95% CI M _{diff}	-4,076668633	Cohen's d _s	0,017207958				
SD group 1	24,43	SD group 2	23,18	[Low; High]	4,896668633	Cohen's d	0,017247653				
n group 1	222	n group 2	213	t	0,179411794	Hedges's g _s	0,017178135				
				df	433	CL effect size	0,504856802				
				р	0,86						

Age – weak effect – rating - JE

	Weak Age ratir	ng JE										
	Correlated (or Dependent) Samples											
Mean 1	75,48	Mean 2	72,13	M_{diff}	3,35	Cohen's d _z	0,254952283					
SD 1	21,83	SD 2	23,65	S _{diff}	13,1397137	Cohen's d _{rm}	0,146014447					
n pairs	n pairs 73 r		0,836	SE _{diff}	1,537887165	Hedges g _{rm}	0,145252632					
				95% CI M _{diff}	0,2843	Cohen's d _{av}	0,147317502					
				[Low; High]	6,4157	Hedges g _{av}	0,146548889					
t	2,178313258	df	72	р	0,03	Recommended:	Gav					
						CL effect size	0,600620023					

Age – weak effect – allocation - JE

	Weak Age allo	cation JE									
	Correlated (or Dependent) Samples										
Mean 1	60,15	Mean 2	39,85	M_{diff}	20,3	Cohen's d _z	0,781972265				
SD 1	12,98	SD 2	12,98	S _{diff}	25,96	Cohen's d _{rm}	1,56394453				
n pairs	73	r	-1	SE _{diff}	3,038388181	Hedges g _{rm}	1,555784819				
				95% CI M _{diff}	14,2431	Cohen's d _{av}	1,56394453				
				[Low; High]	26,3569	Hedges g _{av}	1,555784819				
t	6,681173961	df	72	р	0,00	Recommended:	Gav				
						CL effect size	0,782884563				

Age – strong effect – rating - SE

		Strong Age rati	ng SE									
	Independent Samples											
Mean group 1	65,38	Mean group 2	67,45	95% CI M _{diff}	-7,029308185	Cohen's d _s	0,078628954					
SD group 1	27,57	SD group 2	24,97	[Low; High]	2,889308185	Cohen's d	0,078810756					
n group 1	221	n group 2	213	t	-0,81888624	Hedges's g _s	0,078492367					
				df	432	CL effect size	0,522189632					
				р	0,41							

Age – strong effect – allocation – SE

		Strong Age allo	cation SE								
	Independent Samples										
Mean group 1	39,99	Mean group 2	40,74	95% CI M _{diff}	-5,25430622	Cohen's d _s	0,031390289				
SD group 1	24,56	SD group 2	23,18	[Low; High]	3,75430622	Cohen's d	0,031462868				
n group 1	221	n group 2	213	t	-0,326916157	Hedges's g _s	0,03133576				
				df	432	CL effect size	0,508859044				
				р	0,74						

Age – strong effect – rating - JE

	Strong Age rati	ng JE										
	Correlated (or Dependent) Samples											
Mean 1	73,68	Mean 2	76,24	M_{diff}	2,56	Cohen's d _z	0,201603742					
SD 1	21,11	SD 2	20,35	S _{diff}	12,698177	Cohen's d _{rm}	0,123291856					
n pairs	67	r	0,813	SE _{diff}	1,551329228	Hedges g _{rm}	0,122590005					
				95% CI M _{diff}	-0,5373	Cohen's d _{av}	0,123492523					
				[Low; High]	5,6573	Hedges g _{av}	0,122789529					
t	1,650197749	df	66	р	0,10	Recommended:	Gav					
						CL effect size	0,57988674					

Age – strong effect – allocation - JE

	Strong Age allo	cation JE										
	Correlated (or Dependent) Samples											
Mean 1	52,1	Mean 2	47,9	M_{diff}	4,2	Cohen's d _z	0,116666667					
SD 1	18	SD 2	18	S _{diff}	36	Cohen's d _{rm}	0,233333333					
n pairs	67	r	-1	SE _{diff}	4,398099997	Hedges g _{rm}	0,23200506					
				95% CI M _{diff}	-4,5811	Cohen's d _{av}	0,233333333					
				[Low; High]	12,9811	Hedges g _{av}	0,23200506					
t	0,954957823	df	66	р	0,34	Recommended:	Gav					
						CL effect size	0,546437897					

Innocence – weak effect – rating - SE

		Weak Innocend									
	Independent Samples										
Mean group 1	63,8	Mean group 2	65,41	95% CI M _{diff}	-6,24646036	Cohen's d _s	0,065628969				
SD group 1	25,3	SD group 2	23,75	[Low; High]	3,02646036	Cohen's d	0,065781064				
n group 1	215	n group 2	218	t	-0,682808798	Hedges's g _s	0,065514699				
				df	431	CL effect size	0,518502883				
				р	0,50						

Innocence – weak effect – allocation – SE

		Weak Innocend										
	Independent Samples											
Mean group 1	39,53	Mean group 2	95% CI M _{diff}	-8,451763446	Cohen's d _s	0,174546277						
SD group 1	22,3	SD group 2	24,17	[Low; High]	0,331763446	Cohen's d	0,174950788					
n group 1	215	n group 2	218	t	-1,815992788	Hedges's g _s	0,174242366					
				df	431	CL effect size	0,549127534					
				р	0,07							

Innocence – weak effect – rating - JE

	Weal Innocenc	e Rating JE										
	Correlated (or Dependent) Samples											
Mean 1	70,29	Mean 2	62,96	M_{diff}	7,33	Cohen's d _z	0,230117596					
SD 1	22,58	SD 2	26,16	S _{diff}	31,85327909	Cohen's d _{rm}	0,299683445					
n pairs	85	r	0,152	SE _{diff}	3,454973208	Hedges g _{rm}	0,298343578					
				95% CI M _{diff}	0,4594	Cohen's d _{av}	0,300779647					
				[Low; High]	14,2006	Hedges g _{av}	0,29943488					
t	2,121579404	df	84	р	0,04	Recommended:	Grm					
						CL effect size	0,590999804					

Innocence – weak effect – allocation - JE

	Weak Innocend	ce allocatio	n JE								
	Correlated (or Dependent) Samples										
Mean 1	58,49	Mean 2	41,51	M_{diff}	16,98	Cohen's d _z	0,445669291				
SD 1	19,05	SD 2	19,05	S _{diff}	38,1	Cohen's d _{rm}	0,891338583				
n pairs	85	r	-1	SE _{diff}	4,132525221	Hedges g _{rm}	0,887353462				
				95% CI M _{diff}	8,7620	Cohen's d _{av}	0,891338583				
				[Low; High]	25,1980	Hedges g _{av}	0,887353462				
t	4,108867845	df	84	р	0,00	Recommended:	Gav				
						CL effect size	0,672081925				

Innocence – strong effect – rating - SE

		Strong Innocen									
Independent Samples											
Mean group 1	64,75	Mean group 2	95% CI M _{diff}	-5,360566391	Cohen's d _s	0,026541537					
SD group 1	25,95	SD group 2	23,75	[Low; High]	4,040566391	Cohen's d	0,026603047				
n group 1	215	n group 2	218	t	-0,276140172	Hedges's g _s	0,026495324				
				df	431	CL effect size	0,507484487				
				р	0,78						

Innocence – strong effect – allocation – SE

		Strong Innocen										
	Independent Samples											
Mean group 1	44,06	Mean group 2	95% CI M _{diff}	-4,136694541	Cohen's d _s	0,019322728						
SD group 1	24,48	SD group 2	24,17	[Low; High]	5,076694541	Cohen's d	0,019367717					
n group 1	213	n group 2	218	t	0,200561635	Hedges's g _s	0,019288928					
				df	429	CL effect size	0,505450267					
				р	0,84							

Innocence – strong effect – rating - JE

	Strong Innocen	ce rating J	E									
	Correlated (or Dependent) Samples											
Mean 1	62,81	Mean 2	69,3	M_{diff}	6,49	Cohen's d _z	0,253100303					
SD 1	22,01	SD 2	18,42	S _{diff}	25,64200807	Cohen's d _{rm}	0,319147338					
n pairs	81	r	0,205	SE _{diff}	2,849112008	Hedges g _{rm}	0,317648994					
				95% CI M _{diff}	0,8201	Cohen's d _{av}	0,321048726					
				[Low; High]	12,1599	Hedges g _{av}	0,319541455					
t	2,277902723	df	80	р	0,03	Recommended:	Grm					
						CL effect size	0,599904647					

Innocence – strong effect – allocation - JE

	Strong Innocen	ce allocati	on JE									
	Correlated (or Dependent) Samples											
Mean 1	49,51	Mean 2	50,49	M_{diff}	0,98	Cohen's d _z	0,029288703					
SD 1	16,73	SD 2	16,73	S _{diff}	33,46	Cohen's d _{rm}	0,058577406					
n pairs	81	r	-1	SE _{diff}	3,71777778	Hedges g _{rm}	0,058302395					
				95% CI M _{diff}	-6,4186	Cohen's d _{av}	0,058577406					
				[Low; High]	8,3786	Hedges g _{av}	0,058302395					
t	0,263598326	df	80	р	0,79	Recommended:	Gav					
						CL effect size	0,511682832					

Gender – weak effect – rating - SE

		Weak gender r	ating SE									
	Independent Samples											
Mean group 1	70,16	Mean group 2	70,72	95% CI M _{diff}	-5,186671885	Cohen's d _s	0,022523199					
SD group 1	26,57	SD group 2	22,96	[Low; High]	4,066671885	Cohen's d	0,022574099					
n group 1	226	n group 2	218	t	-0,2372581	Hedges's g _s	0,022484959					
				df	442	CL effect size	0,506361739					
				р	0,81							

Gender – weak effect – allocation – SE

		Weak gender a									
	Independent Samples										
Mean group 1	41,71	Mean group 2	42,86	95% CI M _{diff}	-5,714691264	Cohen's d _s	0,046973446				
SD group 1	24,91	SD group 2	24,03	[Low; High]	3,414691264	Cohen's d	0,047079601				
n group 1	226	n group 2	218	t	-0,494815625	Hedges's g _s	0,046893695				
				df	442	CL effect size	0,513252836				
				р	0,62						

Gender – weak effect – rating - JE

	Weak gender r	ating JE								
	Correlated (or Dependent) Samples									
Mean 1	n 1 70,69 Mean 2 69,71 M _{diff} 0,98 Cohen's d ₂									
SD 1	22,68	SD 2	23,32	S _{diff}	5,669519909	Cohen's d _{rm}	0,042340445			
n pairs	75	r	0,97	SE _{diff}	0,654659769	Hedges g _{rm}	0,042125519			
				95% CI M _{diff}	-0,3244	Cohen's d _{av}	0,042608696			
				[Low; High]	2,2844	Hedges g _{av}	0,042392408			
t	1,496960782	df	74	р	0,14	Recommended:	Gav			
						CL effect size	0,568616961			

Gender – weak effect – allocation - JE

	Weak gender a	llocation J	E							
	Correlated (or Dependent) Samples									
Mean 1	50,72	Mean 2	49,28	M_{diff}	1,44	Cohen's d _z	0,179551122			
SD 1	4,01	SD 2	4,01	S _{diff}	8,02	Cohen's d _{rm}	0,359102244			
n pairs	75	r	-1	SE _{diff}	0,926069832	Hedges g _{rm}	0,35727939			
				95% CI M _{diff}	-0,4052	Cohen's d _{av}	0,359102244			
				[Low; High]	3,2852	Hedges g _{av}	0,35727939			
t	1,554958331	df	74	р	0,12	Recommended:	Gav			
						CL effect size	0,57124751			

Gender – strong effect – rating - SE

		Strong gender	rating SE							
Independent Samples										
Mean group 1	66,81	Mean group 2	70,72	95% CI M _{diff}	-8,597027515	Cohen's d _s	0,155873386			
SD group 1	27	SD group 2	22,96	[Low; High]	0,777027515	Cohen's d	0,156228048			
n group 1	223	n group 2	218	t	-1,636565359	Hedges's g _s	0,155606936			
				df	439	CL effect size	0,543922176			
				р	0,10					

Gender – strong effect – allocation – SE

		Strong gender					
			dent Samples				
Mean group 1	40,94	Mean group 2	42,86	95% CI M _{diff}	-6,487207928	Cohen's d _s	0,078665897
SD group 1	24,77	SD group 2	24,03	[Low; High]	2,647207928	Cohen's d	0,078844887
n group 1	223	n group 2	218	t	-0,825938828	Hedges's g _s	0,078531425
				df	439	CL effect size	0,522183627
				р	0,41		

Gender – strong effect – rating - JE

	Strong gender	rating JE								
	Correlated (or Dependent) Samples									
Mean 1	n 1 65,59 Mean 2 73,48 M _{diff} 7,89 Cohen's d _z									
SD 1	21,58	SD 2	19,71	S _{diff}	11,95863748	Cohen's d _{rm}	0,377861135			
n pairs	74	r	0,836	SE _{diff}	1,39016337	Hedges g _{rm}	0,375916738			
				95% CI M _{diff}	5,1194	Cohen's d _{av}	0,382174861			
				[Low; High]	10,6606	Hedges g _{av}	0,380208266			
t	5,675591928	df	73	р	0,00	Recommended:	Gav			
						CL effect size	0,745300616			

 ${\sf Gender-strong\ effect-allocation-JE}$

	Strong gender	allocation .	JE							
	Correlated (or Dependent) Samples									
Mean 1	43,65	Mean 2	56,35	M_{diff}	12,7	Cohen's d _z	0,638832998			
SD 1	9,94	SD 2	9,94	S _{diff}	19,88	Cohen's d _{rm}	1,277665996			
n pairs	74	r	-1	SE _{diff}	2,311003058	Hedges g _{rm}	1,271091385			
				95% CI M _{diff}	8,0942	Cohen's d _{av}	1,277665996			
				[Low; High]	17,3058	Hedges g _{av}	1,271091385			
t	5,49544924	df	73	р	0,00	Recommended:	Gav			
						CL effect size	0,73853421			

Table 1 (with additional columns)

Background information about each study. Numbers in the seven rightmost columns indicate the number of participants in each experimental condition after

exclusions (percentage of participants in each condition who passed the attention check reported in paratheses)

Study name	Collection time	Total	Females %	Valid	SE	SE	SE	JE	JE	CHOICE	CHOICE
	(platform)	N	(Mean age in years)	N	[A _X]	[A _{X-2}]	[B _X]	[A _X vs B _X]	$[A_{X-2} \text{ vs } B_X]$	$[A_X \text{ vs } B_X]$	$[A_{X-2} \text{ vs } B_X]$
PDE1	Spring19 (MTurk)	938	NA	872	197 (94.3%)	203 (94.9%)	194 (91.9%)	64 (88.9%)	75 (96.2%)	68 (87.3%)	71 (93.4%)
PDE2	Spring19 (MTurk)	861	NA	778	(94.3%) 174 (88.8%)	(94.9%) 195 (98.5%)	176 (90.3%)	(80.9 <i>%)</i> 57 (81.4%)	(90.2%) 62 (88.6%)	56 (83.7%)	(93.4%) 58 (89.2%)
GE1 (Family)	Summer20 (MTurk)	1108	39.5% (35.35)	863	198 (85.7%)	198 (82.8%)	178 (73.9%)	73 (71.6%)	72 (72.0%)	70 (72.2%)	74 (75.5%)
IGE2 (Nationality)	Spring19 (MTurk)	872	NA	855	199 (99.0%)	200 (98.0%)	194 (97.5%)	65 (100%)	66 (97.1%)	67 (100%)	64 (94.1%)
IVE1 (Cancer context)	Spring20 (Prolific)	862	73.7% (36.13)	845	195 (97.5%)	199 (99.0%)	192 (97.0%)	64 (98.5%)	65 (98.5%)	62 (96.9%)	68 (100%)
IVE2* (Covid-19 context)	Spring20 (Prolific)	1166	54.3% (35.30)	1135	223 (97.4%)	249 (98.4%)	224 (99.1%)	89 (93.7%)	129 (100%)	91 (94.8%)	130 (94.2%)
Existence*	Fall19 (MTurk)	1005	41.9% (37.91)	951	222 (98.2%)	223 (94.9%)	227 (96.2%)	71 (89.9%)	71 (88.7%)	68 (91.9%)	69 (92.0%)
Age*	Fall19 [′] (MTurk)	977	44.1% (36.07)	935	222 (97.8%)	221 (97.8%)	213 (95.9%)	73 (96.1%)	67 (89.3%)	71 (94.7%)	68 (89.5%)
Innocence*	Spring20 (MTurk)	1165	34.9% (36.15)	982	215 (88.5%)	213 (87.7%)	218 (86.9%)	85 (75.9%)	81 (81.8%)	80 (79.2%)	90 (77.6%)
Gender*	Fall19 ´ (MTurk)	1061	45.4% [°] (36.04)	971	226 (93.8%)	223 (94.9%)	218 (89.7%)	75 (92.5%)	74 (84.1%)	80 (90.9%)	75 (89.3%)

Note 1: SE = Separate evaluation, JE = Joint evaluation, CHOICE = Forced choice, NA = Not assessed, PDE = Proportion dominance effect, IGE = Ingroup effect, IVE = Identified victim effect

Note 2: Studies with "*" were preregistered. See https://osf.io/8fs46/?view_only=2f05b34b748642d08f645283e10062e4

Alternative table 1

Effect sizes for the weak and strong forms of all helping effects in all three decision modes (Cohen's d for ratings and allocations, Cohen's g for expressed preferences in forced choice). Positive effect sizes (green cells) indicate helping effects. Negative effect sizes (orange/red cells) indicate reversed helping effects.

		Weak helping	effect (equal	efficiency)		Strong helping effect (unequal efficiency)					
	Separate e	evaluation	Joint ev	valuation	Choice	Separate	evaluation	Joint ev	/aluation	Choice	
	Rating	Allocation	Rating	Allocation		Rating	Allocation	Rating	Allocation	_	
PDE 1 (100% vs 6%)	d = 1.44	d = 0.90	d = 0.73	d = 0.80	<i>g</i> = 0.34	d = 1.08	d = 0.62	d = 0.48	d = 0.16	<i>g</i> = -0.04	
PDE 2 (80% vs 6%)	d = 1.20	d = 0.62	<i>d</i> = 0.88	d = 0.61	g = 0.27	d = 1.02	d = 0.50	d = 0.35	d = 0.03	<i>g</i> = -0.12	
IGE 1 (family)	d = 0.38	d = 0.47	d = 0.35	<i>d</i> = 0.66	g = 0.36	d = 0.27	d = 0.36	d = -0.34	<i>d</i> = -0.03	g = 0.20	
IGE 2 (nationality)	<i>d</i> = -0.07	<i>d</i> = -0.12	<i>d</i> = 0.20	<i>d</i> = 0.46	g = 0.35	d = -0.08	d = 0.08	d = -0.51	d = 0.16	g = -0.03	
IVE 1 (Child Cancer)	d = 0.45	<i>d</i> = 0.15	d = 0.44	d = 0.47	g = 0.23	d = 0.03	d = 0.07	d = -1.01	d = -1.27	<i>g</i> = -0.37	
IVE 2 (COVID-19)	d = 0.39	<i>d</i> = -0.02	d = 0.30	d = 0.27	<i>g</i> = 0.15	d = -0.14	<i>d</i> = -0.26	d = -1.11	<i>d</i> = -1.41	<i>g</i> = -0.37	
EXISTENCE effect	d = 0.13	<i>d</i> = 0.06	d = 1.15	d = 2.11	<i>g</i> = 0.49	d = -0.04	d = -0.00	d = 0.50	d = 0.47	g = 0.30	
AGE effect	d = 0.06	d = 0.02	<i>d</i> = 0.26	d = 0.78	g = 0.39	d = -0.08	<i>d</i> = -0.03	<i>d</i> = -0.20	d = 0.12	g = 0.10	
INNOCENCE effect	d = -0.07	<i>d</i> = -0.17	d = 0.23	<i>d</i> = 0.46	<i>g</i> = 0.31	d = -0.03	<i>d</i> = 0.02	<i>d</i> = -0.25	d = -0.03	g = 0.09	
GENDER effect	d = -0.02	d = 0.05	<i>d</i> = 0.17	<i>d</i> = 0.18	g = 0.28	<i>d</i> = -0.16	d = -0.08	d = -0.66	d = -0.64	<i>g</i> = -0.19	

Color	Label	Cohen's d	Cohen's g	Color
	Very large helping effect	over 1.1	> 0.35	
	Large helping effect	0.8-1.1	> 0.25	
	Medium helping effect	0.5-0.8	> 0.15	
	Small helping effect	0.2-0.5	> 0.08	
	No effect (not significant)	-0.2 - 0.2	-0.08 - 0.08	
	Small reversed effect	-0.50.2	< -0.08	
	Medium reversed effect	-0.8 – -0.5	< -0.15	
	Large reversed effect	-1.10.8	< -0.25	
	Very large reversed effect	Under -1.1	< -0.35	

Alternative table 2

This table differ from the one reported in the paper in that the Joint Evaluation effect sizes (for both ratings and allocations) are based on the proportion of participants who expressed preferences for one of the projects rather than on the mean differences (Cohen's g instead of Cohen's d). Participants who expressed indifference in ratings and allocation in joint evaluation are excluded in this alternative Table 3. Positive effect sizes (green cells) indicate helping effects. Negative effect sizes (orange/red cells) indicate reversed helping effects.

		Weak helping	effect (equal	efficiency)		Strong helping effect (unequal efficiency)					
	Separate e	evaluation	Joint ev	valuation	Choice	Separate (evaluation	Joint ev	/aluation	Choice	
	Rating	Allocation	Rating	Allocation		Rating	Allocation	Rating	Allocation	_	
PDE 1 (100% vs 6%)	d = 1.44	d = 0.90	<i>g</i> = 0.26	<i>g</i> = 0.28	g = 0.34	d = 1.08	d = 0.62	g = 0.11	g = 0.06	g = -0.04	
PDE 2 (80% vs 6%)	d = 1.20	d = 0.62	<i>g</i> = 0.29	g = 0.30	<i>g</i> = 0.27	d = 1.02	d = 0.50	g = 0.07	<i>g</i> = -0.01	<i>g</i> = -0.12	
IGE 1 (family)	d = 0.38	d = 0.47	g = 0.21	g = 0.35	g = 0.36	d = 0.27	d = 0.36	<i>g</i> = -0.14	g = 0.03	g = 0.20	
IGE 2 (nationality)	d = -0.07	d = -0.12	<i>g</i> = -0.01	<i>g</i> = 0.45	g = 0.35	d = -0.08	d = 0.08	<i>g</i> = -0.25	<i>g</i> = -0.19	g = -0.03	
IVE 1 (Child Cancer)	d = 0.45	<i>d</i> = 0.15	g = 0.19	g = 0.50	g = 0.23	d = 0.03	d = 0.07	<i>g</i> = -0.42	<i>g</i> = -0.45	<i>g</i> = -0.37	
IVE 2 (COVID-19)	d = 0.39	d = -0.02	<i>g</i> = 0.14	g = 0.27	g = 0.15	d = -0.14	<i>d</i> = -0.26	<i>g</i> = -0.44	<i>g</i> = -0.47	<i>g</i> = -0.37	
EXISTENCE effect	d = 0.13	<i>d</i> = 0.06	<i>g</i> = 0.46	g = 0.50	g = 0.49	d = -0.04	<i>d</i> = -0.00	g = 0.13	<i>g</i> = 0.18	g = 0.30	
AGE effect	d = 0.06	<i>d</i> = 0.02	g = 0.17	<i>g</i> = 0.44	g = 0.39	d = -0.08	<i>d</i> = -0.03	<i>g</i> = -0.15	g = 0.03	g = 0.10	
INNOCENCE effect	d = -0.07	<i>d</i> = -0.17	g = 0.11	<i>g</i> = 0.22	g = 0.31	d = -0.03	<i>d</i> = 0.02	<i>g</i> = -0.12	g = 0.02	g = 0.09	
GENDER effect	<i>d</i> = -0.02	d = 0.05	g = 0.04	g = 0.25	g = 0.28	<i>d</i> = -0.16	<i>d</i> = -0.08	<i>g</i> = -0.35	g = -0.33	<i>g</i> = -0.19	

Color	Label	Cohen's d	Cohen's g	Color
	Very large helping effect	over 1.1	> 0.35	
	Large helping effect	0.8-1.1	> 0.25	
	Medium helping effect	0.5-0.8	> 0.15	
	Small helping effect	0.2-0.5	> 0.08	
	No effect (not significant)	-0.2 - 0.2	-0.08 - 0.08	
	Small reversed effect	-0.50.2	< -0.08	
	Medium reversed effect	-0.8 – -0.5	< -0.15	
	Large reversed effect	-1.10.8	< -0.25	
	Very large reversed effect	Under -1.1	< -0.35	