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The individual true and error model: Getting the most out of limited
data

Pele Schramm™

Abstract

True and Error Theory (TET) is a modern latent variable modeling approach for analyzing sets of preferences held by
people. Individual True and Error Theory (iTET) allows researchers to estimate the proportion of the time an individual truly
holds a particular underlying set of preferences without assuming complete response independence in a repeated measures
experimental design. iTET is thus suitable for investigating research questions such as whether an individual ever is truly
intransitive in their preferences (i.e., they prefer a to b, b to ¢, and c to a). While current iTET analysis methods provide the
means of investigating such questions they require a lot of data to achieve satisfactory power for hypothesis tests of interest. This
paper overviews the performance and shortcomings of the current analysis methods in efficiently using data, while providing
new analysis methods that offer substantial gains in power and efficiency.
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1 Introduction

Itis of interest to many behavioral decision researchers to de-
termine sets of preferences held by individuals. Indeed, there
are many theories that provide for specific constraints on pos-
sible sets of preferences one may hold, such as expected util-
ity theory (Allais, 1953), lexicographic semi-orders of pref-
erence (Luce, 1956), gain-loss separability (Wu & Markle,
2008), and cumulative prospect theory (Tversky & Kahne-
man, 1992). Perhaps the most well known constraint is
transitivity: for any three options a, b, and c, if a is preferred
over b and b is preferred over c, then ¢ cannot be preferred
over a. To test such theories, a common experimental ap-
proach is to ask people to make repeated binary choices,
and then analyze the frequencies of various responses. The
majority of such analysis approaches assume that responses
across the repeated measures are independent of one an-
other for the sake of statistical convenience (e.g., Tversky
(1969), Hey (1995), Regenwetter, Dana, and Davis-Stober
(2011)). Birnbaum (2012) demonstrated that this indepen-
dence assumption can be tested and has been determined to
be faulty in some instances. While co-occurrences of pref-
erences are of particular interest when investigating theories
such as transitivity, most existing analysis approaches ignore
co-occurence of choices. Instead, the tendency is to limit
analysis approaches to marginal choice probabilities, i.e.,
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the probabilities of responses to individual binary choices.
As pointed out by Birnbaum (2011), these assumptions can
lead to incorrect conclusions about people’s true underlying
sets of binary preferences. If we take, for example, transi-
tivity of preferences, it is possible that people at any given
point in time follow transitivity of preference perfectly yet
have marginal choice probabilities that reflect a violation of
weak stochastic transitivity (that is, if P(a > b) > .5 and
P(b > c¢) > .5,then P(a > c¢) > .5)iftheir set of preferences
varies at different points in the experiment (Regenwetter et
al., 2011). Regenwetter et al. (2011) propose the solution to
use the triangle inequality instead of weak stochastic tran-
sitivity (0 < P(a > b) + P(b > ¢) — P(a > ¢) < 1, but
Birnbaum (2011) pointed out that it is possible for people to
have a mixture of only intransitive preference orderings with-
out violating the triangle inequality (e.g., if 66% of the time
a>b,b > c,and ¢ > a and 34% of the time b > a,c > b,
and a > ¢).

The concern with shortcomings of methods that analyze
data as independent binary choices has motivated the devel-
opment of true-and-error (TE) models, which account for
co-occurrence of preferences. TE models originally evolved
out of the approach in Lichtenstein and Slovic (1971). The
underlying assumption is that, at any given time, an indi-
vidual has a latent true set of binary preferences, but may
respond in a manner inconsistent with their current true set of
preferences with a separate error probability possibly ranging
from O to 0.5 for each binary choice (Birnbaum, 2013). Be-
sides parameters describing the error probabilities for each
binary choice, the model includes parameters denoting the
probability of a participant holding each possible true set of
preferences. In practice, participants are prompted with the
same or similar binary choice questions twice in each block


http://journal.sjdm.org/vol15.5.html
http://creativecommons.org/licenses/by/3.0/

Judgment and Decision Making, Vol. 15, No. 5| September 2020

(e.g., one question might have the options in reverse order),
usually with filler questions in between. The model is con-
strained by the assumption that latent sets of true preferences
remain constant within each block, but may vary between
blocks. This approach can be used to analyze group data,
where each participant completes one block (e.g., Birnbaum,
2007; Birnbaum & Gutierrez, 2007; Birnbaum & Schmidt,
2010), or individual data, where each participant completes
multiple blocks (e.g., Birnbaum & Bahra, 2012).

One of the practical limitations of the TE model, espe-
cially when applied to individuals separately, is that accurate
analysis requires large sample sizes. It’s not uncommon
for TE experiments to involve multiple sessions each last-
ing an hour or more in order to achieve the statistical power
(rate of correct rejections of a null hypothesis) necessary
to reject a set of constraints. Thus, it is of particular in-
terest to researchers using these methods to make the most
of the inherently limited amount of data that is available to
them. I describe later how the present frequentist approach
that is suggested in Birnbaum (2013) and Birnbaum and
Quispe-Torreblanca (2018) is suboptimal for efficiently de-
tecting violations of constraints, and will resolve one of the
major concerns from a frequentist perspective. After that,
both hierarchical and non-hierarchical Bayesian methods of
analysis will be explored and consequentially advocated for.

While TE models can be applied to test theories in a num-
ber of different domains, such as testing expected utility with
the Allais Paradox (Lee, 2018), the focus of this paper is on
patterns of preferences among three items, especially dealing
with testing whether individuals have truly intransitive sets
of preferences. The approaches highlighted in this paper can
nonetheless easily be extended to other uses of TE models.
Other uses of TE models thus far have included testing di-
mension integration (Birnbaum & LaCroix, 2008), gain-loss
separability (Birnbaum & Bahra, 2007), cumulative prospect
theory and the priority heuristic (Birnbaum, 2008), and the
Allais Paradox (Birnbaum, 2007).

2 The True-and-Error Model

To understand the important points about the statistical anal-
ysis we first need to overview the nature of the data the TE
model analyses. When using a TE model to test transitiv-
ity, subjects are prompted with the three possible pairwise
comparisons between the three items twice per block (i.e.,
choosing between a and b, b and c, and c and a) for multi-
ple blocks. Thus, there are a total of 64 possible outcomes
for each block (2° = 8 possible sets of preferences for the
first iteration of questions times 2> = 8 for the second). For
example, in one block a subject might respond 011 for the
first set of questions and 001 for the second set of questions,
each digit representing a single binary response to the cor-
responding paired comparison. Matrix A below denotes in
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each row a separate possible set of preferences. We can think
of the first column of A as corresponding to the comparison
between items a and b, the second column as b vs. ¢, and
the third as a vs c. In this case, a 0 can represent having
chosen the item earlier in the alphabet and a 1 the item later
in the alphabet, so that rows 2 and 7 represent intransitive
preference sets.

)

—_ = OO = = OO

—_— = = = OO O O
—_ O = O = O = O

Now we can define p; ; to be the probability of subject i
holding the true set of preferences corresponding to the jth
row in A in any one block. These are usually the primary pa-
rameters of interest. Formally, if we let 7; ;,, denote the index
of the row of A corresponding to the true set of preferences
subject i holds in block m, then:

P(Tim =) =pi, ()

If we let f; ,, and g;, denote the index of the row of
A corresponding to the observed set of preferences subject
reports in the first and second set of questions in block m, and
let e; i denote the probability of error in reporting the true
latent set of preferences for subject i for paired comparison
k, we have:

3

P(frmlTim) = | [ 1(Afk = Az i) [1 = €] 3)
k=1

+[1=1(Ag,. k= A, 00 e ks

and

3
P(gimlTrm) = | [1(Agi i = Az, ) [1 - €] “)
k=1

+[1 = I(Ag, .k = Az )] €0k

where I denotes an indicator taking values of 0 if the state-
ment inside is incorrect, and 1 if correct. The expression
within the product over k is equivalent to the probability of
having observed the kth paired comparison given a speci-
fied true preference pattern according to the model, which
is simply 1 — e; x when it corresponds to the true preference
pattern and e; x when it doesn’t.
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Because the model assumes that 7; ,,, remains constant for
all six preference indications in f; ,, and g; ., T's can be
marginalized out completely from the model using the law
of total probability. Thus we can treat the combination of
the two sets of preferences observed in a block as having a
joint probability following:

8
P(fims 8im) = ) PijPUimlTim = DP@imlTim = ). (5)
j=1

Perhaps it should be stressed that this model lacks any un-
derlying concept of utility. Instead, the model deals purely
with probabilities of concurrent sets of preferences and error
probabilities for each pairwise comparison. From these pa-
rameters it is possible to calculate the marginal probabilities
of each pairwise comparison, but the model’s strengths lie in
its ability to look beyond these concepts and conduct analy-
sis without the restriction of analyzing only marginal paired
comparison probabilites. Consequentially there is no direct
mapping between the TE model and random utility models
such as the Thurstonian (or probit) model (Thurstone, 1927)
or the Bradley-Terry-Luce model (Bradley & Terry, 1952;
Luce, 1959). What might be represented as two items being
close in utility under a random utility model can be repre-
sented by either competition between preference sets where
the relative ranking of the two items differ, or by a high error
term e for that paired comparison. This is determined ac-
cording to the frequencies of observed preference reversals
within and between blocks, which is something that random
utility models do not consider.

3 Shortcomings and Improvement to
the Present Frequentist Approach

For the sake of fitting and testing TE models, Birnbaum
(2013) suggests reducing the degrees of freedom in the data
down to 15 by only looking at the first set of preferences per
block and noting whether the second set matches the first
perfectly. For the purpose of hypothesis testing (compar-
ing a less constrained null TE model vs a more constrained
TE model), a Pearson’s chi-squared test (Pearson, 1900) is
proposed by plugging in the chi-squared statistics on the 16
observed frequencies for an unrestricted model vs a restricted
model (e.g., one which has a fixed zero probability of true
intransitivity). The null distribution of the difference in chi-
square statistics in this case is said to come from a chi-square
distribution with degrees of freedom equal to the difference
in number of estimated TE parameters between the restricted
and unrestricted model. While this approach is highlighted,
there is acknowlegment that in some cases use of the full
data can be more appropriate, and the full data were used in
Birnbaum and Quispe-Torreblanca (2018).
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There are two major problems with Birnbaum’s degrees of
freedom reduction approach, one that is easy to resolve and
one that is less so. Perhaps the most substantial issue is that
in the reduction of the degrees of freedom, a substantial (and
indeed, useful) part of the data collected is left unaccounted
for (i.e., an entire set of observed preferences gets reduced
to whether it was the same or different from the other one).
Because data are practically limited, especially in the case of
analyses on the individual level, this turns out to be a great
sacrifice.

The motivation behind the reduction in the degrees of
freedom seems to be to make the chi-square test a feasible
option. Unfortunately, the specified Pearson’s chi-square
test is not appropriate for these purposes, and turns out to
be overly conservative as demonstrated by the simulations in
the following section. The result is that the true type I error
rate (rate of false rejections) is far lower than the nominal
a level, and p-values appear higher than they should be.
Besides potential issues of small sample sizes for frequency
data with 15 degrees of freedom, the Pearson chi-square
test is supposed to feature a chi-square null distribution with
degrees of freedom equal to the difference in number of
outcome probabilities fixed. In the case of the TE model,
specific outcome probabilities aren’t being fixed. Instead
model parameters that have some effect on potentially all
outcome probabilities are being fixed. Thus, it turns out
that this reduction in degrees of freedom comes at great cost
while not fulfilling the original purpose.

Luckily, the likelihood of the full, unreduced data is easy
to calculate by multiplying all the probabilities of each ob-
served block shown in equation 5, and so a potential alterna-
tive would be a Likelihood Ratio Test (Neyman & Pearson,
1933). The famous Neyman Pearson Lemma introduced in
Neyman and Pearson (1933) proves that the Likelihood Ra-
tio Test is the single most powerful test when comparing
nested models. While the exact distribution of the test statis-
tic (twice the log of the likelihood ratio) is often difficult
to derive, Wilks (1938) showed that, just like the Pearson
chi-squared test, the Likelihood Ratio test statistic is asymp-
totically distributed according to a chi-square distribution
under the null under certain regularity conditions. Unfortu-
nately this isn’t guaranteed when parameters are being fixed
at the end points of their possible ranges, and null TE models
usually feature p parameters fixed at 0, their minimum possi-
ble value. Even when parameters are not being fixed at O or 1,
it may take many blocks to reach the asymptotic limit, more
than one could hope to get from one individual. Although
this approach has the advantage of making use of all of the
data, it fails to resolve the issue with the chi-square test of a
questionable type I error rate and thus inaccurate p-values.
Despite the theoretical issues surrounding these applications
of the likelihood ratio and chi-square tests, rejections of the
null hypothesis from either test appear trustworthy, as will
be demonstrated via the simulations in the following section.
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On the contrary, these tests were both found to be overly con-
servative, so elevated Type II errors (i.e., failures to detect
violations of transitivity) are the primary concern.

To avoid direct reliance on theoretical test distributions,
Birnbaum et al. (2016) implemented a bootstrapping proce-
dure to calculate confidence intervals of parameter estimates,
and a Monte-Carlo simulation procedure for estimating the
distribution of test statistics. Bootstrapping is perfomed by
iteratively refitting the model with many datasets sampled
from the original dataset with replacement to yield a distri-
bution of parameter estimates. Monte Carlo simulation is
performed by fitting the model and then generating sim-
ulated datasets from the parameter estimates. Since we
are interested in the null distribution of the test statistics,
a Monte-Carlo approach to hypothesis testing could be to
fit the null model and generate samples from the param-
eter estimates, looking at the distribution of test statistics
and checking whether the raw test statistic falls outside this
range. While Birnbaum et al. (2016) used the reduced data
approach to fit the bootstrapped and Monte Carlo simulated
data sets, I investigate in this paper the efficacy of using the
full data approach with Likelihood Ratio Test statistics.

3.1 Simulations

To explore power, type I error rate, and accuracy of parameter
estimation, two separate simulation strategies were employed
to generate the parameters representing the probabilities of
a subject holding each possible set of true preferences in a
block. The first one, which will be referred to as the pro-
bit simulation, uses a probit model, or Thurstonian Case V
(Thurstone, 1927) to generate the probabilities of the true sets
of preferences (the p parameters of the model). The three
items, which we can call a, b, and ¢, were given average probit
values of -1, 0, and 1 respectively. For each simulated partic-
ipant, their personal probit values were drawn from standard
normal distributions centered at these 3 values. The proba-
bility of each true set of preferences was assigned according
to the corresponding probability of observing that set of pref-
erences if they were responding in accordance with a probit
model. For example, the probability for the true set of pref-
erences being a is preferred to b, b is preferred to c, and a is
preferred to ¢ would be @ (V, — V) XD (V, =V, ) X P(V,-V,)
where V is the probit value for item x for that individual and
@ is the cumulative distribution function of the standard nor-
mal. The three error probabilities were each set to 1/2 times
a value independently drawn from a Beta(1, 2) distribution,
slightly favoring lower error rates. It should be noted that
while the probit model is used, the actual marginal proba-
bilities of responses to single prompts does not reflect the
probit model, but the true and error model. The decision to
use a probit model was purely in hopes of generating sets
of TE parameters which resemble some underlying random
utility structure.
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The second method of simulation was more flexible and
general. Later in the paper a hierarchical model is going
to be introduced that exploits an assumption of similarity
among people’s parameter values to gain better estimates, so
simulation in this case is done on a group level. For the pur-
poses of the frequentist tests, the group size is simply set to 1
since there is no built-in hierarchical structure in the model
anyway. Initially, a single vector was drawn from an 8 out-
come flat Dirichlet distribution, which can be thought of as
an 8 dimensional extension to the uniform distribution where
all elements sum to 1. After that, each subject’s true prob-
abilities’ values were drawn from a Dirichlet parameterized
by that initial vector multiplied by a single random variable
distributed as a Gamma(8, 1), which is a continuous distri-
bution defined from O to co with a mean of 8 and a variance of
8. This gamma random variable represents the concentration
parameter of the Dirichlet distribution. The concentration
parameter dictates the expected sparcity of drawn values,
with larger values indicating a bias toward resulting vectors
that are more even and smaller values indicating a bias toward
vectors concentrated on a small proportion of the elements.
When the concentration parameter is equal to the dimension-
ality of the Dirichlet, in this case 8, there is no bias of this
nature. For our purposes, a concentration parameter that is
much higher than 8 can be understood as representing an
expectation that the probabilities of all 8 preference sets will
be approximately equal to one another, while a concentration
parameter that is much less than 8 represents an expectation
that only one or two preference sets will be dominant. The
three error probabilities were simulated in the same way as
before.

For simulations geared toward detection of transitivity or
intransitivity, transitive individuals had the two p parameters
corresponding to intransitive sets of preferences (those cor-
responding to the 2nd and 7th rows of matrix A in equation 1)
set to 0 following the afforementioned generation strategies,
and then their p vector was renormalized. For the case of
intransitivity, values generated from a Normal distribution
centered at 1 with standard deviation of 0.2 were added to
the p parameter corresponding to b > a,c > b,a > c and
then the entire vector was renormalized. To help conceptu-
alize this, if one starts out with a probability of O of having
the aforementioned intransitive pattern and a 1 gets added
to it, the probability of holding that true preference pattern
becomes 0.5 after renormalization.

Data with 12 blocks per person and with 24 blocks per
person were simulated in each of the cases, 12 representing
a relatively small number of data one would collect with
the individual model and 24 representing a relatively large
number of data. For simulations involving the hierarchical
model defined later, each case included simulations with
15 simulated participants and 60 simulated participants to
illustrate differences in performance when data is available
from more subjects.
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Ficure 1: Type 1 Error Rate vs. Number of Blocks for the Likelihood Ratio Test (dashed) and Chi Square (solid). On the left
are results via simulation with the probit parameter generation approach, and on the right the Dirichlet approach.

The same simulated datasets were used for power anal-
yses of bootstrapping and Monte-Carlo procedures. Each
case of bootstrapping used 1000 bootstrapped datasets, and
Monte-carlo also used 1000 Monte-Carlo samples. The null
hypothesis was said to be rejected in the case of bootstrapping
if the 95% confidence interval of either of the two possible
intransitive probabilities did not include any value below
.001. Although it is not recommended to use confidence
intervals for testing point null hypotheses (Wagenmakers,
Lee, Rouder & Morey, 2019), this was done to correspond
with the procedure used in Birnbaum et al. (2016). For the
Monte-Carlo procedure, the null was said to be rejected if
95% or more of the simulated LRT statistic distribution was
below the real LRT statistic. 2000 experiments were simu-
lated for each condition using the University of California,
Irvine’s high performance computing cluster.

3.2 Results

The Mean Squared Error (MSE) of the estimates of the result-
ing true preference set probabilities is given in the rightmost
two columns in Table 1 both using the full data (on the left)
and data reduced as suggested in Birnbaum (2013). As we
can clearly see, making use of the full data provides a sub-
stantial reduction in MSE, yielding more accurate estimates
with the same number of blocks.

To check whether the true type I error rates for a nominal
a = .05 converge to the nominal value for the Likelihood
Ratio Test and chi-squared tests, type I error was estimated
via simulation for different numbers of blocks. These results
are shown in Figure 1. These simulations show that both
tests stay far below their nominal o value for any realistic
block size for individuals. The chi-squared test type 1 error
seems to increase somewhat faster than the likelihood ratio
test but even past 1000 blocks neither of them seem to level
off at the nominal « level.

A power analysis for the chi-square, LRT, bootstrap, and
Monte Carlo approaches can be found in Table 2. We clearly
see that despite the true type I error rate being slightly worse
for the LRT, the gains in power are substantial relative to chi-
square. While we don’t really know the true null distributions
for these tests, it seems like we can trust rejections. While
still being overly conservative, the bootstrap procedure yields
by far the highest power. Although the Monte-Carlo method
has a type I error rate that is close to the nominal alpha level,
its power is worse than the other methods. This is not too
surprising, because in a sense the Monte-Carlo simulations
use what could be thought of as a worst-case scenario null
distribution, selecting the most likely set of null parameters
to have generated the original data.
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TaBLE 1: Mean Squared Error of probability estimates for each estimation method. For the Bayesian results, MSE(est) de-
notes the MSE with respect to the posterior mean, while MSE(post) denotes the MSE with respect to the posterior distribution.
MSE(full) denotes the MSE with respect to a maximum likelihood fit using all the data, while MSE(red) denotes the MSE with

respect to a fit using reduced data as in Birnbaum (2013).

Hierarchical Bayes

Individual Bayes

N Subjects N Blocks MSE(est) MSE(post) MSE(est) MSE(post) MSE(full) MSE(red)

Probit
15 12 0.0114  0.0232 0.0202  0.0276 0.0173 0.0242
15 24 0.0069  0.0147 0.0126  0.0180 0.0107 0.0150
60 12 0.0100  0.0208 0.0205  0.0279 0.0174 0.0238
60 24 0.0069  0.0144 0.0128  0.0182 0.0113 0.0155
Dirichlet
15 12 0.0085  0.0175 0.0124  0.0201 0.0186 0.0244
15 24 0.0059 0.0123 0.0089  0.0147 0.0115 0.0139
60 12 0.0078  0.0154 0.0125  0.0202 0.0183 0.0230
60 24 0.0055  0.0109 0.0091  0.0149 0.0113 0.0144
Hier
15 12 0.0096  0.0197 0.0186  0.0260 0.0171 0.0218
15 24 0.0061  0.0123 0.0129  0.0183 0.0105 0.0139
60 12 0.0088  0.0176 0.0203  0.0277 0.0179 0.0229
60 24 0.0059 0.0116 0.0126  0.0180 0.0109 0.0138

TaBLE 2: Power and level for each frequentist hypothesis testing method for both parameter generation approaches. Power
is the proportion of correct rejections of the transitive null model for intransitive simulations, and level is the proportion of false
rejections of transitivity for transitive simulations, each at the nominal @ = .05.

LRT

Chi Square

Bootstrap  Monte Carlo

N Blocks Power Level Power Level Power Level Power Level

Probit
12 0.396 0.008 0.292
24 0.564 0.007 0.444

0.009 0.439 0.004 0.288 0.040
0.013 0.698 0.003 0.382 0.049

Dirichlet
12 0.447 0.009 0.372
24 0.624 0.010 0.497

0.011 0.513 0.005 0.375 0.040
0.012 0.756 0.006 0.460 0.042

4 Bayesian Hierarchical Model

Bayesian hierarchical models in a sense allow behavioral
researchers to get the best of both worlds: analysis on an
individual subject level while still making use of group-
level information. Hierarchical models are powerful tools
that have been proven to provide more accurate parame-
ter estimates than non-hierarchical models, as measured by
MSE (Efron & Morris, 1977) by formalizing stronger dis-

tributional assumptions. For example, a hierarchical model
might specify a probability distribution for person-specific
parameters, whereas a non-hierarchical model would esti-
mate person-specific parameters independently for each per-
son, without considering that there may be similarities across
people. Bayesian statistics in general differs from frequen-
tist statistics in that, rather than providing point estimates
for parameters, posterior distributions are inferred from the
data according to a model specification which incorporates
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prior assumptions on the parameters (Gelman et al., 2013;
Wagenmakers, Lee, Lodewyckx & Iverson, 2008).

Although it was applied to a different variation of the True
and Error model involving only two preferences per set in-
stead of three, Lee (2018) implemented a non-hierarchical
Bayesian analysis of the True and Error model. Since our
goal is to get the most out of our limited data, a hierarchi-
cal model is a natural expansion of this approach. The one
used in this paper shares the same cognitive model as de-
fined previously, but with hierarchical priors for individual
p parameters. More specifically, a soft-max transformation
of normally distributed latent variables is employed:

X;i,; ~ Normal(u;, 1) (6)
eXi.j

Pij= g% (7

tj ~ Normal(0, 1) 8)

7; ~ Exponential (1) )

Here, parameters subscripted with j represent belonging to
the particular set of preferences in the jth row of A, and i
denotes the subject number. The normal distributions are pa-
rameterized according to precision (that is, inverse variance).
The essence of this hierarchical model is that values (X; ;)
for each probability of a particular set of preferences are
drawn from the same normal distributions across all subjects.
These X values can be thought of as normally distributed rep-
resentations of the probabilities for each subject to hold each
possible underlying set of preferences in any given block.
The probabilities for subject i to hold each underlying set
of preferences in any given block can be calculated directly
from these normally distributed representations via softmax
as in equation 7.

The error probabilities, denoted by e, are all halves of
Beta(1,2) distributed random variables since it makes sense
to assume low errors are more probable than ones nearing
chance:

2e; x ~ Beta(1,2) (10)

This specification is a slight departure from Lee (2018)’s im-
plementation, where the error parameters were drawn from
uniform distributions.

The non-hierarchical model used in this paper differs from
the hierarchical model only in that the ps are instead drawn
from a flat Dirichlet distribution, which can be thought of as a
multidimensional uniform distribution. The following spec-
ification for the non-hirarchical model replaces equations 6
through 9:

pit:g ~ Dirichlet(1,1,1,1,1,1,1,1) (11)

An implementation of these models in JAGS is given in
the appendix.

MSE performance for estimating the ps in each model
from 100 simulations of each case is shown in Table 1, both
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in posterior distribution as well as in point estimation (in
this case the mean of the posterior distribution). The simu-
lation approaches previously highlighted do not correspond
perfectly to the hierarchical specification. The mismatch
between hierarchical specification and simulations was done
deliberately to see whether the hierarchical model was robust
to misspecification of hierarchical structure. For the sake of
comparison, simulations that do correspond precisely to the
hierarchical model, drawn directly from the specified priors,
were also performed. The results show that the hierarchical
Bayesian model tends to outperform the Individual model
substantially in all cases, often by a factor of 2. We also
see moderate performance gains with the hierarchical model
in cases with 12 blocks per person when 60 subjects are
included in analysis vs only 15. It’s noteworthy that the
hierarchical model here outperforms all other models even
for the simulation approaches that do not generate people’s
parameters according to softmax transformed normally dis-
tributed variables as specified. Interestingly, it appears as
though these mismatches between the true generating pro-
cess and the specified one made no discernible difference in
performance.

4.1 Bayesian Hypothesis Testing

The favored approach by Bayesians for hypothesis testing is
the Bayes factor, which can be conceptualized as the ratio of
the expectation of the probability of the data over the prior
distributions of the two models being compared (Jeffreys,
1961). In this case, one can practically calculate the Bayes
factor using a spike-and-slab approach by adding a Bernoulli
distributed indicator parameter h for transitivity with prior
probability of 1/2. When 4 is 1, then the ps corresponding
to a set of preferences which violate transitivity are automat-
ically set to 0, and otherwise they are said to come from the
distribution denoted in the above model specification. For
the hierarchical model, the following specification replaces
equation 7:

h; ~ Bernoulli(0.5)
— I[(.] 7& 2’ 7&h, = l)Orhi = O]exi,j
Zf':l (I[(j # 2,7&h; = V)orh; = 0]eXis)

12)

Di,j (13)
For the non-hierarchical model, this can be implemented by
drawing from separate Dirichlet’s in each case, flat in the
intransitive case, and with zeros for the intransitive parame-
ters and % for the others in the transitive case. The following
speciﬁcaﬁon replaces equation 11:

h; ~ Bernoulli(0.5) (14)
gi.1:8 ~ Dirichlet(1,1,1,1,1,1,1,1) (15)
4 4 4 4 4 4
i 1.8 ~ Dirichlet(=,0, =, =, =, =,0, = 1
ul,l.g 1ric et(370’ 373’3$3’093) ( 6)
Pii8 = hiui 1.8 + (1 — hi)ging (17
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TaBLE 3: Hypothesis test results for the two Bayesian models. "C" denotes the proportion whose Bayes Factors favor the
right direction, BF>x denotes the proportion of intransitive people with a Bayes Factor greater than x favoring intransitivity,
and BF>xF denotes the proportion who were transitive yet still had a Bayes Factor greater than x favoring intransitivity.

Hierarchical Bayes

Individual Bayes

S B C BF>3 BF>3F BF>10 BF>10F C BF>3 BF>3F BF>10 BF>10F
Probit
15 12 0.88 0.72 0.03 057 0.01 0.87 0.72 0.05 049 0.01
15 24 096 0.85 0.03 0.70 0.02 092 0.88 0.03 0.73 0.02
60 12 093 0.83 0.03 0.69 0.00 0.86 0.76 0.04 056 0.01
60 24 094 0.89 0.02 076 0.01 0.90 0.86 0.05 0.70 0.01
Dirich
15 12 091 0.83 0.04 0.71 0.01 0.85 0.80 0.06 0.60 0.00
15 24 094 095 0.03 0.88 0.01 0.89 0.92 0.04 081 0.01
60 12 093 0.87 0.03 0.77 0.02 0.86 0.81 0.05 0.61 0.01
60 24 096 094 0.02 0.89 0.01 0.90 092 005 082 0.02
Hier
15 12 090 0.76 0.03 0.57 0.00 0.84 0.72 0.04 053 0.01
15 24 093 091 002 0.84 0.00 0.89 0.92 0.06 080 0.01
60 12 092 0.85 0.04 0.71 0.01 0.86 0.80 0.06 0.60 0.02
60 24 095 093 0.02 0.86 0.01 0.89 091 0.06 0.78 0.02

The proportion of the time the indicator shows intransitivity
(h = 0) divided by the proportion of the time the indicator
indicates transitivity (h = 1) is the Bayes Factor for that
individual being intransitive.

To explore relative performance of the hierarchical vs non-
hierarchical formulations of the model for Hypothesis test-
ing, simulations were done as before (50 times per each
case), this time where each subject had a 0.5 chance of being
truly transitive or intransitive. Results of this can be seen in
Table 3. While some researchers might want to avoid having
formal cutoffs for Bayes Factors (de Vries & Morey, 2013),
proportion of Bayes Factors greater than 1, 3 and 10 were
reported along with corresponding type 1 error rates. Wa-
genmakers, Morey and Lee (2016) suggest that Bayes factors
greater than 1 correspond to “anecdotal” evidence, 3 tend to
correspond to a “moderate” amount of evidence, and greater
than 10 a “strong” amount of evidence.

We can see substantially better performance here than in
the frequentist tests, even with highly conservative cutoffs at
10, and substantially better performance for the hierarchical
implementation relative to the individual Bayesian imple-
mentation. From these simulations, we see a Bayes factor
of 3 in favor of a transitivity violation approximately cor-
responds to a type-1 error rate of 0.05 in the case of the
non-hierachical individual model, and slightly more conser-
vative than that for the hierarchical model, while a Bayes

Factor of 10 has a type-1 error rate of around 0.01. Despite
the type 1 error rate of BF>10 being somewhat similar to
the frequentist tests from the previous section, we see higher
powered results in both Bayesian implementations. Similarly
to MSE, the departures from the hierarchical model’s speci-
fication in the simulated data generating procedure made no
discernible difference to performance.

5 Conclusion

In cases where the individual TE model is employed and
there are multiple participants responding to the same stim-
uli, the hierarchical TE model that was introduced in this
paper seems to yield the best results. In other cases, there
is little reason to use the frequentist approach over the non-
hierarchical Bayesian approach, even when properly using
all the data, because the proper null distributions are still un-
known and their explored frequentist tests tend to be overly
conservative. While bootstrapping and using all of the data
gives a substantial gain in performance, it still relies on faulty
statistical theory for hypothesis testing, and ultimately fails to
compete with the Bayesian approach in estimation accuracy
and power.


http://journal.sjdm.org/vol15.5.html

Judgment and Decision Making, Vol. 15, No. 5| September 2020

References

Allais, M. (1953). Le comportement de I’homme rationnel
devant le risque: Critique des postulats et axiomes de
I’école américaine. Econometrica: Journal of the Econo-
metric Society, 503-546.

Birnbaum, M. H. (2007). Tests of branch splitting and
branch-splitting independence in Allais paradoxes with
positive and mixed consequences. Organizational Behav-
ior and Human Decision Processes, 102(2), 154-173.

Birnbaum, M. H. (2008). New tests of cumulative prospect
theory and the priority heuristic: Probability-outcome
tradeoff with branch splitting. Judgment and Decision
Making, 3(4), 304-316.

Birnbaum, M. H. (2011). Testing mixture models of tran-
sitive preference: Comment on Regenwetter, Dana, and
Davis-Stober (2011). Psychological Review, 118(4), 675—
683.

Birnbaum, M. (2012). A statistical test of the assumption
that repeated choices are independently and identically
distributed. Judgment and Decision Making, 7, 97-109.

Birnbaum, M. H. (2013). True-and-error models violate
independence and yet they are testable. Judgment and
Decision Making, 8(6), 717-7317.

Birnbaum, M. H., & Bahra, J. P. (2007). Gain-loss separabil-
ity and coalescing in risky decision making. Management
Science, 53(6), 1016-1028.

Birnbaum, M. H., & Bahra, J. P. (2012). Testing transi-
tivity of preferences in individuals using linked designs.
Judgment and Decision Making, 7, 524-567.

Birnbaum, M. H., & Gutierrez, R. J. (2007). Testing for
intransitivity of preferences predicted by a lexicographic
semi-order. Organizational Behavior and Human Deci-
sion Processes, 104(1), 96—-112.

Birnbaum, M. H., & LaCroix, A. R. (2008). Dimension in-
tegration: Testing models without trade-offs. Organiza-
tional Behavior and Human Decision Processes, 105(1),
122-133.

Birnbaum, M. H., Navarro-Martinez, D., Ungemach, C.,
Stewart, N., Quispe-Torreblanca, E. G.. (2016). Risky
decision making: Testing for violations of transitivity pre-
dicted by an editing mechanism. Judgment and Decision
Making, 11(1), 75-91.

Birnbaum, M. H., & Quispe-Torreblanca, E. G. (2018).
TEMAP2.R: True and error model analysis program in
R. Judgment and Decision Making, 13(5), 428—440.

Birnbaum, M. H., & Schmidt, U. (2010). Testing transitivity
in choice under risk. Theory and Decision, 69(4), 599—
614.

Bradley, R. A., & Terry, M. E. (1952). Rank analysis of
incomplete block designs: 1. The method of paired com-
parisons. Biometrika, 39(3/4), 324-345.

de Vries, R. M., & Morey, R. D. (2013). Bayesian hypothesis
testing for single-subject designs. Psychological Methods,

859

Efficient true-and-error analysis

18(2), 165-185.

Efron, B., & Morris, C. (1977). Stein’s paradox in statistics.
Scientific American, 236(5), 119-127.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Ve-
htari, A., & Rubin, D. B. (2013). Bayesian data analysis.
CRC press.

Hey, J. D. (1995). Experimental investigations of errors in
decision making under risk. European Economic Review,
39(3—4), 633-640.

Jeffreys, H. (1961). Theory of probability. Clarendon, Ox-
ford.

Lee, M. D. (2018). Bayesian methods for analyzing true-
and-error models. Judgment and Decision Making, 13(6),
622-635.

Lichtenstein, S., & Slovic, P. (1971). Reversals of preference
between bids and choices in gambling decisions. Journal
of Experimental Psychology, 89(1), 46-55.

Luce, R. D. (1956). Semiorders and a theory of utility dis-
crimination. Econometrica, Journal of the Econometric
Society, 178-191.

Luce, R. D. (1959). Individual choice behavior: A theoreti-
cal analysis. New York: Wiley.

Neyman, J., & Pearson, E. S. (1933). IX. On the prob-
lem of the most efficient tests of statistical hypotheses.
Philosophical Transactions of the Royal Society of Lon-
don. Series A, Containing Papers of a Mathematical or
Physical Character, 231(694-706), 289-337.

Pearson, K. (1900). X. On the criterion that a given system
of deviations from the probable in the case of a corre-
lated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 50(302), 157-175.

Regenwetter, M., Dana, J., & Davis-Stober, C. P. (2011).
Transitivity of preferences.  Psychological Review,
118(1), 42-56.

Thurstone, L. L. (1927). A law of comparative judgment.
Psychological Review, 34(4), 273-286.

Tversky, A. (1969). Intransitivity of preferences. Psycho-
logical Review, 76(1), 31-48.

Tversky, A., & Kahneman, D. (1992). Advances in prospect
theory: Cumulative representation of uncertainty. Jour-
nal of Risk and Uncertainty, 5(4), 297-323.

Wagenmakers, E.-J., Lee, M., Lodewyckx, T., & Iverson,
G. J. (2008). Bayesian versus frequentist inference. In
Bayesian evaluation of informative hypotheses (pp. 181—
207). Springer.

Wagenmakers, E.-J., Lee, M., Rouder, J. N., & Morey, R.
D. (2019). The principle of predictive irrelevance, or
why intervals should not be used for model comparison
featuring a point null hypothesis. |https://psyarxiv.com/
rqnus.

Wagenmakers, E.-J., Morey, R. D., & Lee, M. D. (2016).
Bayesian benefits for the pragmatic researcher. Current


http://journal.sjdm.org/vol15.5.html
https://psyarxiv.com/rqnu5
https://psyarxiv.com/rqnu5

Judgment and Decision Making, Vol. 15, No. 5| September 2020

Directions in Psychological Science, 25(3), 169-176.
Wilks, S. S. (1938). The large-sample distribution of the
likelihood ratio for testing composite hypotheses. The
Annals of Mathematical Statistics, 9(1), 60—62.
Wu, G., & Markle, A. B. (2008). An empirical test of gain-
loss separability in prospect theory. Management Science,
54(7), 1322-1335.

Efficient true-and-error analysis 860

Appendix: JAGS Code:

The following JAGS code was used to analyze the hierarchi-
cal model. For the non-hierarchical version, one can remove
the lines labeled ‘“Hierarchical Only” and uncomment the
line labeled “Non-Hierarchical Only”.

Response data is represented by a nobsx2 matrix “fg”
where nobs is the number of total blocks. Each row of fg
has two integers between 1 and 8 representing the observed
preference patterns (defined by the rows of matrix A) for
the first and second repetitions in the block. Subject id is
represented by the nobs X1 vector s where each element de-
notes the subject id of the corresponding block. For the sake
of code brevity, this implementation also requires upload-
ing a nobsx1 vector of ones called “onevec”, which in the
JAGS code is said to come from a Bernoulli distribution with
probability equal to the probability of having observed the
outcome of that block. Coding it this way is equivalent to
calculating the probability of all 64 possible combinations
of preference orderings beforehand and treating the combi-
nation as coming from a categorical distribution, similar to
the approach found in Lee (2018).
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model {

for(i in 1:nsub){
for(j in 1:8){
X[i,j] ~ dnorm(mul[j], tau[j]) #Hierarchical Only
expX[i,j] <- exp(X[i,jl) #Hierarchical Only
}
ps[i,1:8]<- expX[i,1:8]/sum(expX[i,1:8]) # Hierarchical Only
#ps[i,1:8]<- ddirch(c(1,1,1,1,1,1,1,1)) #Non-Hierarchical Only
}

for(i in 1:8){
mu[i] ~ dnorm(®,1)
tau[i] ~ dgamma(l,1)
}

for(su in 1:nsub){
for(i in 1:3){
doubes([su,i] ~ dbeta(l,?2)
es[su, i] <- .5*doubes[su, i]

}

}

A[1, 1:3] <-c(0,0,0)
A2, 1:3] <-c(0,0,1)
A[3, 1:3] <-c(0,1,®
Al4, 1:3] <-c(0,1,1)
A[5, 1:3] <-c(1,0,0)
A[6, 1:3] <-c(1,0,1)
A[7, 1:3] <-c(1,1,0)
A[8, 1:3] <-c(1,1,1)

for(h in 1:nobs){

for(i in 1:8){
probcomp[h,i] <- ps[s[h],i]*(ifelse(A[i,1]==A[fg[h,1],1], 1-es[s[h], 1],
es[s[h],1])*ifelse(A[i,2]==A[fg[h,1],2], 1l-es[s[h],2], es[s[h], 2])
*ifelse(A[i,3]==A[£fg[h,1],3], 1l-es[s[h],3], es[s[h], 31))
*(ifelse(A[i,1]==A[fg[h,2],1], 1-es[s[h], 1], es[s[h],1])
*ifelse(A[i,2]==A[fg[h,2],2], 1-es[s[h],2], es[s[h], 2])
*ifelse(A[i,3]==A[fg[h,2],3], 1-es[s[h],3], es[s[h], 31))

}

onevec[h] ~ dbern(sum(probcomplh,1:8]))
}
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