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Beyond reach: Do symmetric changes in motor costs affect
decision making? A registered report
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Abstract

Executing an important decision can be as easy as moving a mouse cursor or reaching towards the preferred option with
a hand. But would we decide differently if choosing required walking a few steps towards an option? More generally, is our
preference invariant to the means and motor costs of reporting it? Previous research demonstrated that asymmetric motor
costs can nudge the decision-maker towards a less costly option. However, virtually all traditional decision-making theories
predict that increasing motor costs symmetrically for all options should not affect choice in any way. This prediction is disputed
by the theory of embodied cognition, which suggests that motor behavior is an integral part of cognitive processes, and that
motor costs can affect our choices. In this registered report, we investigated whether varying motor costs can affect response
dynamics and the final choices in an intertemporal choice task: choosing between a readily available small reward and a larger
but delayed reward. Our study compared choices reported by moving a computer mouse cursor towards the preferred option
with the choices executed via a more motor costly walking procedure. First, we investigated whether relative values of the
intertemporal choice options affect walking trajectories in the same way as they affect mouse cursor dynamics. Second, we
tested a hypothesis that, in the walking condition, increased motor costs of a preference reversal would decrease the number of
changes-of-mind and therefore increase the proportion of impulsive, smaller-but-sooner choices. We confirmed the hypothesis
that walking trajectories reflect covert dynamics of decision making, and rejected the hypothesis that increased motor costs of
responding affect decisions in an intertemporal choice task. Overall, this study contributes to the empirical basis enabling the
decision-making theories to address the complex interplay between cognitive and motor processes.
Keywords: motor costs, response dynamics, mouse tracking, walking path tracking, intertemporal choice

1 Introduction
Most, if not all, of our decisions are eventually expressed
in a motor output. Even if a decision seems simple (e.g.,
choosing between two products in a supermarket), the exe-
cution of that decision often requires our body to produce
sophisticated motion (we approach and pick up the preferred
product). However, motor execution of decisions and the
environment surrounding the decision maker are rarely con-
sidered as a part of the decision-making process. In contrast,
an embodied approach to cognition implies that perceptual
experience and motor behavior are not just input and output,
but an integral part of our cognitive processes (Clark, 2008;
Shapiro, 2019). In the context of decision making, this ap-
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proach suggests that task constraints (even those seemingly
unrelated to the decision options) and the resources available
to the decision-maker (e.g., the body, the environment) have
direct influence on a decision (Araújo et al., 2006; Cisek
& Pastor-Bernier, 2014; Lepora & Pezzulo, 2015). How-
ever, the mainstream theories still treat decision making as a
purely cognitive process, assuming that actions are simply a
means of reporting the decision and are segregated from the
underlying cognitive processes.

A notable departure from the traditional approach to deci-
sion making is the notion that cognitive processes can leave
traces in their motor output, for instance, mouse cursor tra-
jectories (Spivey et al., 2005). This notion implies that motor
behavior during decisionmakingmight provide an important
source of evidence concerning the character of the cognitive
processes involved in a decision. In particular, hand reaching
or mouse cursor trajectories can expose the degree of attrac-
tion towards an option which was not eventually chosen, or
vacillation experienced prior to making the final decision
(Freeman et al., 2011; McKinstry et al., 2008; Resulaj et al.,
2009; Spivey & Dale, 2006). These insights are not immedi-
ately available from traditional measures of decision making
(choice outcomes and response times). The use of mouse-
and hand-tracking paradigms has thus increased in a variety
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of fields (Freeman, 2018; Koop & Johnson, 2013; Schulte-
Mecklenbeck et al., 2017; Song & Nakayama, 2009).
Recent computational models explicitly link purely cog-

nitive mechanisms (for instance, evidence accumulation) to
the mouse-tracking or hand-reaching data (Calluso et al.,
2015; Friedman et al., 2013; Lepora & Pezzulo, 2015; Quin-
ton et al., 2014; Scherbaum et al., 2012; Wispinski et al., in
press). However, most of these models assume that the link
between cognition and movement is unidirectional (feedfor-
ward), stipulating that the response dynamics are affected
by cognitive processes, but not the other way around. Em-
bodied accounts, however, theorize that there must also be
the link in the opposite direction: the motor constraints on
decision execution will affect the decision process (Cisek
& Pastor-Bernier, 2014; Lepora & Pezzulo, 2015). Some
evidence for this hypothesis comes from the studies on per-
ceptual discrimination: subjects are biased towards options
with lower motor costs (Hagura et al., 2017; Marcos et al.,
2015). However, if only the available options are equal in
terms of effort required to choose them, virtually all non-
embodied models agree that our preference is invariant to
the motor costs of expressing this preference.
In this registered report, we investigated whether the mo-

tor costs of reporting a decision affect decision dynamics
and decisions themselves, as predicted by embodiment the-
ories. By testing this prediction we contribute to the debate
between the embodied approach and the more traditional ac-
counts of decision making. We devised a new experimental
paradigm, in which a decision maker indicates their choice
by physically walking towards a preferred option; the con-
tinuous movement trajectory is recorded by a motion capture
system. Our subjects also completed a mouse-tracking task,
which offered the same choices and similar task geometry. In
thisway, we could compare the final choices and response dy-
namics between the walking and mouse-tracking conditions.
Given that increasing motor costs reduces the probability of
a preference reversal on the way to the final decision (Burk
et al., 2014; Moher & Song, 2014), we hypothesized that the
subjects would change their mind less often when walking.
We expected that this may result in systematic differences in
the expressed preference between the tasks.
We asked whether motor costs of reporting a decision

affect decision-makers’ preference and response dynamics
in intertemporal choices. Such choices present a conflict
between a readily available smaller reward (e.g., $8 now)
and a more beneficial, yet delayed, reward (e.g., $16 in a
week). Understanding intertemporal choices may help us in
addressing complex societal challenges including substance
abuse (Kirby et al., 1999), medication non-adherence (Elliott
et al., 2008), and impulsive spending (Hoch & Loewenstein,
1991). Real-life intertemporal choices are often executed via
the kind of large-scale bodily movement that constitutes the
focus of the current study (e.g., walking towards an expensive
TV set, or exiting the shop to avoid spending money). In this

study, we used the Bayesian statistics approach to provide
evidence for or against two hypotheses.

Hypothesis 1: Relative values of the intertem-
poral choice options affect walking trajectories

First, we aimed to test whether the walking dynamics
paradigm can reproduce the key effects found in the mouse-
tracking studies of intertemporal choice. In mouse tracking,
as the two options become more similar in their relative
value, the response trajectories tend to be slower and more
curved towards the non-chosen alternative (Calluso et al.,
2015; Dshemuchadse et al., 2013; O’Hora et al., 2016; Still-
man & Ferguson, 2019). The embodied models of choice
predict that with increasing motor costs of reporting a deci-
sion, the response dynamics becomes more constrained (e.g.
Lepora & Pezzulo, 2015). This can be manifested in a lower
probability of a change-of-mind (Burk et al., 2014) and re-
duced variability of the trajectory curvature and response
time. However, it’s not clear whether such reduced variabil-
ity would diminish the effects of ongoing decision dynamics
on the trajectory curvature and response times that are ob-
served in mouse tracking.

Hypothesis 2: Discounting future rewards de-
pends on motor costs of reporting a decision

Second, we aimed to analyze whether choice outcomes dif-
fer between the walking and mouse versions of the same
intertemporal choice task. In particular, we hypothesized
that in the walking task, the subjects discount the future re-
wards stronger than in the mouse-tracking task. Whereas the
embodied choice models predict the existence of the effect
of motor costs on choice, the rationale for the possible di-
rection of this effect in intertemporal choice comes from the
observations in a related mouse-tracking study. Specifically,
Scherbaum et al. (2012) found that imposing a sense of ur-
gency on the subjects via introducing a response deadline
leads to stronger delay discounting. They suggest a possible
explanation: the subjects are initially attracted to the more
impulsive, smaller-but-sooner option, and the response dead-
line leaves no time to consider overriding the initially formed
preference and switching to the larger-but-later option. Im-
portantly, this effect was linked to decreased probability of
changing one’s mind after committing to an initial decision
(Dshemuchadse et al., 2013; Scherbaum et al., 2012). We
hypothesized that in thewalking task, evenwithout a strict re-
sponse deadline, increased costs of a change-of-mind would
have a similar effect of stronger discounting of future re-
wards.
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Figure 1: Setup of the walking task: a subject walks to-
wards one of the options displayed on the screens while their
walking trajectories are recorded by the Kinect camera. The
options are shown and the recording is started only when a
subject leaves the gray area in front of the camera.

Methods
Subjects with no major movement disorders and normal or
corrected-to-normal vision were recruited from the students
and staff of University of Aizu, and from the general popula-
tion. The total number of subjects was N = 74, including 17
female and 56 male subjects (male students are substantially
overrepresented in the student population of University of
Aizu); no sex information was reported for one subject. The
subjects ranged in age between 18 and 65 years old (median
age 26.5 years).
Student subjects received fixed monetary compensation

for participating (approximately 10 US dollars). The exper-
imental procedures and analysis plan were pre-registered on
Open Science Framework (https://osf.io/c3xgn/). All sub-
jects were informed of the purpose and procedure of the
experiment, and gave written consent to participate. The
anonymized data, stimulus presentation code, data analysis
scripts, and supplementary information are available from a
permanent public repository at https://osf.io/qn2w6/.

Experimental setup
The subjects were asked to complete two tasks, a walking
task and a mouse-tracking task. All subjects, except for one,
performed both tasks on the same day with at least one-hour
break between the tasks; the order of tasks was counterbal-
anced across subjects. In each task, the subjects were asked
to answer a series of binary intertemporal choice questions.
Each question involved a choice between a smaller amount of
money now (smaller but sooner, SS) and a larger amount at a

later time point (larger but later, LL), for instance, 8$ today
and 16$ in 7 days. The subjects were instructed to decide
as if the choices were real, but they did not actually receive
any of the chosen amounts (previous studies have reported
no differences between hypothetical and real intertemporal
choices (e.g.,Madden et al., 2003; Johnson&Bickel, 2002)).

Intertemporal choice questionnaire

In each of the two tasks, the subjects completed 47 trials,
which included 27 items of the Monetary Choice Question-
naire (MCQ; Kirby et al., 1999), and 20 staircase trials
(O’Hora et al., 2016). The staircase trials comprised five
independent staircase procedures for five delays: 7, 30, 183,
365, and 1095 days; each staircase procedure consisted of
four choices. For each delay, the staircase procedure started
with a choice between $8 now (SS) and $16 at that delay
(LL).1 If the SS option was chosen, its reward decreased
for the next trial of the staircase; if LL was chosen, the SS
reward increased. At the same time, the LL option reward
($16 at a delay) remained unchanged in all staircase trials.
The increments/decrements of the SS reward decreased after
each block: after block 1 of each staircase, the SS rewards
increased/decreased by $4, after block 2 by $2, and after
block 3 by $1.

Previous studies have shown that simple sequential ma-
nipulation of presented intertemporal choice options can in-
troduce systematic bias in discounting behavior (Robles &
Vargas, 2008; Scherbaum et al., 2016). To mitigate sequen-
tial effects, the staircase trials were randomly interleaved
with the MCQ trials. Overall, the 47 trials were split into 4
blocks (according to the number of decisions in each stair-
case procedure). In block 1, five initial staircase trials ($8
now vs. $16 at different delays) were shuffled with seven ran-
dom MCQ items. In each of blocks 2 and 3, the SS rewards
of the staircase trials were adjusted according to the choices
in the previous block, and the resulting trials were again
mixed with another seven randomly chosen MCQ trials. In
block 4, the last five staircase trials were shuffled with the
six remaining MCQ trials.

Walking task

In this task, the two options were presented on two spatially
separated monitors (Figure 1). The mapping of the SS and
LL options on the two monitors was randomly determined
in the beginning of each experimental session, and remained
consistent throughout all 47 trials of a given session for each
subject. To report their choice, the subjects walked from
the starting position towards the monitor with the preferred

1The data were collected in Japan, so approximate Japanese yen equiv-
alents of the US dollar rewards were used: for example, $8 was displayed
as ¥800 ($1 ≈ ¥100 at the time of writing).
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option, stopped in the response location in front of that mon-
itor, and clicked a button on a remote controller (Logitech
R400). Walking trajectories during each trial were recorded
by a motion capture camera (Microsoft Kinect V1).
The subjects started each trial right in front of the camera.

A dynamic starting procedure was implemented to ensure
that subjects do not prepare the decision in advance and then
walk directly to the chosen option only after the decision
was made (Scherbaum & Kieslich, 2018). Specifically, after
clicking the button on the remote controller to begin the
trial, the subjects started walking away from the camera
and towards the empty screens. The options were presented
on the screens only once a subject left the area spanning
approximately one meter in front of the camera. In this way,
the subjects already had had walking momentum at the time
the options were presented, which was supposed to increase
the possibility of the preference formation process “leaking”
into walking dynamics. The subjects were instructed to
walk with constant speed after leaving the starting area. A
trial ended once a subject stopped in the response area and
confirmed their choice by clicking a button on the remote
controller.

Mouse-tracking task

The setup of this version replicated the geometry of the
walking task, and was otherwise similar to the setup used
previously by O’Hora et al. (2016). The subjects performed
the task on the computer equipped with a high-precision
mouse (Logitech G703), and reported their choice by mov-
ing the mouse cursor from the center bottom of the screen
to one of the response areas in the top part of the screen and
then clicking on the preferred option. Importantly, unlike the
typical mouse-tracking setup, the cursor movement area was
horizontally constrained tomatch (up to scale) themovement
area in the walking task (the ratio of y to x dimensions of
the area in both tasks was approximately 5:4). Similarly to
the walking task, the dynamic starting procedure was used:
the options were displayed only when the subject moved the
mouse cursor from the starting position upwards. Mouse ac-
celeration was switched off and the mouse cursor sensitivity
was set to 800 dpi using Logitech Gaming Software v8.96.

Measures

For each task, individual subjects’ measures of discounting
behavior were calculated using the data from the staircase
trials (discounting behavior in the MCQ trials was not ana-
lyzed). First, we derived the individual subjects’ indifference
points. For each of the five staircase delays, the indifference
point is the ratio between the SS amount and the LL amount
at which a subject would switch from SS to LL or vice versa
at that delay. Then, we calculated k = 1−AUC based on the
approximated area under discounting curve (AUC) (Myerson

et al., 2001; O’Hora et al., 2016):

k = 1 −
5∑
i=0

f ((ti+1 + ti)/2) × (ti+1 − ti), (1)

where {ti, i = 1,5} are the five staircase delays expressed as
a fraction of the largest delay, 1095 days, and t0 = 1/1095
(today; f (t0) = 1). We approximated individual discounting
curves f (t) as piecewise-linear functions based on the esti-
mated indifference points at all delays. Therefore, a subject
always choosing the LL option is characterized by k ≈ 0 (no
discounting), and k ≈ 1 represents the extreme discounting
behavior in a subject who only chose the SS option.

In analyzing decision dynamics, we considered two in-
dependent variables characterizing each decision: the final
choice (binary categorical variable, SS or LL), and λ, per-day
added value provided by the LL option (continuous variable),

λ = log
amountLL − amountSS

delayLL
. (2)

That is, λ quantifies how much more reward the LL option
provides per day over the SS option. As λ increases, the
benefit of LLover SS should becomemore evident; therefore,
choosing LL becomes cognitively easier and choosing SS
becomes cognitively more difficult.

The two dependent variables characterizing the decision
dynamics are response time (RT) and maximum deviation
(max-d). RT was measured from the onset of the stimuli to
the moment when a subject confirms their choice. Response
trajectory curvature was measured by max-d, maximum de-
viation of the trajectory from the idealized, straight-line path
between the start- and end-points of the trajectory.

Exclusion criteria

14 subjects with extreme discounting behavior in both tasks
(k outside of the range [0.02,0.98]) were excluded from the
analysis. In the walking task, we excluded the trials with dis-
continuous walking dynamics where a subject moved slower
than 0.2 m/s for more than 1s on their way to a response
area. In both tasks, we excluded the trials with response
times greater than 8s. In addition, trials with substantial
data loss and otherwise irregular movement patterns were
excluded based on visual inspection of recorded trajectories.
Six subjects with more than 20% of trials discarded in either
task were excluded from the analysis. After all exclusions,
we analyzed the data of 54 subjects, which included 2490
mouse-tracking trials and 2451 walking trials (overall, 99%
of the trials were retained after trial-level exclusions in the
remaining subjects). The excluded data were not analyzed,
but are publicly shared together with the rest of the data.
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Statistical approach
Our goalwas to infer the plausibility of the twomain hypothe-
ses given the data. To do this, we adopted theBayesianmodel
selection approach (Kruschke & Liddell, 2018; Rouder &
Morey, 2012; Wagenmakers et al., 2016). For both hypothe-
ses, the inference was based on hierarchical Bayesian linear
models (Gelman et al., 2013; Kruschke, 2014; McElreath,
2016). Optional stopping based on Bayes factors was used
to optimize data collection (Rouder, 2014; Schönbrodt et al.,
2017; Schönbrodt & Wagenmakers, 2018). The brms pack-
age (version 2.9.0) for R (version 3.6.1) was used for model
fitting and Bayes factor calculation (Bürkner, 2017, 2018).

Testing Hypothesis 1

If Hypothesis 1 was true, then, as λ increases (the delayed
option becomes more beneficial with respect to the amount
available now), the walking trajectories towards the LL op-
tionwould become faster andmore direct, and the trajectories
to the SS option would become slower and more curved. To
test this, we used Bayes factors to measure the evidence in
favor of including the choice-by-λ interaction in the models
explaining the variance in max-d and RT based on choice
and λ. If the interaction model was preferred over the no-
interaction models, we would confirm Hypothesis 1; if a
no-interaction model was preferred, Hypothesis 1 would be
rejected.
For each task, we have built two families of multilevel

Bayesian linear models, one for RT and one for max-d, with
each family consisting of three models

• Mnull: subject-level intercept;
• Mchoice: Mnull + subject-level main effect of choice;
• Mchoice×λ: Mchoice + population-level choice-by-λ
interaction.

Using subject-level intercepts allowed for individual base-
line values of walking time/trajectory curvature, whereas
subject-level main effect of choice captured potential indi-
vidual differences in how predisposed subjects are towards
the SS and LL options. At the same time, we hypothesized
population-level rather than subject-level choice-by-λ inter-
action in Mchoice×λ to mitigate convergence issues.
In addition to testing Hypothesis 1, we also performed the

same analysis for the mouse-tracking data.

Testing Hypothesis 2

If our Hypothesis 2 was true, then the k-values measured in
the walking task would be on average different than those
obtained from the same subjects in the mouse-tracking task.
Similar to Hypothesis 1, we used Bayes factors to estimate
the relative plausibility of the candidate models explaining
the variance of k-values

• Mnull: subject-level intercept;
• Msession: Mnull + population-level main effect of exper-
imental session number (first or second);

• Mtask: Mnull + population-level main effect of task
(walking or mouse-tracking).2

If Mtask was preferred over the other candidate models, we
would confirm Hypothesis 2; if Msession or Mnull was pre-
ferred, Hypothesis 2 would be rejected. Furthermore, we
predicted not only the presence but also the direction of the
task effect: we hypothesized that if the effect is present,
walking task should reveal larger k-values than the mouse-
tracking task.

Sequential Bayes testing

Our pilot experiments provided preliminary evidence that
both RT and max-d are normally distributed in the walk-
ing task. The k-values measured previously in the similar
paradigm can be approximated by the truncated normal dis-
tribution (O’Hora et al., 2016). For this reason, the brms pa-
rameter familywas initially set to gaussian for all models.
The prior distributions of centralized intercepts were normal
with the parameters defined by the mean and variance of
the corresponding dependent variables. Cauchy distribution
with the scale parameter of

√
2/2 was used for the standard-

ized regression slopes (Rouder &Morey, 2012). The default
priors provided by the brms package were used for all other
regression parameters.

For pairwise comparison of the models, we used Bayes
factors (BF), which quantify the relative support provided
by the data to each of the models being compared. BFi j
measures how much more likely the observed data are under
Mi than under Mj . We interpreted Bayes factors according
to Jeffreys (Jeffreys, 1961): BFi j exceeding 3, 10, or 30 cor-
responds to “moderate”, “strong” or “very strong” evidence
in favor of Mi over Mj , respectively. The model most sup-
ported by the data was chosen based on the highest BF with
respect to the corresponding null model.

As Bayes factors can fluctuate slightly depending on con-
crete realization of samples from posterior distributions of
the model, each BF was calculated as an average over ten
independent runs of the bayes_factor function in brms.
Bayes factors can also be sensitive to the choice of priors, so
in the supplementary information we report the target Bayes
factors obtained under more and less informative priors on
the regression slopes (the scale parameter of the Cauchy pri-
ors on slopes set to 1/2 and 1 respectively). To establish
a link to the traditionally used statistics, in the supplemen-
tary information we also report the fits of frequentist linear

2We did not include a model with the task-by-session interaction in the
comparison for two reasons: first, we did not see a strong rationale for the
interaction effect, and, second, reliably detecting this interaction (or the lack
of it) would presumably require an expected sample size much larger than
our feasibility limit.
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mixed-effects models corresponding to the most supported
Bayesian models using the lme4 package (version 1.1-21)
for R (Bates et al., 2015).
To ensure efficient data collection, we employed the op-

tional stopping procedure using sequential Bayes factor anal-
ysis (Rouder, 2014; Schönbrodt et al., 2017; Schönbrodt &
Wagenmakers, 2018). We first collected the data from 30
subjects3, and then calculated the Bayes factors for the first
time. We then aimed to collect the data in the batches of
five subjects until 1) the feasibility limit of 75 subjects is
reached (see the Stage 1 report at https://osf.io/c3xgn/ for
justification of this limit), or 2) for all analyses, the Bayes
factor in favor of the model most supported by the data over
the second-best model exceeds 10. However, we decided to
terminate data collection at 54 subjects (74 prior to applying
exclusion criteria) even though the preregistered Bayes fac-
tor for the most supported model when testing Hypothesis
2 has not reached 10; the following subsection justifies this
decision.

Deviations from the preregistered protocol
The pre-registered protocol specified a different response
procedure in the walking task. Specifically, instead of click-
ing the button on the remote controller, the subjects were
supposed to physically touch the top of the monitor display-
ing the chosen option (at which point the experimenter had
to press a button on the keyboard to record the subject’s
response). We opted for using the remote controller as it
allowed us to fully automate the flow of the experiment,
while still allowing the subjects to change their mind before
finalizing the response.
The preregistered exclusion criteria were adopted to take

into account increased variability of the data in the actual
experiment compared to the pilot data. Trials with response
times greater than 8 seconds were excluded in both tasks,
while the preregistered cutoff values were 7 seconds for the
walking task and 5 seconds in the mouse task. Response
times less than 2 seconds in the walking task and 1 second
in the mouse task were not observed so the corresponding
preregistered cutoffs were not applied. The criterion for
excluding walking trajectories where a subject stopped in the
middle of the trial was relaxed: instead of discarding trials
where a subject slowed down to less than 0.2 m/s (resulting
in 23% trajectories excluded), we only excluded the trials in
which a subject walked slower than 0.2 m/s for longer than
one second before they reached a response area.
In sequential Bayesian testing of Hypothesis 1, we quickly

reached the threshold BF = 10 for both RT and max-d analy-
ses of the walking data. As for Hypothesis 2, around N = 50
we reached conclusive evidence in favor of null and against
Mtask, suggesting that our Hypothesis 2 should be rejected.
However, the collected evidence remained inconclusive with

3After excluding the subjects meeting the exclusion criteria

respect to Msession even after collecting more data. We de-
cided to terminate data collection at this point, because pro-
viding evidence for or against Msession was not the primary
goal of this registered report (see Exploratory results for
exploratory analysis of the session effect).

Confirmatory results
Hypothesis 1
We found that the walking speed and curvature of walking
trajectories reflect the underlying decision dynamics. For
both maximum deviation and response time, Bayes factors
indicated very strong support of the models including the
choice × λ interaction over the choice-only models (Ta-
ble 1). The posterior distributions of the model coefficients
bλ demonstrate that max-d and RT increase with λ for SS
choices, and decrease with λ for LL choices (Figure 2). To-
gether, these results confirm Hypothesis 1: relative values
of the available options do affect walking trajectories during
decision making.

Table 1: Results of testing Hypothesis 1: Bayes factors in
favor of Mchoice×λ over Mchoice

max-d RT

walking
All data 1.4 × 1011 7.2 × 1010

CoM excluded 3.9 × 1010 3.8 × 109

mouse-tracking
All data 5.6 × 103 1.2 × 1025

CoM excluded 1.5 × 10−2 8.0 × 1021

The analogous analysis of the mouse cursor movements
revealed weaker support for the effect of decision options on
the curvature ofmouse trajectories (Table 1). However, com-
pared to the walking data, the mouse-tracking data provided
much stronger support for the effect of decision options on
response time.

We have tested whether the observed effects of λ onmax-d
or RT are driven by a small proportion of trials with changes-
of-mind (Fischer & Hartmann, 2014), although Hartigans’
dip test did not provide evidence against unimodality of the
max-d distributions (walking task: D = 0.006, p = 0.84,
mouse-tracking task: D = 0.005, p = 0.97, Figure 3). Ex-
cluding trials with changes-of-mind4 (CoM) did not sub-
stantially affect the results of the walking task analysis and
the analysis of RT in the mouse-tracking task. At the same
time, the subset of data without CoM provided very strong
evidence against the choice × λ interaction effect on max-d
in the mouse-tracking task (Table 1, Figure 2). This sug-
gests that curvature of the mouse cursor trajectories was not

4See the data processing scripts (https://osf.io/qn2w6/) for the descrip-
tion of the CoM detection algorithm
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indicate 95% credible intervals of the parameters. Semi-transparent distributions represent the models fitted to a subset of
data without changes-of-mind (91% of the mouse-tracking trials, 99% of the walking trials).
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sensitive to the relative values of the options, and the overall
effect of λ on max-d is due to the increased frequency of
changes-of-mind in the high-conflict trials.

Hypothesis 2
Hypothesis 2 was based on two basic premises: first, that
in the walking task the subjects will change their mind less
often than in the mouse-tracking task, and, second, that most
of these changes-of-mind will be from the more impulsive
SS option to the more beneficial in the long term LL option.
Confirming the first basic premise, we found that changes-

of-mind (CoM) appeared more often in the mouse-tracking
task (9% mouse-tracking trials vs. 1% of walking trials).
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Figure 4: Probability (left panel) and total number (right
panel) of staircase trials with changes-of-mind (CoM). Error
bars in the left panel indicate 95% confidence intervals.

However, contrary to the second key initial assumption,
changes-of-mindwere almost evenly distributed between SS-
to-LL and LL-to-SS (Figure 4). This rendered the potential
mechanism behind hypothesized stronger discounting in the
walking task unlikely.

Indeed, Bayes factor analysis provided very strong evi-
dence against the task effect on k-values (BF = 11.2 in favor
of Mnull over Mtask). The data did not provide conclusive ev-
idence for or against the session effect (BF = 1.9 in favor of
Mnull over Msession). Taken together, these findings suggest
that on average k-values did not change between the walking
and mouse-tracking versions of the task (Figure 5).
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Figure 5: Task (walking vs. mouse-tracking) and experimen-
tal session (first vs. second) did not affect subjects’ discount-
ing behavior (as quantified by the preregistered measure k).
Left panels represent piecewise-linear approximations of the
discounting curves, shaded areas indicate 95% confidence
intervals. Right panels represent the histograms of difference
in corresponding k-values across subjects (count) and pos-
terior probability distribution functions (pdf) of the task and
session effect sizes.

Exploratory results
Decision dynamics
Depending onwhether or not the trials with changes-of-mind
are excluded, the preregistered analysis reveals conflicting
evidence regarding the effect of λ on max-d in the mouse-
tracking task. This prompted us to check the robustness of
our findings using an alternative measure of relative values
of the two options. Dshemuchadse et al. (2013) have previ-
ously suggested measuring decision difficulty using absolute
distance to indifference point; here we use the signed version
of this distance, denoted by ∆, as an alternative measure of
the relative value of the LL option. For each decision,

∆ = f (delayLL) − amountSS/amountLL, (3)

where f (t) is the subject’s approximated indifference point
at a delay t (expressed as a proportion of amountLL). Thus,
∆ quantifies the subjective attractiveness of the LL option
in a given decision, taking into account individual prefer-
ences of the subjects. Negative values of ∆ correspond to
decisions which, according to a subject’s discounting curve,
should result in the SS choice. As ∆ increases above zero,
the advantage of LL over SS should become more evident;
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Figure 6: Average response trajectories depend on the rela-
tive value of the LL option (∆) in walking and mouse-tracking
tasks. Tertiles of ∆ (SS trials: -0.5 and -0.16, LL trials: 0.03
and 0.22) divided the SS and LL data into three thirds each
(low/medium/high ∆). In the upper panel, the unit of mea-
surement is meter, and the gray bar in the bottom indicates
the average shoulder width in a representative subgroup of
participants (40 cm). In the lower panel, the unit of measure-
ment is pixel.
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Figure 7: Relationship between the relative value of the
LL option (∆) and response dynamics measures (max-d and
RT). Each data point represents an individual trial, and the
lines represent independent samples from the posterior dis-
tributions of the choice-by-∆ interaction in fitted Bayesian re-
gressions Mchoice×∆.

therefore, choosing LL should become cognitively easier and
choosing SS should become cognitively more difficult.

Table 2: Results of testing Hypothesis 1 using ∆ instead of
λ to measure relative values of the options: Bayes factors in
favor of Mchoice×∆ over Mchoice

max-d RT

walking
All data 9.5 × 1014 7.2 × 1023

CoM excluded 1.4 × 1014 4.1 × 1022

mouse-tracking
All data 6.7 × 108 1.2 × 1037

CoM excluded 8.3 1.9 × 1030

The results of our analyses using ∆ instead of λ further
reinforce Hypothesis 1. In the walking task, as the relative
value of the LL option increases, the trajectories towards the
SS option become slower and more deflected, and trajecto-
ries towards the LL option become faster and more direct
(Figure 6, 7). This was also the case in the mouse-tracking
task; when the changes-of-mind were excluded, Mchoice×∆
for max-d was still supported by the data, although to a much
lesser extent (Table 2, Figure 8).
To further highlight the relationship between the relative

values of the options and observed decision dynamics, we
reconstructed decision landscapes from thewalking trajecto-

ries. Decision landscape is an analogue of an energy poten-
tial field mathematically derived from the response trajecto-
ries; its visualization incorporates both temporal and spatial
characteristics of the underlying decisions (Zgonnikov et al.,
2017). Conceptualizing the response locations as attractors
in the space of all possible positions of a decision-maker,
decision landscapes characterize the strength of these attrac-
tors as expressed in the decision-makers’ movement. As
expected, with increasing ∆, the attractor corresponding to
the SS option becomes weaker, and the LL attractor becomes
stronger (Figure 9). This corroborates the results of the sta-
tistical analysis.

Discounting behavior

Contrary to the preregistered assumption that k-values are
normally distributed, the observed distribution of k-values
was skewed towards 1, indicating that many subjects were
largely insensitive to delayed rewards. We explored two pos-
sible ways of accounting for this skewness in our statistical
analysis: changing the model parameters, and modifying the
definition of k-value to emphasize changes in discounting
behavior at small delays.

First, we changed the preregistered value of the brms pa-
rameter family to weibull, because the observed distribu-
tion of k was well-approximated by the Weibull distribution.
This produced inconclusive Bayes factors, which did not al-
low us to further clarify the effects of task and session on
discounting behavior (Table 3).

Second, we analyzed a modified version of the k measure,
which uses logarithmically scaled delays when calculating
the area under discounting curve (Figure 10)

klog = 1 −
5∑
i=0

f ((ti+1 + ti)/2) × (log(ti+1) − log(ti)), (4)

where ti and f (t) are defined in the same way as in Eq. (1).
Compared to the preregistered k, klog emphasizes changes
in the decisions at short delays. Its analysis provides further
grounds to rejectingHypothesis 2, indicating strong evidence
against the task effect on discounting behavior (Table 3). At
the same time, we found very strong evidence of the session
effect on klog: the subjects discounted future rewards less
in the task they performed second (Table 3, bsession 95%
credibility interval [−0.093,−0.037]).

Overall, in our exploratory analysis we adjusted the sta-
tistical tests and the discounting measure to account for the
strong discounting behavior in the recruited sample. This
provided further evidence against the effect of task on fi-
nal choice, but suggested preliminary evidence in favor of
weaker discounting in the second experimental session.
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Figure 9: Decision landscapes (Zgonnikov et al., 2017) re-
constructed from the walking trajectories: with increasing rel-
ative value of the LL option (∆) the LL option becomes more
attractive, and the SS option becomes less attractive. Unlike
Figure 6, tertiles of ∆ (first tertile: -0.25, second tertile: 0.03)
were calculated across both SS and LL decisions.

Discussion

This registered report confirms that walking trajectories re-
flect covert dynamics of decision making, and rejects the
hypothesis that increased motor costs of responding bias de-
cisions in an intertemporal choice task.
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Figure 10: Session but not task affected the discounting be-
havior (as quantified by klog defined in Eq. (4)): the subjects
discounted future rewards less in the second experimental
session. Left panels represent piecewise-linear approxima-
tions of the discounting curves, shaded areas indicate 95%
confidence intervals. Right panels represent the histograms
of difference in corresponding klog-values across subjects
(count) and posterior probability distribution functions (pdf)
of the task and session effect sizes.
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Table 3: Results of testing Hypothesis 2: Bayes factors of
the task-only and session-only models over the null model
produced by the preregistered analysis (k ∼ Gaussian) and
two exploratory analyses

dependent variable Mtask Msession

k ∼ Gaussian 1/11.2 1/1.9
k ∼ Weibull 1/3.0 1.4
klog ∼ Gaussian 1/12.5 532.6

Walking dynamics reflect cognitive processing during de-
cision making

In this study we hypothesized that the relative values of
the available options affect the duration and curvature of
the walking trajectories of a decision-maker. Testing this
hypothesis contributes to defining the directions for future
developments of dynamic models of decision making and
adds to the process-tracing methodology. If we had found
that walking trajectories do not change with the relative val-
ues of the options, this would have provided experimental
evidence that increased movement costs substantially con-
strain response dynamics. Therefore, explicit assumptions
about the mapping between the internal cognitive state and
actual motor response would need to be incorporated in fu-
ture dynamic decision-making models.
However, our data strongly supports the effect of ongoing

decision dynamics on walking trajectories: as the subjec-
tive value of the larger-but-later option increases, the tra-
jectories towards that option become faster and more direct,
and the trajectories towards the smaller-but-sooner option
become slower and swerve more towards the non-chosen
option (Figures 6, 7). This confirms the robustness of the
findings from the previous mouse- and hand-tracking liter-
ature, and reinforces the evidence for the recent dynamical
accounts of decision making linking cognitive processing to
response trajectories (Calluso et al., 2015; Christopoulos &
Schrater, 2015; Christopoulos et al., 2015; Quinton et al.,
2014; Scherbaum et al., 2012). Furthermore, very strong ev-
idence in favor of Hypothesis 1 (which is robust to excluding
trajectories with changes-of-mind) confirms the validity of
tracking walking trajectories as a new paradigm allowing for
reverse inference of cognitive processes which are executed
via complex bodily movements.
A growing number of studies employ mouse-tracking to

trace ongoing dynamics of cognitive processes (Freeman,
2018; Schulte-Mecklenbeck et al., 2017). At the same time,
mouse tracking is subject to certain limitations, e.g., lack
of continuous link between the current state of a cognitive
process and the hand or mouse cursor position due to inter-
mittent nature of reachingmovements (Friedman et al., 2013;
van der Wel et al., 2009), and a large number of researchers’

degrees of freedom in setting up a mouse-tracking experi-
ment (Hartmann et al., 2012; Scherbaum & Kieslich, 2018;
Schoemann et al., in press). Tracking walking trajectories,
although being more demanding in terms of set-up costs,
provides an alternative method to track decisions based on
movements, which can operate in more ecologically valid
paradigms.

Symmetrically increased motor costs of responding do
not affect the final decisions

Previous studies have demonstrated that decision makers can
be biased towards a less motor costly decision in action
selection and perceptual choice (Cos et al., 2011; Hagura
et al., 2017; Marcos et al., 2015; Morel et al., 2017), which
prompts thatmetabolic costs of the actions and the associated
rewards interact during decision making (Shadmehr et al.,
2016;Wispinski et al., in press). At the same time, up to now
it remained unclear whether symmetrically increased costs
of reporting a decision can affect choice. Clarifying this
could provide evidence either for or against the embodied
choice theories (Cisek & Pastor-Bernier, 2014; Lepora &
Pezzulo, 2015). In the context of our paradigm, the embodied
choice model assumes that the spatial position of a decision-
maker directly affects the accumulation of evidence via the
commitment effect: once a movement toward a target is
initiated, the evidence in favor of changing one’s mind must
outweigh the motor costs of doing so (Lepora & Pezzulo,
2015).

Previouswork on intertemporal choice have suggested that
the smaller-but-sooner option is activated early on during
a decision, and is later suppressed by the larger-but-later
option if there is enough time (Dshemuchadse et al., 2013;
Scherbaum et al., 2012). Consequently, we assumed that the
smaller-but-sooner option would be chosen more often in the
walking task compared to the mouse-tracking task, due to
a reduced number of changes-of-mind to the larger-but-later
option caused by an increase in motor costs of movement
(Burk et al., 2014; Moher & Song, 2014).

The confirmatory analyses demonstrated that although the
number of changes-of-mind was substantially reduced in
the walking task, the discounting behavior did not vary be-
tween the walking and mouse-tracking task (Figure 5). The
exploratory analyses further disproved Hypothesis 2 (Fig-
ure 10, Table 3). One potential explanation for the observed
lack of effect of motor costs on behavior is that the feedback
link from the motor system to the decision-making processes
is weak, which would suggest that symmetrically increased
motor costs are unlikely to bias choice in principle. This
might provide grounds for the decision-making models to
treat motor constraints of the tasks as having little effect on
cognitive processing. On the other hand, our results indicate
another potential explanation: the lack of asymmetry in the
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distribution of changes-of-mind between SS and LL choices
in the mouse-tracking task.
We hypothesized that in the mouse-tracking task the sub-

jects would mostly change their mind from SS to LL, and
not the other way around, but the data revealed that changes-
of-mind were almost evenly distributed between the SS and
LL choices (Figure 4). For this reason, even the observed
substantial reduction in the number of changes-of-mind in
the walking task (Figure 4) did not induce changes in the
discounting behavior. Furthermore, analysis of the response
trajectories revealed that SS and LL choices did not differ in
terms of response time and trajectory curvature when dis-
tance to subjective indifference point (∆) was controlled for
(Figure 8). This is in contrast with the findings of Dshe-
muchadse et al. (2013), who identified a bias towards the
SS option in mouse cursor trajectories. To further compli-
cate the issue, Calluso et al. (2015) and O’Hora et al. (2016)
found a bias in the opposite direction, towards the LL option.
Collectively, these considerations suggest that the hypo-

thetical effect of motor costs on choice outcomes can man-
ifest itself only if the asymmetry in changes-of-mind be-
tween the two options is more pronounced than in the cur-
rent paradigm. Particularly, this can occur in the paradigms
including decisions with a high degree of competition be-
tween the options, one of which is still chosen substantially
more often than the other, whichmight be the case, for exam-
ple, in decisions between two aversive stimuli in approach-
avoidance studies (e.g. Garcia-Guerrero et al., 2019). De-
signing such paradigms is a promising avenue for future
investigations of embodied choice.
One confounding factor that might have affected the sub-

jects’ behavior is that the two studied tasks differ not only in
motor costs but also in the time required to report a choice
and inter-trial interval. The average response time in the
mouse-tracking task was 2.8 seconds, while walking took on
average 4.8 seconds. Still, despite having more time to de-
cide during walking, the subjects often informally reported
that the walking task was more challenging. The possible
reasons for this are increased cognitive-motor interference in
walking (Al-Yahya et al., 2011) and that the subjects might
have felt the need to finalize a decision early on to avoid a
costly change-of-mind later. In addition, Scherbaum et al.
(2016) have previously demonstrated an early tendency to
repeat a motor movement from a previous trial, which de-
creased with inter-trial interval. In our study, the inter-trial
interval during the walking task was much longer than in the
mouse-tracking task, which could also have affected the sub-
jects’ behavior. Designing the tasks with similar response
times and inter-trial intervals but different motor costs (for
example, employing robotic manipulanda with variable re-
sistance or response angle (Burk et al., 2014; Hagura et al.,
2017)) can potentially address these limitations.
Up to now, most mouse-tracking studies have focused on

averaged decision trajectories, implicitly assuming homo-

geneity of underlying responses. However, changes-of-mind
can form a separate cluster of response trajectories (van der
Wel et al., 2009; Wulff et al., 2019), which is especially im-
portant in light of recent studies that link changes-of-mind
to the neural mechanisms distinct from those generating the
initial decisions (Fleming, 2016; Atiya et al., 2019a,b). Here
we wish to call for investigating mouse- and hand-tracking
data in more detail, paying close attention to changes-of-
mind. We believe that doing so can provide important in-
sights into potential changes in behavior under varyingmotor
constraints.

Wider implications

We demonstrated a close relationship between decision mak-
ing and full-body movements. In addition to theoretical
significance for the field of judgment and decision making,
this relationship has wider methodological implications and
potential practical applications. Particularly, experimental
studies in the field of neuroeconomics and consumer behav-
ior employ increasingly more ecologically valid paradigms
(Hui et al., 2009; Rangel et al., 2008; Sanfey et al., 2006;
Sharp et al., 2012); the current study suggests that fine-
grained recording of full-body movements in the laboratory
can allow to track the time course of the underlying cognitive
processes. Furthermore, the current work provides basis for
principally new field studies tracking decision-makers’ be-
havior in the real world: recent progress in computer vision
(e.g., Toshev & Szegedy, 2014; Cao et al., 2017; Mehta
et al., 2017) enables the researchers to reconstruct walking
trajectories during decision making from video stream data,
eliminating the need for dedicated motion capture hardware.
These trajectories can then be used for reverse inference of
the walkers’ cognitive processes across domains. In partic-
ular, this has potential implications for forensics: mouse-
tracking studies have demonstrated that deceptive behavior
results in more conflicted mouse cursor trajectories (Du-
ran et al., 2010; Monaro et al., 2017; O’Hora et al., 2018).
Further research should investigate whether walking trajec-
tories can also reveal deceptive behavior. Finally, the present
work can provide theoretical support for intelligent activity
recognition based on video data, for instance, in automated
surveillance (Dee & Velastin, 2008).

Conclusion

In this study we confirmed the hypothesis that walking tra-
jectories reflect ongoing cognitive processes. This opens
up a range of theoretical questions, and has implications
for applied research. Second, we disproved the hypothe-
sis that symmetrically increased motor costs of responding
bias decision-makers towards a readily available option in
intertemporal choice. The latter result suggests that in our
paradigm the decision-making mechanisms were insensitive
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to the influences of task constraints, producing consistent de-
cision outcomes regardless of the motor costs of reporting a
decision. Overall, our findings establish the empirical basis
for future investigations of the reciprocal effects of full-body
movement and decision making.
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