
Judgment and Decision Making, Vol. 12, No. 3, May 2017, pp. 260–279

Establishing the relevance of non-compensatory choice algorithms
from stated choice surveys – an exploration

Evert Jan van de Kaa∗

Abstract

In applied sciences large-scale surveys are a popular means to acquire insights in the choices that people make in different
contexts. In transportation research, for example, tens of thousands stated their choices between alternatives characterized
by cost and time attributes. In this study I explore the extent to which the data acquired in such studies may exhibit the
co-occurrence of different choice algorithms within such survey populations. For that purpose I propose a novel version of the
outcome-oriented approach. It is applied to the outcomes of two Dutch value-of-time surveys. If the recorded choice patterns
are viewed apart, most could be the result of several different algorithms, in line with the main criticism of the outcome-oriented
approach. The novel version considers the causal relationships between an individual’s personal circumstances, his use of
a particular algorithm and the resulting choice pattern. It employs inferential statistics for analyses of the frequencies of
the expected and actually recorded choice patterns within groups of respondents. Applied to the Dutch survey results this
allowed disentangling, at the aggregate level, the overlap in explaining compensatory and non-compensatory algorithms to
a large extent. It revealed that weighted additive (WADD) algorithms incorporating different degrees of loss aversion could
explain most recorded choice behaviour while none of the many non-compensatory algorithms that were considered yielded
a more than marginal explanation. Replications of this study, preferably by re-analysing other large-scale surveys with more
complicated choice sets, is recommended to find out whether or not these findings are incidental.

Keywords: outcome-oriented approach, non-compensatory decision rule, lexicographic rule, Elimination-by-Aspects, random
choice, human error, value of time, loss aversion

1 Introduction

In applied sciences like transportation research and envi-
ronmental science, large-scale choice surveys are a popular
means to acquire insights in the values that people attribute to
changes in their circumstances. In transportation research,
for example, the value that travellers assign to travel time
savings (VTT S) is of utmost importance for infrastructure
management and planning. For that reason national VTT S

surveys are performed every now and then in many countries
(e.g., Burge, Rohr, Vuk & Bates, 2004). Most VTT S-survey
designs are similar and the choice sets simple: two trip al-
ternatives, each characterized by two attributes: travel time
and travel cost. These games are embedded in question-
naires asking dozens of questions about socio-economic and
travel-context-related personal characteristics, though com-
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monly observations about the respondents’ choice processes
are missing. In the Netherlands alone, between 1988 and
2011 about 15,000 travellers participated in such surveys.
Worldwide, more than a hundred thousand people did so in
these and similar stated choice studies (e.g., Van de Kaa,
2010a).

Mostly such large-scale surveys are made to acquire data
for the estimation of the parameters of models meant for
prediction of choice behaviour in similar real-life circum-
stances. The aim of the current study is to explore whether or
not the raw data from such surveys can be used for estimating
the distribution of different explanatory choice algorithms1
over segments of the survey population. Understanding of
this is important, as different algorithms may imply different
transferability requirements from estimation to prediction
contexts. To be precise, I will examine the extent to which
non-compensatory algorithms, if added to a mixture of com-
pensatory algorithms, may increase a model’s explanatory
ability.

For this study, a novel version of the outcome-oriented
approach2 was developed. Section 2 motivates and outlines

1The term “(choice) algorithm” and its synonym “(decision) rule” are
used here to denote what is termed “decision strategy”, “evaluation-and-
choice function”, “structural model”, “preference functional”, “decision
heuristic” and the like elsewhere.

2Synonyms: structural approach/model (e.g., Glöckner, 2009);
outcome-based strategy selection (Bröder, 2010); etc.
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this “outcome-oriented inferential statistics” — approach. In
Appendix 1 it is tested on some imaginary survey outcomes.
By courtesy of Rijkswaterstaat the full documentation of
the Dutch 1988 and 1997 national VTT S surveys was made
available for the current research. Section 3 overviews the
designs of these surveys and offers a preliminary analysis of
the choices that were recorded. Section 4 examines the extent
to which several algorithms that comply with WADD (Payne,
Bettman & Johnson, 1993) would yield these outcomes. It
shows that such algorithms, particularly those accommodat-
ing loss aversion, might explain by far most. In sections 5 and
6 the applicability of outcome-oriented inferential statistics
is tested on the Dutch survey data. It appears that a bunch of
lexicographic and attribute-threshold-based algorithms add
hardly anything to the explanation of the recorded choice
behaviour. The article finalizes with a discussion, summary,
conclusions and recommendations concerning the relevance
of these findings and the usefulness of outcome-oriented
inferential statistics.

2 Outcome-oriented inferential statis-

tics

This section shortly reviews the main choice-algorithm-
elicitation approaches from applied sciences and psycholog-
ical research, and their limitations. It shows that an outcome-
oriented approach is the way to go for the present study. The
proposed version of this approach focusses on statistical anal-
yses of predicted versus recorded choice patterns and draws
on the assumed causal relationships between the individuals’
circumstances and their context-dependent choices.

In most applied work on stated choice, choice algorithms
are used as explanatory-behavioural models (e.g., Hoffman,
1960). From that stance it is irrelevant whether people per-
form calculations deliberately or unconsciously or use sim-
plifying heuristics or their memory, as long as they arrive
at a similar choice as predicted by the model (e.g., Fried-
man, 1953). No matter how, consumers are presumed to
maximize their utility by choosing the alternative for which
the sum of the values (utilities) of all attributes is highest.
For analyses of stated choice surveys, Random Utility Max-
imization (RUM) is a de facto standard in most branches.
With very few exceptions the WADD rule is assumed for the
assessment of the alternatives’ utilities (e.g., Foerster, 1979;
McFadden, 2001). This is complemented with variables that
relate to the decision-maker’s contextual and socio-economic
characteristics and an error term that allows for stochastic in-
terpersonal variations in tastes. For the latter, logit models
are popular. These and similar discrete choice models are
estimated by assessing mean parameters that offer the best
fit between predicted and recorded choices of a survey pop-
ulation.

Such analyses that pre-assume WADD for each respon-
dent do not allow inferences about the occurrence of the
other choice algorithms that some of the consumers, or even
most of them, may actually use. Moreover, Ballinger and
Wilcox (1997) warned that the best-fitting parameters can
be biased by the error specifications that are imposed. For
example, a Gumbel-distribution across alternatives and indi-
viduals is assumed if a multinomial logit model is estimated
but my scan of a few hundred applications in travel choice
studies yielded none that reported its empirical confirma-
tion. These cautions also hold for the occasional studies in
which a non-compensatory rule or value function according
to, e.g., Prospect Theory instead of utility maximization, is
accommodated in a discrete choice model (e.g., Swait, 2001;
Cantillo & Ortúzar, 2005; Ramos, Daamen & Hoogendoorn,
2013). Such RUM-models thus provide little if any infor-
mation about the different choice algorithms that different
respondents might have used in the same choice context.

The discovery of choice algorithms has been a major re-
search topic in psychological research of human judgment
and decision-making. (See Riedl, Brandstätter & Roithmayr,
2008, for an overview of some of these algorithms.) The two
main methodological approaches in this field are process-
tracing and the outcome-oriented approach (e.g., Rieskamp
& Hoffrage, 1999; Glöckner, 2009). Apparently, inferring
the use of particular decision rules by combining outcome-
oriented and process-tracing techniques is state-of-the-art
(Glöckner, 2009; Glöckner & Bröder, 2011; Hilbig, 2014).
Process-tracing techniques “were developed to directly un-
cover the cognitive processes that take place between the on-
set of a stimulus and the decision maker’s response” while
“in the structural-modelling paradigm, decision behaviour is
investigated by fitting mathematical models to the relation
between the attribute values of options (input) and the final
response (output)” (Riedl et al., 2008, p. 795). Process-
tracing is not useful in the present study as the required
information is rarely if ever collected in large-scale surveys.
But the inputs and outputs of the stated choice games are the
core of the information that is collected. Thus, the outcome-
oriented approach is necessary for the current research.

The main criticism of this approach is that different al-
gorithms often explain the same choice observations (e.g.,
Montgomery & Svenson, 1989; Riedl et al., 2008; Glöck-
ner, 2009; Bröder, 2010; Glöckner & Bröder, 2011). This
problem may partly explain why I found no studies in ex-
perimental psychology in which the distribution of possibly
co-occurring algorithms over survey populations was inves-
tigated extensively. Another explanation may be that the
commonly small and homogeneous survey populations (e.g.,
students or scientific staff) in experimental psychology will
often make a convincing statistical underpinning of infer-
ences about such distributions problematic.
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For my approach I borrowed from Bröder’s (2010)
outcome-based-strategy-classification method. Obviously,
his smart advice on survey design is not applicable here.
But I not only start with the selection of choice algorithms
that are plausible in the considered survey context (as he
suggests) but also: assume consistent, though not necessar-
ily error-free, application of these algorithms; predict the
individuals’ choices with each considered algorithm; and
compare this with the recorded ones in order to find one out
of a group of tested algorithms that offers the best descrip-
tion of what the respondents’ mental processes do with the
submitted attribute levels. In Systems Theory, Management
Science and similar fields, this information-transformation
system would be called the function of choice behaviour, see
Van de Kaa (2008, ch. 2) for an extensive systems-theoretical
view on human choice behaviour. Thus far, my approach dif-
fers in one respect from the usual outcome-oriented analyses
in judgment-and-decision-making studies: the “objective”
levels of the attributes, as submitted to the respondents, rather
than their values to the respondents, are conceived as stim-
uli/input (e.g., Payne et al., 1993; Riedl et al., 2008). This
approach implies that attribute appraisal/valuation is consid-
ered as inextricably bound-up with the choice process.

Another difference between the novel and common
outcome-oriented approaches is that the sets of the individ-
uals’ choices are the basic target of analysis, instead of their
separate choice decisions. Following Van de Kaa (2006) I
call such a set a choice sequence, which I will further de-
note as CS. When a person makes choices from c sets each
containing a alternatives, he generates one out of ac theo-
retically feasible CSs. In my approach the frequencies of
occurrence of the actually recorded CSs in a survey popula-
tion are compared with those following from application of
the considered algorithms.

If this approach is applied to an individual’s context-
dependent set of choice decisions and yields different choice
algorithms that can explain them, there is little hope to disen-
tangle the overlap. Imagine, for example, a fictitious survey
with n respondents who state their choices from the same
five choice sets with each two alternatives. Further imagine
that each respondent applies one out of three choice algo-
rithms consistently: always selecting the left-side alterna-
tive; always selecting the cheapest alternative; and at random
selecting any alternative. Now consider that three choice
algorithms are deemed plausible in this survey: an inertia-
driven left-side-preference rule, a budget-constraint-driven
lexicographic preference for the cheapest alternative, and
an inertia-driven random rule (Johnson, Payne & Bettman,
1993). Now, a respondent who systematically selects the
alternatives presented at the left side of the questionnaire
may exhibit either a left-side preference or the random rule;
one who systematically marks the cheapest alternatives may
have a lexicographic preference for it or, again, have ap-

plied the random rule. For these individuals both considered
algorithms explain their CS. But statistical analyses of the
recorded CSs, taken into account the rationales behind the
use of different algorithms, can shed light on the distribution
of these algorithms within the population. See Appendix
1 for an elaboration of the simple, fictitious choice setting
sketched above and some examples of inferential statistical
analyses. Appendix 1 also illustrates the increasing discrim-
inatory power of inferential statistics with increasing survey
population size.

Most choice algorithms that have been proposed assume
causal relationships between the individuals’ personal cir-
cumstances3 and their context-dependent choices. I traced
such rationales behind the different compensatory and non-
compensatory algorithms that are discussed in this article
and considered why different subpopulations of the Dutch
respondents may have used these algorithms when assessing
their choices. I employed the findings in statistical analy-
ses for investigating the co-occurrence of WADD, random-
choice, lexicographic and threshold-based algorithms. This
appeared a powerful tool to discriminate between these ex-
planatory choice algorithms.

Outcome-oriented inferential statistics may also be used
to estimate the character and frequency of human error. In
an ongoing research on the extent to which random errors
– slips and mistakes (Norman, 1981; Reason, 1990) – may
have biased the underlying choice statements of the Dutch
surveys I found, for example, that slips following a binomial
distribution across choice sets and respondents can explain
very few once or twice recorded CSs. As this goes beyond
the scope of the present study the underlying analyses are
not reported here. In this article I applied all considered
choice algorithms in a deterministic way. One reason to
do so is the peculiar distribution of the CSs recorded in the
Dutch surveys (see next section). The other is that so far
I found no way to discern between the CSs biased by mis-
takes from those following from a consistently and perfectly
applied choice algorithm. I have to admit that the latter
argument was decisive in considering deterministic instead
of stochastic choice algorithms. As a consequence, I may
have inferred some CSs incorrectly as the result of a partic-
ular choice algorithm instead of being caused by mistakes
in other algorithms. The frequencies of the algorithms that
explain the most frequently reported CSs will thus be un-
derestimated. A subordinate advantage of a deterministic
specification is that it prevents faulty choice-algorithm dis-
tributions that may be found when imposing improper error
specifications.

3Here this is defined as the subject’s psychological and physical endow-
ments in connection with contextually relevant experiences and available
alternatives. Some examples: age; income; recently experienced trip dura-
tion; scale extension of responded stated-choice game.

http://journal.sjdm.org/vol12.3.html


Judgment and Decision Making, Vol. 12, No. 3, May 2017 Stated choice algorithms 263

Table 1: Choice sets as submitted in the Dutch 1988 and 1997 VTT S surveys,

Stated
choice
set

Alternative 1: decrease in Alternative 2: decrease in Left-side
alternative

% of
alt. 1
choicestime (min) cost (Dfl) time (min) cost (Dfl)

SC1 C · 0 C · 0.0 C · (–10) C · 1.0 1 91

SC2 C · 0 C · 0.0 C · (–5) C · 1.0 2 71

SC3 C · 5 C · (–1.25) C · 0 C · 0.0 2 26

SC4 C · 10 C · (–1.5) C · 0 C · 0.0 1 41

SC5 C · 10 C · (–0.25) C · (–10) C · 0.25 2 93

SC6 C · 10 C · 0.0 C · (–5) C · 1.0 1 85

SC7 C · 5 C · 0.0 C · 0 C · 1.5 2 49

SC8 C · 5 C · 1.0 C · (–10) C · 0.25 1 97

SC9 C · 5 C · (–1.0) C · 0 C · 1.0 1 27

SC10 C · 10 C · (–2.0) C · (–5) C · 0.0 2 34

SC11 C · 0 C · (–1.0) C · (–10) C · 0.75 2 70

SC12 C · 0 C · (–3.0) C · (–5) C · 0.0 1 13

C=1 if expected recruitment trip travel time (rtt) < 45 min; C=2 if 45 min < rtt < 90 min;
C=3 if 90 min < rtt < 135 min; C=4 if rtt > 135 min.

3 The Dutch 1988 and 1997 national

VTT S surveys

This section sketches the outlines of these surveys and pro-
vides a global statistical analysis of the respondents’ CSs.
It appears that less than 1% of the feasible CSs accounted
for over 80% of all responses. At first sight this suggest
that by far most respondents applied one out of a few choice
algorithms consistently to all choice sets, while few of them
made random errors, exhibited random taste variations or
used mixtures of algorithms and/or unusual ones.

The designs of the 1988 and 1997 surveys were the same.
Car drivers, train and transit passengers were recruited while
they were “on their way” for business, commuting or other
purposes. They were asked on the spot to answer questions
about their actual trip, e.g., origin-destination, motive and
expected travel time. Those who agreed to participate in a
postal survey received a customized questionnaire, summa-
rizing the information collected in the recruitment interview
and allowing corrections to this. The questionnaire asked
for information about the recruitment trip, such as refund of
costs, arrival time and delays, and about personal and house-
hold characteristics (e.g., gender, employment, income, . . . ).
It included twelve two-option choice sets, which I will de-
note here as SC1 . . . SC12. Each submitted alternative
was characterized by two attributes only: travel time, with
levels presented in minutes (min), and travel cost, with lev-
els in Dutch guilders (Dfl). Both travel time and cost were
indicated by increases and decreases compared to those of
the trip on which the respondent was recruited. Choice sets

SC1 to SC4 contained the recruitment-trip-levels alternative
next to either a time-loss-and-money-gain or time-gain-and-
money-loss alternative, and SC8 contained a dominant al-
ternative. The cost levels submitted in 1988 and 1997 were
identical in nominal terms. As the Dutch guilder inflated by
app. 25% between the two surveys, in real money the 1997
cost levels were 80% of those in 1988. There were differ-
ent questionnaires for four recruitment-trip-duration classes.
These questionnaires differed chiefly in the absolute scale
extensions of the attributes. Table 1 lists the choice sets. For
ease of understanding, the alternatives are recoded such that
any consistently trading respondent with a sufficiently high
VTT S would prefer alternative 1 over 2: in the stated choice
sets SC1, 4, 6, 8, 9 and 12 alt. 1 was submitted at the left
side of the questionnaire and alt. 2 at the right side; in the
remaining sets this was reversed.

The documentation of these surveys includes the tabu-
lated responses of all respondents. The 1997 files comprised
corrections, by several respondents, on the information col-
lected in the recruitment interview, which were not yet pro-
cessed. After processing, 30 questionnaires appeared not
useful, mostly because the travel mode in the questionnaire
differed from the recruitment trip. After exclusion of these,
and 630 more in which one or more SC questions were not
completed, 7147 questionnaires remained for analyses in the
current study. For extensive descriptions of the surveys, in-
cluding examples of the employed questionnaires, response
rates, and distribution and impact of socio-economic and
trip-related characteristics on recorded choice behaviour, see
HCG (1990, 1998).
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From first principles as well as empirical studies it is
well-established that wealth and free time4 are very impor-
tant indicators of people’s monetary value of travel time
(e.g., DeSerpa, 1971; Gunn, 2001; Jara-Díaz & Guevara,
2003; Van de Kaa, 2010c). As a proxy of wealth, the ques-
tionnaire asked the participants to report their household
income. It also solicited information about the time spent
for paid labour, obligatory travel and housekeeping. I en-
riched the time-spending information by adding estimates
for uncompleted questions, time for other obligatory activi-
ties (study) and for personal activities (sleeping, eating, and
personal care). To that end I interpolated the average time
spending, differentiated according to gender, age, education
and occupation, as reported in the 5-yearly Dutch national
time-use surveys (Van den Broek et al., 2004), to arrive at
1988 and 1997 data. These estimates of respondent-specific
obligatory and personal time thus took their reported socio-
economic characteristics into account. The respondents’
free-time budgets were found by subtracting these estimates
from the total time per week.

As explained in the previous section, the complete set
of each individual’s choices made in the elicitation context,
termed CS, is my basic target of analysis. For the Dutch
surveys, with a = 2 alternatives in c = 12 choice sets, there are
ac = 4096 different feasible CSs. To denote particular CSs
I ordered the numbers of the chosen alternatives from SC1
to SC12 in a 12-digit number. For example, the succession
of choices that follows from systematic choice for the left-
side alternative (column 6 of Table 1) yields 122 121 211
221. In the Data (linked from the journal’s table of contents)
the answers of all 7147 respondents to the 12 SC questions
are listed, together with the corresponding CSs, the scale
extensions (see Section 6) of the choice sets submitted to
them, and their household income and free time.

In Table 2 the frequencies of occurrence of the different
CSs are listed. Over 90% of the feasible CSs did not occur
at all while 61% of the remaining 395 were generated once
or twice. Just 34 different CSs accounted for 81% of all
observations. The Random Rule could explain 2% at most
of all recorded CSs (see Appendix 2). The whole pattern
suggests that by far most respondents applied one choice
algorithm consistently to all choice sets, while few of them
made random errors or exhibited random taste variations.
This may legitimate the assumption that any recorded CS is
considered here to be generated by a consistently, though not
necessarily faultlessly applied choice formula (for the same
assumption, see, e.g., Glöckner, 2009; Bröder, 2010; Hilbig,
2014).

4I use this term here as synonymous with discretionary available time.

Table 2: Recorded occurrence of choice sequences in the

Dutch surveys.

CS-frequency
classes1

Different CSs2 Recorded CSs3

number % number %

0 3701 90.4 0 0.0

1 190 4.6 190 2.7

2 51 1.2 102 1.4

3–5 50 1.2 193 2.7

6–10 38 0.9 288 4.0

11–34 32 0.8 590 8.3

35–100 16 0.4 879 12.3

101–656 18 0.4 4905 68.6

Total 4096 100.0 7147 100.0

1 number of different respondents who generated the same
CS;
2 number (%) of different feasible CSs within the concerned
frequency class;
3 number (%) of respondents who generated any of the
feasible CSs in the concerned class.

4 Compensatory choice algorithms

The common compensatory choice algorithm in psycholog-
ical research is the WADD rule. This “develops an over-
all evaluation of an alternative by multiplying the weight
times the attribute value for each attribute and summing
these weighted attribute values over all attributes. It is as-
sumed that the alternative with the highest overall evaluation
is chosen” (Payne et al., 1993, p. 24). Payne et al. did not dis-
cern between the quantitative levels of attributes, which may
be in different dimensions, and the “psychological” values
attached to them. Implicitly, they suggested a linear transfor-
mation of attribute levels into values. They also suggested
that their weights account for commensuration of attribute
values into a common scale, too. Payne et al. mentioned
that people can attach a higher importance to attribute levels
implying a loss compared to gains but did not include nor
exclude this explicitly under their definition of WADD. To
sum up, several algorithms that are conformal with WADD
may differ in attribute valuation.

The most common interpretation of WADD implies a lin-
ear transformation of attribute levels into values, with the
same weight attached to gains and losses (e.g., Riedl et al.,
2008; Dieckman, Dippold & Dietrich, 2009; Glöckner, 2009;
Glöckner & Bröder, 2011; Thoma & Williams, 2013). The
value attached by individual i to alternative a by summa-
tion of the attribute values is the same as the “systematic
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utility” Uai according to the common specification of RUM
models (Foerster, 1979; McFadden, 2001). It is also (al-
most) equal to the utility concept of Consumer Theory if
the marginal rate of substitution of travel time and trip ex-
penses is (approximately) constant, which holds for (almost)
linear indifference curves. I will denote this linear-additive
attribute-levels-to-utility function (LF) that adheres to Utility
Theory (UT) as “WADD-LF,UT”. The Dutch stated choice
surveys concerned a riskless choice context in which the
travel time and cost attribute levels (ta and ca) of alternative
a were presented as changes relative to those of a recently
experienced recruitment trip. WADD-LF,UT assumes that
individual i assesses utility Uai of alternative a according to

Uai = αi · ca + βi · ta (1)

in which increases in cost and time are considered to have a
negative sign. Finally, individual i should prefer alternative
a over b if Uai > Ubi while the reverse holds if Uai < Ubi and
the probability that a or b is chosen is the same if Uai = Ubi .

Without loss of validity Uai can also be expressed in a
monetary dimension, as generalized costs5:

Uai = ca + VTT Si · ta (2)

I adopt the utility specification according to Eq. 2 where
VTT Si represents the respondent’s monetary value of time
savings:

VTT Si = βi/αi =

marginal utility (value) of a decrease
in travel time
marginal utility (value) of a decrease
in monetary travel expenses

(3)
Consistent application of WADD-LF,UT now yields a suc-

cession of choices that depends on the individuals’ VTT Si
only. For each of the 12 choice sets, “break-even” VTT S

values can be calculated. These limit 13 VTT S ranges,
for each of which a different CS will be generated. Some
examples (see Table 1 for choice set compositions): any re-
spondent with 0.095 < VTT Si < 0.143 Dfl/min will choose
alt. 1 from SC1, 5, 6 and 8 and alt. 2 from all other choice
sets, thus generating 122 211 212 222; any person whose
VTT Si > 0.857 will generate 111 111 111 111; anyone
with a negative VTT Si < −0.071 will exhibit 222 222 222
222; and people with −0.071 < VTT Si < 0.036 will exhibit
222 222 212 222. The left-side columns of Table 3 show
the VTT Si-ranges and corresponding CSs that follow from
application of WADD-LF,UT. Almost 31% of the survey
population generated one of these 13 CSs.

Next, I conceived the travel time and cost of the re-
spondents’ recruitment trips as reference states according to
Prospect Theory (PT) (Kahneman & Tversky, 1979), the sub-
mitted travel-cost and travel-time increases as losses (nega-
tive) and decreases as gains (positive). I found no objections

5These costs are deemed proportionate to utility, the value concept of
Prospect Theory, psychological value, attractiveness, etc.

of principle or practice why the loss-aversion factors should
not be combined with the importance-weight factor. Follow-
ing Tversky & Kahneman (1991) I adopted a kinked-linear
attribute-level-to-value function:

Vai = max(ca, 0) − λci · max(−ca, 0) +

VTT Si · [(max(ta, 0) − λti · max(−ta, 0)] (4)

where Vai is the value that individual i assigns to alternative
a and λci and λti are loss-aversion factors. Note that for loss-
neutral respondents (λci = λti = 1) this reduces to WADD-
LF,UT. I denote this algorithm, with a linear attribute-level-
to-utility function (LF) that accommodates both PT and UT,
as “WADD-LF”. Its consistent application yields CSs that
not only depend on the individuals’ VTT Si but also on λci
and λti . I considered the whole range of λci and λti from 0.5
onward. For demonstration purposes, the central and right-
side columns of Table 3 show relevant VTT Si ranges with the
corresponding CSs, for two particular combinations of λci
and λti . These explain 18 different CSs. All other combi-
nations of 1.0 ≤ λci ≤ 2.5 and 1.0 ≤ λti ≤ 2.5 explain just
11 more CSs. An ample 67% of the survey population ex-
hibited one of these 29 different CSs. Another 9 CSs, which
were generated by 4.4% of the population, can be explained
by WADD-LF with λci and/or λti > 2.5. As such a strong
loss aversion might be less realistic, these latter CSs are
not considered as WADD-LF any further. Combinations of
0.5 ≤ λci < 1.0 and 0.5 ≤ λti < 1.0, implying loss-seeking,
revealed 13 more CSs. As just 0.5% of all respondents gener-
ated any of these latter CSs and loss-seeking is behaviourally
implausible, these algorithms are disregarded hereafter.

From Bernoulli (1738) onward the diminishing marginal
utility principle is commonly accepted in behavioural sci-
ences. It implies that that the utility/value of a positively
appreciated attribute is a concave function of its levels. This
is also in agreement with the diminishing-marginal-rate-of-
substitution principle of Consumer Theory with its convex
indifference and demand curves. A power specification of
this algorithm yields

Uai = c
γ
a + VTT Si · t

δ
a (5)

with γ < 1 and δ < 1. I assessed which CSs would follow
from combinations of 0.1 < γ < 1 and 0.1 < δ < 1 and
found that these were the same as the 13 CSs following
from WADD-LF,UT. Apparently, the design of the Dutch
stated choice game did not allow to discriminate between the
respondents’ use of linearized or concave utility functions.

Compensatory choice algorithms with loss aversion and
convex and/or concave attribute-value functions were not
systematically evaluated. Considering loss aversion factors
from 1 to 2.5 and either convex-concave (complying with
diminishing sensitivity according to PT) of concave (dimin-
ishing marginal utility) value functions, both with powers
of 0.5 and 2.0 only, could explain another 15 different CSs,
exhibited by 9% of all respondents.
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Table 3. Some choice sequences following from WADD-LF.

WADD-LF,UT Equal loss aversion: λci = λti = 1.5 Time loss aversion: λci = 1; λti = 2.5

VTT Si CS VTT Si CS VTT Si CS

> 0.60 111 111 111 111 > 0.60 111 111 111 111 > 0.400 111 111 111 111

0.40 to 0.60 111 111 111 112 0.50 to 0.60 111 111 111 112 0.300 to 0.400 111 111 112 111

0.30 to 0.40 111 111 112 112 0.38 to 0.50 111 111 112 112 0.250 to 0.300 111 111 212 111

0.25 to 0.30 111 111 212 112 0.30 to 0.38 112 111 112 112 0.240 to 0.250 112 111 212 111

0.20 to 0.25 112 111 212 112 0.23 to 0.30 112 111 212 112 0.150 to 0.240 112 111 212 112

0.18 to 0.20 122 111 212 112 0.17 to 0.23 112 211 212 112 0.089 to 0.150 112 211 212 112

0.15 to 0.18 122 111 212 122 0.15 to 0.17 112 211 212 212 0.080 to 0.089 112 211 212 212

0.13 to 0.15 122 211 212 122 0.13 to 0.15 112 211 212 222 0.070 to 0.080 122 211 212 212

0.10 to 0.13 122 211 212 222 0.07 to 0.13 122 211 212 222 0.044 to 0.070 122 211 212 222

0.07 to 0.10 222 211 212 222 0.06 to 0.07 222 211 212 222 0.040 to 0.044 122 212 212 222

0.03 to 0.07 222 212 212 222 0.03 to 0.06 222 212 212 222 0.014 to 0.040 222 212 212 222

–0.05 to 0.03 222 222 212 222 –0.04 to 0.03 222 222 212 222 –0.025 to 0.014 222 222 212 222

< –0.05 222 222 222 222 < –0.04 222 222 222 222 < –0.025 222 222 222 222

Note that application of the simplifying EQW (equal
weight) and MCD (majority of confirming dimensions) rules
(Payne et al., 1993) has no advantage here. EQW on itself
is not useful due to the different dimensions of the time and
cost attributes. And MCD yields equal values for both al-
ternatives in all SC sets except SC8. But different versions
of the WADD-rule at large could explain 78% of all choice
statements, and WADD-LF alone over 67%. This does, of
course, not show that most respondents applied compen-
satory algorithms, as all recorded CSs might also follow
from application of one or more of the non-compensatory
algorithms that will be considered hereafter.

5 Lexicographic choice

The following comparison of the expected and actually
recorded population-wide CS distributions allows estimating
the frequency of “true” lexicographic choice. Its contribu-
tion to the explanation of the Dutch survey results appears
negligible.

5.1 Relationships of CS occurrence with in-

come and free-time budget

A choice subject employs a Strong-Lexicographic choice al-
gorithm if she selects the alternative with the “best” level
of one attribute from all considered choice sets, irrespective
of the levels of the other attributes. Strong-lexicographic
choice may be motivated by an “absolute” preference for
one attribute that might express strong feelings or ethical
convictions and/or a disinterest in the other attributes. Or it

may express a way to simplify the choice task, out of lazi-
ness or to cope with limited cognitive abilities (e.g., Foerster,
1979; Rosenberger, Peterson, Clarke & Brown, 2003). The
same lexicographic answering sequence results when a very
high weight is attached to one dimension, but as this could
be overcome by a wider range in the other (as described
below), this would not be an outcome of a “true” lexico-
graphic choice algorithm. In travel-choice settings, Cantillo
& Ortúzar (2005) found that a part of their survey popu-
lation showed a lexicographic preference for reducing fatal
accident probabilities, disregarding travel-time and trip-cost
attributes; and Killi, Nossum and Veisten (2007) found that
choice-task simplification might explain extensive lexico-
graphic answering in value-of-time studies. Whatever mo-
tivates its employment, strong-lexicographic choice implies
“non-trading” between the levels of the “decisive” and the
remaining attributes. Weak-lexicographic choice based on
lexicographic semi-ordering also implies that the alternative
with the best level of the “decisive” attribute is chosen, unless
the levels of that attribute within a choice set show less than
a just-noticeable difference. In the latter case the alternative
with the best level of the next-important attribute may be
chosen (Luce, 1956; Foerster, 1979). Weak-lexicographic
choice thus combines elements of non-compensatory and
compensatory processes.

The same CSs that follow from lexicographic choice could
also be the outcome of a trade-off of travel time and cost ac-
cording to the WADD-algorithm. The value that a “trading”
individual assigns to a change in his travel expenses will de-
pend on her income, and the value assigned to changes in her
travel time on her free-time budget (see Appendix 3). People
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who employ the WADD-algorithm will thus systematically
choose the alternative with the shortest travel time if their
income is more than enough and/or their free-time budget
is very limited. Likewise, the probability that such trad-
ing participants systematically choose the alternative with
the lowest expenses will decrease with income and increase
with free-time budget.

The probability that a non-trader always chooses the alter-
natives with the highest time saving may, of course, increase
with a decreasing free-time budget. However, by definition,
such a strong-lexicographic chooser should disregard cost
levels. The probability should thus be the same for differ-
ent incomes, taking the free-time-budget dependency into
account. Similarly, the probability that a non-trader always
chooses the cheapest alternative may increase with decreas-
ing income but should be the same for different free-time
budgets.

At the aggregate-population level this means that, among
the respondents who always choose the shortest travel time,
the percentage of WADD-applying traders will be about zero
at zero income while the percentage of non-traders with zero
income should also apply to other income levels. And at
zero-free-time level the percentage of traders among those
who systematically choose the cheapest alternative should
approach zero while the percentage of non-traders should
also apply to other free-time levels.

5.2 Strong-lexicographic answering: shortest

travel time or cheapest travel cost

Systematic choice for the alternatives with the shortest avail-
able travel time yields 111 111 111 111 (see Table 1). This
was exhibited by 656 respondents, making up an ample 9%
of the combined 1988 and 1997 survey population. System-
atic choice for the cheapest alternatives results in CS 222
222 212 222 or 222 222 222 222, exhibited by 133 and 16
respondents, respectively, who together made up 2% of the
combined population. Figure 1 shows the recorded occur-
rence of these CSs as function of survey year, income and
free time. Dots, indicating the percentages of lexicographic
answerers for different income and free-time classes, are
positioned at the class medians. The depicted trends are
determined with simple linear regression, accounting for in-
come and free-time class sizes. I found very similar trends
when individual-specific free-time budgets were considered
instead of class-medians.

The left-hand side of Figure 1 demonstrates that in all
considered subpopulations the percentages of the respon-
dents who systematically choose the alternative with the
shortest travel time increased with household income. At
the aggregated 1988 and 1997 levels, this trend predicts zero
lexicographic choice. The higher frequency in 1997 com-
pared to 1988 is consistent with the about 25% decrease
in the real value of the cost-attribute level due to inflation:

in 1997 10% lexicographic answering occurred at approx-
imately 4,800 Dfl/month, in 1988 at approximately 6,400
Dfl/month. It nevertheless shows a clear decrease in fre-
quency with decreasing income. Though some low-income
respondents with very little free time choose for the shortest
travel time, no one with ample time budget and low income
did so. All systematic choice for the shortest travel time can
thus be explained by trading respondents applying a WADD
rule.

The right-side diagrams of Figure 1 are similar to those
at the left side, though the percentages are much lower. The
noisy character of this diagram goes together with small
subpopulation sizes. In all considered subpopulations the
percentage of the respondents who systematically choose
the alternative with the lowest cost increased with increas-
ing free time. The lower frequency in 1997 compared to
1988 is consistent with the decrease in the real value of the
cost-attribute levels. Extrapolation to a zero-free-time bud-
get again predicts zero lexicographic choice, except for the
respondents in the lowest income class. Lexicographic an-
swering for the lowest travel cost can thus also be explained
by respondents applying a WADD rule.

5.3 Other lexicographic algorithms

A few respondents (0.17% of the survey population) system-
atically selected the alternatives with the highest cost. This
might possibly be caused by an indiscriminately adopted
lexicographic rule.

People with a strong status-quo preference with respect to
travel time may always select the alternative with the smallest
feasible travel-time change. Just one respondent completed
a CS that might have followed from such a rule. Two other
respondents systematically selected all alternatives with zero
time change. Such weak-lexicographic algorithms may be
adopted because of narrow departure-time and arrival-time
constraints, for example. Another explanation might be peo-
ple whose ideal travel time is equal to that experienced during
the recruitment trip. But random choice, for example, could
yield the same CSs.

The relative position of the alternatives in choice sets
yields an inevitable additional attribute in any stated-choice
questionnaire. This offers the opportunity to simplify the
choice task by selecting the left- side or right-side alternative.
Hess, Rose & Polak (2010), for example, found that 1.1%
of the respondents in the Danish VTT S survey followed one
of these strategies. In the Dutch surveys nobody completed
one of the concerned CSs. Neither were any CSs recorded
following from lexicographic algorithms like: six times left-
right, three times twice left-twice right, two times thrice
left-thrice right, six left-six right, four left-four right-four
left, or four left-two right-two left-four right, and any of
their right-left counterparts.
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Figure 1: Strong-lexicographic answering in the Dutch surveys.

5.4 Conclusion

The comparisons of expected and recorded CS frequencies
leave no reason to assume that a significant part of the sur-
vey population applied any of the non-trading lexicographic
algorithms discussed above. Adding such an algorithm
to a choice model with WADD algorithms will thus bias
rather than improve its predictive usefulness, as it will in-
evitably over-predict strong-lexicographic answering among
travellers with low income and ample free time.

6 Elimination and selection based on

attribute thresholds

This section presents a further elaboration of outcome-
oriented inferential statistics, for the analysis of stated choice
surveys in which the scale extension of attributes varies. A
stochastic distribution of threshold levels over the popula-
tion — a normal distribution, for example — is commonly
assumed for elicitation of such algorithms (e.g., Cantillo &
Ortúzar, 2005). I adopt this assumption here. It implies
that differences in the ranges of attribute levels that are sub-
mitted in different stated-choice games will influence the
occurrence-frequency of the CSs that are generated by the
concerned algorithm. This allows estimating the frequency
of occurrence of threshold-based algorithms. The only re-
striction is that the threshold-level-frequency distributions
should be the same for all considered scale extensions. This
approach is tested by exploring the contribution of 16 differ-

ent algorithms to the explanation of the Dutch survey results.
All are shown to have little if any relevance.

6.1 Relationships of CS-type frequency with

absolute attribute-scale extension

In Decision Theory several choice algorithms were defined
that assume the elimination or selection of those alterna-
tives that (dis)satisfy some threshold level on one or more
attributes (e.g., Dawes, 1964; Tversky, 1972). Such algo-
rithms draw on the assumption that those who employ them
aim to reduce the complexity of their choice task. The algo-
rithms may be considered on their own or in connection with
a second-stage evaluation that can, for example, be com-
pensatory or lexicographic (e.g., Gilbride & Allenby, 2004).
Most algorithms imply elimination of alternatives with an
unacceptably low attribute level. Others result in the se-
lection of any alternative with an above-threshold level of
a positively valued attribute. If an individual applies such
an algorithm consistently as a first-stage rule, the number of
feasible CSs that she can generate is restricted. For example,
the SC sets of the Dutch surveys (see Table 1) imply that
elimination of all alternatives with a time-increase threshold
at zero minutes will result in one of the 16 possible CSs of
type (a)6: 11x x11 x1x 111, in which x may depend on any

6Small or big letters between brackets are used here to distinguish dif-
ferent CS-types. From now on, these will be indicated by “type (t)” or just
“(t)”. They are indicated by a sequence of characters indicating choice for
alternative 1 or 2 in the 12 SC sets. If an x occurs once or more in the
CS-type notation, all CSs for which x = 1 or x = 2 belong to it.
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second-stage evaluation. Likewise, a zero-Dfl cost-increase
threshold yields one of the 32 CSs of type (c): xx2 22x xx2
222. Note that eight of the 16 different CSs that constitute
(a) and another eight out of the 32 of (c) can just as well
follow from WADD-LF (see Section 4). Among these are
the lexicographic 111 111 111 111 and 222 222 2x2 222 that
were discussed in the previous section.

In the Dutch surveys different stated-choice games were
submitted to four subpopulations with different recruitment-
trip-travel times (rtt). The games differed in the absolute
scale extensions (ase) of the attributes. The maximum travel-
time decreases and increases ranged from 10 min for respon-
dents with rtt ≤ 45 min through 20 min (45 < rtt ≤ 90) and 30
min (90 < rtt ≤ 135) to 40 min (rtt > 135). The correspond-
ing maximum cost increases ranged from Dfl 3 through Dfl
6 and Dfl 9 to Dfl 12 (see Table 1). The recorded CSs can
thus be classified in the ase-classes 1 . . . 4 in which all
attribute levels of the evaluated alternatives are proportion-
ate to the class numbers. Respondents with a time-increase
threshold between 0 and 5 min will then select (a): 11x x11
x1x 111 from games with ase = 1, 2, 3 and 4; a threshold
between 5 and 10 min will yield (a) if ase = 2, 3 or 4 but
not necessarily if ase = 1; thresholds between 10 and 15 min
result in (a) if ase = 3 or 4; and thresholds between 15 and
20 min yield (a) if ase = 4. Members with a time-increase
threshold between 5 and 10 min will select alt. 1 from SC 1,
5, 8 and 11 (see Table 1) and thus generate a CS belonging
to the less restricted (b):7 1xx x1x x1x x1x if ase = 1. A
time-increase threshold between 10 and 15 minutes will not
manifest itself when ase = 1, yield (b) for ase = 2 and (a) for
ase ≥ 3; thresholds between 15 and 20 min do not influence
choice when ase = 1, yield (b) for ase = 2 and 3 and (a)
for ase = 4; and thresholds between 20 and 40 min will not
manifest themselves for ase = 1 and 2 but yield (b) for ase =
3 and 4.

Now imagine a subpopulation of respondents who ac-
tually eliminated all alternatives with an above-threshold
time increase, followed by any second-stage evaluation of
the remaining choice sets. It has some unknown frequency
distribution of respondent-specific thresholds, which is con-
sidered to be the same for each ase class. Five hypothetical
distributions are depicted on the left-hand side of Figure 2,
exhibiting one, two or no peaks in the frequency of threshold
occurrence. Following the reasoning in the previous para-
graph the right-hand side in Figure 2 illustrates the strong
effect that the unknown threshold-frequency distribution has
on CS-type frequency. It also illustrates that the frequencies
of (b) for ase = 1 and 2 are equal to those of (a) for ase = 2
and 4, successively. And the size of the subpopulation that
exhibited elimination of alternatives with an above-threshold
time increase follows from applying the type-(b) percentages

7Note that all type (a) CSs are a subset of (b); both (a) and (b) include
several CSs that may follow from WADD-LF and other compensatory and
non-compensatory algorithms.

Figure 2: Hypothetical time-threshold frequency distributions

and their effect on CS occurrence.

for ase = 1, 2, 3 and 4 to the number of respondents who
completed the corresponding stated-choice games.

Similarly, one can assume an imaginary subpopulation
whose members eliminate all alternatives with an above-
threshold cost increase, followed by any second-stage evalu-
ation. Again, some unknown threshold-frequency distribu-
tion is supposed, now of cost-increase thresholds between
zero and 12 Dfl. Because six different cost-increase levels
were discerned in all ase classes, this algorithm can gener-
ate six different types of CSs, from the most restricted (c):
xx222x xx2 222 for low thresholds trough (d): xx2 2xx xx2
222, (e): xx2 2xx xxx 2x2, (f): xxx 2xx xxx 2x2 and (g):
xxx xxx xxx 2x2 till the least restricted (h): xxx xxx xxx
xx2 for very high thresholds. CSs belonging to type (c) are a
subset of all those belonging to types (d) through (h); (d) is a
subset of (e) through (h), etc. Again, the frequency at lower
ase levels of several less-restricted CS-types is the same as
for more restricted types at higher levels. Some examples:
CS-type (d) for ase = 1 and (c) for ase = 4; (g) for ase = 1
and (d) for ase = 2; and (g) for ase = 3 and (f) for ase = 4.

For these and other hypothetical subpopulations, whose
members all employ the same absolute-attribute-threshold-
based-elimination or selection algorithm, the following gen-
eralized relationships between CS-type frequency and ase

appear to hold for any distribution of thresholds over the
subpopulation:

• the occurrence of the CS-types that follow from the
considered algorithm never decreases with ase;

• for each subpopulation and each ase class, the frequency
of any less restricted CS-type (e.g., (f)) is higher than or
the same as that of all more restricted types (e.g., (d));

• if a strong frequency-increase of a less restricted CS-
type occurs at a particular ase class (e.g., ase = 2) it co-
occurs with a frequency-increase of a more restricted
CS in a higher ase class (e.g., ase = 3);

• if ase approaches zero, the considered algorithm will
not manifest itself.
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Figure 3: “Upper-limit” assessment of the size of subpopula-

tion A

.

6.2 Assessment of the relevance of attribute-

threshold-based choice in the Dutch sur-

vey

The frequencies of occurrence of relevant CS-types in each
of the considered ase classes can be used to estimate the
contribution of attribute-threshold-based algorithms to the
explanation and prediction of choice behaviour. This can
be done by conceiving the occurrence of CS-types as the
outcome of choices by two subpopulations, subpopulation A
whose members all generated CSs that will follow from ap-
plication of that algorithm and B with people who generated
CSs that will not.

Figure 3 illustrates how an “upper-limit” estimate can
be assessed of the size of subpopulation A. The left-side
and right-side diagrams do so for two different imaginary
frequency-of-occurrence distributions of (a) and (b) over the
survey population. Starting from the most restricted CS-type
(a), the “upper-limit” for ase = 1 and 2 can be assessed from
the occurrence of (a) for ase = 2 and 4, respectively (step 1
and 2). Next, the increase for ase = 3 and 4 compared to ase

= 2 can be assessed from the corresponding increase in (b)
(left-side diagram: step 3 followed by 4; right-side diagram:
step 3 followed by 4 and 5).

The average upper-limit percentages, weighted for the
shares of the population that completed the concerned ase-
games, yields the share of subpopulation A within the survey
population. In case of an equal distribution of the popu-
lation over ase-classes this amounts to 27% and 19% for
the left-side and right-side diagram in Figure 3, respec-
tively. This would be a realistic estimate of the occurrence
of the attribute-threshold-based algorithm if all concerned
CSs were exclusively generated by this rule. But other al-
gorithms might yield these same CSs. As elaborated in the
previous subsection, the occurrence of this algorithm will
not manifest itself if ase approaches zero. I used linear re-
gression for estimating this zero-ase occurrence. A realistic
estimate of the occurrence of the time-threshold-elimination
algorithm can now be found by subtracting this zero-ase oc-

Figure 4: Conjunctive elimination of alternatives with above-

threshold time and cost increases.

currence from the weighted-average size of subpopulation
A. This yields 25% for the diagram on the left in Figure 3
and 6% for that on the right.

The assessment process as developed above can also be
used to estimate the occurrence of other elimination and
selection rules in the Dutch surveys. In the following para-
graphs this will be done for two subpopulations, one whose
members completed one of the 29 CSs that can follow from
WADD-LF and a “rest-subpopulation” for whose recorded
CSs this does not hold. For different threshold-based elim-
ination and selection algorithms I assess the CS-types that
these will generate. For both subpopulations I test with sim-
ple linear regression whether the relevant CS-type frequen-
cies decreased with ase. If so, I considered that the algorithm
that brought these about was irrelevant for the explanation of
the recorded choice behaviour. If not, I estimated the realistic
frequencies of occurrence of the concerned algorithm.

6.3 Conjunctive elimination of alternatives

The conjunctive choice rule (Dawes, 1964) presumes that an
individual rejects all alternatives that do not meet a min-
imum level on each attribute. It reduces to elimination
of alternatives with an above-time-increase threshold if the
cost-increase threshold is not considered and/or higher than
the highest considered cost increase. The types (a) and (b)
that this latter algorithm generate were discussed extensively
above. The left-hand side of Figure 4 depicts their frequen-
cies of occurrence in the Dutch surveys. It shows that about
two-thirds of all individuals may have applied it as a first-
stage rule. For the vast majority of these, WADD-LF offers
an overlapping explanation. The regression lines exhibit a
frequency-increase of (a) and (b) with ase. The “realistic es-
timate” assessment yields that the absolute-above-threshold-
time-increase elimination may explain the choices of 2.1%
of the survey population of which less than 0.7% cannot be
explained from application of WADD-LF.

If the time-increase threshold is not considered and/or
higher than the highest considered time increase, the con-
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junctive rule reduces to elimination of alternatives with an
above-cost-increase threshold. The CS-types (c) up to and
including (h) that this algorithm generates were elaborated
above. The middle diagram of Figure 4 shows their fre-
quencies of occurrence.8 It appears that 87% of all indi-
viduals may have applied it as a first-stage rule. The slopes
of the regression lines are clearly negative for (c) through
(h). Absolute-above-threshold-cost-increase-elimination al-
gorithms are thus irrelevant for the explanation of the Dutch
survey results.

The “general” conjunctive choice rule rejects all alterna-
tives that do not meet a minimum threshold on each attribute.
A time-increase threshold can be effective for SC 1, 2, 6 and
8 and a cost-increase threshold for SC 3, 4 and 9. For the SC-
sets 5, 10, 11 and 12 both a cost- and time-increase threshold
can be effective (see Table 1). After a second-stage evalu-
ation and/or if the cost-increase or time-increase threshold
becomes sufficiently high these latter can thus yield either
alt. 1 or alt. 2. Following the same reasoning as for the
elimination algorithms above, the general conjunctive algo-
rithm might yield (i): 112 211 x12 xxx through (r): 1xx
x1x x1x x12. These frequencies of occurrence are depicted
in the right-hand side of Figure 4. They show a decline
or negligible increase with ase, except for (r), (k) and (l)
– both latter as far as WADD-LF offers an alternative ex-
planation. The realistic-estimate-assessment yielded zero
general-conjunctive-rule-applying respondents.

Apparently, the three conjunctive algorithms with an ab-
solute threshold specification together may explain about 2%
of the survey results, of which about one-third does not fol-
low from WADD-LF. For about half of these latter, other
compensatory rules offered alternative explanations. Alto-
gether I conclude that these algorithms do not contribute to
the explanation of the Dutch surveys.

6.4 Disjunctive selection of alternatives

The disjunctive choice rule results in “the acceptance of any
alternative with an attribute that exceeds a certain criterion”
(Foerster, 1979, p. 21, referring to Dawes, 1964). It may
be followed by any second-stage evaluation of the remaining
unsettled choice sets. If the cost-decrease threshold is not
considered, such respondents will select any alternative with
an above-threshold time decrease. This is applicable to all
choice sets except SC 1, 2, 11 and 12, in which no alternatives
with time decrease are available. A subpopulation applying
this disjunctive algorithm may generate (s): xx1 111 111
1xx and the less constraint (t): xxx 111 xxx 1xx. Following
the same procedure CS-types (u) through (x) are found for
a subpopulation that selects any alternative with an above-
threshold cost decrease, and (y) through (ae) if both a time-
and cost-increase threshold are applied.

8Except for (e) and (g). These and the “missing” CSs in the right-side
diagram are omitted for easy reference.

Figure 5: Elimination-by-Aspects.

Similar to those for the conjunctive algorithms I estab-
lished the frequencies of occurrence and linear regression
lines of (s) and (t). Almost 20% of the survey population
generated (t) and could have applied this disjunctive algo-
rithm in a two-stage choice process. The frequencies of both
(s) and (t) increase with ase. A realistic estimate of 1.6%
was found, completely restricted to the rest-subpopulation.
It appears that by far most CSs classified in (t) are also part
of (b) and thus may be explained by application of conjunc-
tive elimination of alternatives with above-threshold time
increases.

In addition to conjunctive elimination of alternatives with
above-threshold time increases, disjunctive selection for al-
ternatives with above-threshold time decreases may thus ex-
plain less than 1% of the survey results. Analysis of the
frequencies of (u) through (x) yields that 0.9% of all re-
spondents may have exhibited a disjunctive preference for
travel tame savings. Of these, 9 in 10 may have applied
WADD-LF instead. Disjunctive choice in which both cost-
and time-decrease thresholds were applied could explain the
choices of far less than 0.1%. The contribution that disjunc-
tive selection algorithms may offer to the explanation of the
Dutch survey is thus a modest to marginal 1% at most.

6.5 Elimination-by-Aspects and Selection-by-

Aspects

Elimination-by-Aspects as posited by Tversky (1972) as-
sumes that the chooser has a threshold level for all attributes
but follows a stochastic order of attribute evaluation, which
order may vary during the completion of a choice sequence.
If an alternative does not meet the threshold criterion of the
first considered attribute, it is rejected and the alternative
that remains is chosen; if more alternatives remain, another
attribute is considered in the same way, until one alternative
remains. For a subpopulation employing this algorithm I
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assumed a similar distribution of threshold levels over the
survey population as for the general conjunctive algorithm.

The stochastic character of this algorithm means that its
application by an individual can result in any feasible CS.
However, if a subpopulation that applies it consistently is
sufficiently large, the frequency of alt. 1 choices from all

SC sets 1, 2, 6 and 8 as well as the frequency of alt. 2
choices from all SC sets 3, 4 and 9 should increase with
scale extension. Following the CS-type notation adopted
above this should hold for all CS-types (A): 1xx xxx xxx
xxx up to and including (G): xxx xxx xx2 xxx. Figure 5
shows the actual trends for the rest-subpopulation. Those
for the subpopulation which may have applied WADD-LF
exhibited the same patterns. The frequencies of some of
these CS-types increase with scale while others decrease. It
shows that Elimination-by-Aspects does not contribute to the
explanation of the Dutch survey results.

By analogy I considered Selection-by-Aspects: following
a stochastic order of attribute evaluation, which order may
vary during the completion of the choice task, alternatives
with above-threshold time or cost decreases are accepted. If
a subpopulation would apply this algorithm consistently, the
frequency of the relevant CS-types (H) through (M) should
also increase with scale extension. But the frequencies of
some of these increase with ase while those of others de-
crease. Apparently Selection-by-Aspects does not contribute
to the explanation of the Dutch survey results.

6.6 Relative attribute-scale extension

From a behavioural point of view, choice algorithms consid-
ering thresholds as fraction of recently experienced attribute
levels might be more plausible than those based on absolute
levels. For the Dutch respondents, the actual travel time
(ta) during their recruitment trip may have been the expe-
rience that first came to their mind, as they had to report it
extensively just before completing the stated-choice game.
That is why I also considered relative thresholds in terms of
the ratios of absolute time-attribute levels and the actually
experienced recruitment-trip duration. The corresponding
relative-time-change scale extensions (rse) are 10/ta, 20/ta,
30/ta or 40/ta, depending on the ase of the completed stated-
choice game. As ta and ase vary from one respondent to the
other this holds for rse, too. I attributed all respondents to
four time-rse classes: <25%; 25 to 30%; 30 to 35%; and
>35%. The Dutch surveys did not ask for the respondents’
recruitment trip expenses (ca). I considered these as ap-
proximatively proportionate to travel time, thus ca = α · ta.
Under this assumption the time-change-rse percentages can
be used to delimit the same rse classes as corresponding
cost-change-rse percentages would do.

I tested the eight choice algorithms that were consid-
ered above with an absolute threshold-level specification,
now using relative-threshold specifications. Elimination-

by-Aspects and Selection-by-Aspects showed the same pat-
terns: the frequencies of some of the relevant CS-types in-
crease with scale extension while others decrease. Disjunc-
tive selection, in its general version and with time-decrease
thresholds only, did not explain any choice record. Con-
junctive elimination with a relative time-increase threshold
(0.2%) and in its general guise (0.7%, for two-thirds over-
lapping with WADD-LF) also appeared irrelevant. Con-
junctive elimination of alternatives with an above-relative-
threshold-cost increase could explain 3.8% of all responses,
for most part overlapping with WADD-LF. Disjunctive se-
lection of alternatives with above-relative-threshold-cost-
decreases could explain 2.7% but this overlapped completely
with the corresponding conjunctive rule and with WADD-
LF. Taking the overlapping explanations into account yield
that about 4% of all responses may be explained by con-
junctive elimination algorithms with relative threshold spec-
ifications, for 3% of which WADD-LF offers an alternative
explanation.

6.7 Second-stage evaluation

All respondents to the Dutch surveys, except for 10 of them
who violated dominance, generated CSs that would result
from application as a first-stage rule of one of the 16 attribute-
threshold-based choice algorithms discussed above. But
none of these rules could settle all 12 choice decisions.
A second-stage evaluation is needed to decide about four
to 11 choice sets. For most recorded CSs compensatory
algorithms offer an alternative explanation; for 78% of all
respondents (see Section 4) these algorithms are also the
obvious second-stage-evaluation rules. This leaves 22% of
all respondents who may have used alternative algorithms
as such. For one-third of them (7%), this may have been a
second-stage random rule (see Appendix 2 for the frequency-
assessment procedure). Another one-third of them violated
dominance and thus apparently used some obscure algo-
rithm, either as a second-stage rule or, more obvious, instead
of a two-stage attribute-threshold-based algorithm. Finally,
about one-third of them (8%) may have applied WADD-LF
as a second-stage rule. This is far more than the share of
the survey population that, according to the previous para-
graphs, may actually have used any first-stage elimination
or selection rule. “Missing” explanations for second-stage
choice decisions are thus no reason to reduce this latter share.

6.8 Conclusion

By far most CSs that were recorded in the Dutch surveys
could have resulted from more than one first-stage attribute-
threshold-based elimination or selection algorithm. If so,
the second-stage evaluation could have been WADD-LF in
the majority of cases. The latter algorithm applied on its
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own could explain most of these CSs. For their occurrence
are thus most often several overlapping explanations.

The analyses above showed that the 16 considered elim-
ination and selection algorithms together can explain about
8% of the outcomes of the Dutch surveys, almost equally dis-
tributed over algorithms with absolute and relative threshold
specifications. Most plausible appeared the conjunctive al-
gorithms with an absolute-time-increase threshold (2.1%)
and with a relative-cost-increase threshold (3.8%). WADD-
LF can account for the second-stage evaluations of by far
most of these non-compensatory rules. But for about two-
thirds of them a more frugal explanation is a one-stage
WADD-LF assessment. This leaves about 3% remaining
CSs for which one of these first-stage elimination and/or
selection rules offers an explanation that does not overlap
with WADD-LF. But one-stage random choice, other com-
pensatory rules, obscure algorithms resulting in dominance
violations and mistakes that are not considered here may of-
fer other explanations for most of these. Their contribution
to the explanation of the Dutch surveys is thus marginal at
most.

7 Discussion, summary, conclusions

and recommendations

7.1 Methodological issues

The aim of this study is to explore the extent to which differ-
ent choice algorithms can explain the choice data acquired in
large-scale choice surveys. In applied sciences such surveys
are a popular means to acquire insights in the choices that
people make in everyday life. The explanatory algorithms
uncovered from such studies are useful building blocks for
models meant for the prediction of behaviour in contexts
that differ from the estimation context. But the latter re-
quires tailor-made transferability to the prediction context. If
different choice algorithms co-occur within the survey popu-
lation, understanding their distribution is very important be-
cause different algorithms can imply different transferability
relations.

Random Utility Maximization (RUM) is the de facto stan-
dard in many analyses of choice data. With very few ex-
ceptions the common version of the WADD rule is assumed
for the assessment of the alternatives’ utilities (McFadden,
2001). Analyses that pre-assume this rule for each respon-
dent do not allow inferences about the occurrence of other
choice algorithms that consumers may have used actually.
As the respondents’ choice set compositions, including at-
tribute levels, as well as their decisions are recorded in the
large-scale choice surveys of applied sciences, the outcome-
oriented approach from psychological research of judgment
and decision-making seems the obvious way for the current
research. But this approach commonly reveals different al-

gorithms that explain the same choice behaviour.
The outcome-oriented inferential statistics approach was

proposed in Section 2 to reduce this overlap. It focuses
on the analysis of the individuals’ choice patterns (termed
CSs here) rather than their separate choices. It considers
the causal relationships between an individual’s personal
circumstances, his use of a particular algorithm and the
resulting choice pattern and employs inferential statistics
for analysing the frequencies of the expected and actually
recorded CSs within groups of respondents. In Appendix
1 it is tested for fictitious stated choice surveys with small
and large survey populations. It appeared feasible to assess
frequency distributions of the partly overlapping occurrence
of three considered explanatory algorithms over the survey
populations. It showed a clear decline of the elicited overlap
with increasing survey population size; for a small popu-
lation, too, a distribution could be assessed, although with
larger bandwidths of overlapping explanations.

This method was applied for eliciting different non-
compensatory algorithms from Dutch survey results. It al-
lowed disentangling, at the aggregate level, the overlap in
explaining compensatory and non-compensatory algorithms
to a large extent. I consider this discriminatory power of
outcome-oriented inferential statistics the most promising
finding from the present study and recommend testing of this
approach to the outcomes of other surveys, to see whether
or not its performance survives. Other potential applications
of the method are: investigating the relevance of different
kinds of human errors, and discriminating between different
WADD-algorithms.

7.2 Relevance of non-compensatory choice al-

gorithms for the explanation of the Dutch

surveys

In applied sciences it is often assumed that all respondents
employ the WADD-algorithm, while since Simon (1955) the
use of non-compensatory instead of compensatory choice
algorithms has been a major research topic in psychologi-
cal research of human judgment and decision-making. That
is why I examined whether or not non-compensatory algo-
rithms, if added to a mixture of compensatory algorithms,
may explain the choice behaviour of a larger share of the sur-
vey population. First, algorithms complying with WADD
(Payne et al., 1993) were considered (Section 4). If fault-
lessly and deterministically applied in its most constraint
interpretation – linear-additive utility of attribute levels, but
taking all feasible attribute weights/VTT S-values into con-
sideration – it could explain the choice behaviour of 31% of
the survey population. WADD-LF, with loss aversion fac-
tors between 1.0 and 2.5, explained these same and another
37%. Higher loss aversion factors, allowing for diminishing
marginal utility (concave value function) and/or diminishing
sensitivity (convex in loss domain, concave for gains) raised

http://journal.sjdm.org/vol12.3.html


Judgment and Decision Making, Vol. 12, No. 3, May 2017 Stated choice algorithms 274

the percentage of the survey population that may have used
a compensatory WADD-rule to 78%. This leaves 22% of
the respondents who did not apply one of these WADD rules
faultlessly.

Concerning non-compensatory rules, by definition Ran-
dom choice could result in any CS generated by a particular
respondent, if viewed apart. Lexicographic choice for the
cheapest or shortest trip would result in one out of three dif-
ferent CSs that were recorded for 11% of the survey popula-
tion and one or more of 16 different attribute-threshold-based
elimination and selection algorithms could, applied as a first-
stage rule, explain the CSs of 99.9% in part. If combined
with a secondary-stage compensatory rule these latter could
yield 85% of all responses, including all that would also fol-
low from one-stage compensatory assessment. Second-stage
random choice and unknown algorithms resulting in dom-
inance violations each could explain half of the remaining
15%.

Analyses following outcome-oriented inferential statistics
showed that, at the aggregate level, as many as 2% of all
respondents may have exhibited random choice (Appendix
2). Except for 0.1% of the survey population, this offered no
alternative explanation for the exhibits of WADD-LF. Such
analyses also revealed a virtually zero occurrence of “true”
lexicographic choice rules (Section 5) and showed that in just
about 8% of all responses any of the 16 considered elimina-
tion and selection rules (Section 6) may have been applied
as a first-stage evaluation. For two-thirds these latter could
have been followed by a compensatory second-stage assess-
ment. For parsimony reasons, assuming such a two-stage
evaluation makes little sense, as a one-stage compensatory
algorithm would yield the same result. That leaves about 3%
of the survey population who may have applied one of the
16 considered elimination and selection rules as a first-stage
choice rule. These 3% are distributed over algorithms with
absolute and relative threshold specifications. This clearly
contradicts my earlier suggestion that non-compensatory de-
cision strategies can explain most CSs that could not follow
from WADD-LF (Van de Kaa, 2006). From the current
findings I conclude that faultless application of WADD in
a broad sense can explain almost 80% of all responses, for
which the considered random, lexicographic and attribute-
threshold-based non-compensatory algorithms do not offer
alternative explanations; and that mistakes, not-considered
compensatory rules and unknown algorithms resulting in
dominance violations may explain most of the remaining
responses.

At first sight the limited explanatory performance of non-
compensatory algorithms did not come as a surprise: the
design of the Dutch surveys, with a limited number of two-
alternatives-two-attributes choice sets and no time pressure,
seemingly yielded a simple choice task. And several ex-
periments showed that when the complexity of the choice
task increases there is a shift from compensatory to non-

compensatory decision rules — see Rieskamp and Hoffrage,
1999, for an overview. But a scan of the empirical evidence
advanced in the studies that they cited revealed extensive
use of non-compensatory rules in the choice tasks that were
deemed relatively simple (e.g., Sundström, 1987; Payne,
Bettman & Luce, 1996). Presumably the simplest choice
task that I retrieved in this scan concerned choice, under
no time pressure, from sets with two alternatives, each with
three attributes, whose levels were indicated in the same di-
mension: a positively valued natural number from 1 to 5 - see
e.g., Svenson, Edland and Slovic (1990) and Edland (1993).
From these and two similar Swedish studies it appeared that
non-compensatory algorithms could explain many or even
most of the choices in this context. This is conspicuous as the
setting allows compensatory choice assessment by just twice
adding three natural numbers, followed by deciding which
of both sums is highest; to me, this seems the cognitively
least demanding compensatory algorithm imaginable. The
Dutch surveys, too, have two alternatives in each choice set,
and only two instead of three attributes. But these attributes
are time and cost changes indicated by rational instead of
natural numbers, not given in the same dimensions but in
two different ones and such that the numerical values of the
time-change-attribute levels (given in minutes) are almost
an order-of-magnitude larger than those of the cost-changes
(in Dfl) (see Table 1). Moreover, these levels are presented
as positive numbers but from a cue (increase or decrease)
embedded in a verbal description the respondents have to
decide whether these should be considered as positive or
negative. Application of the conventional WADD rule in the
Dutch surveys will thus imply four sign attributions, cross-
dimensional mappings/multiplications, additions, subtrac-
tions and comparisons of two not-shown natural numbers.
This seems cognitively much more demanding to me than the
task in the Swedish studies. And WADD-LF could explain
much more responses by considering different loss-aversion
factors, which latter will make the choice task increasingly
complex. Even more complex is the application of non-
linear attribute-value functions, which explains another 10%
of all responses. Lexicographic choice for the alternative
with the lowest travel time from the Dutch stated choice
games requires just two sign attributions and comparison of
two natural numbers that are explicitly shown in the ques-
tionnaire. From that point of view I consider the inferred
explanatory performance of the WADD-algorithms in the
Dutch survey context, at the expense of lexicographic choice
or attribute-threshold-based rules, as far from self-evident.

Consistent, conscious application of the algorithms that
yield the same choices as were observed would thus require
cognitively quite demanding calculations. But this study
only shows that, under similar personal circumstances, most
respondents made exactly the same choices as many others
did. From a functional perspective on human choice (Van de
Kaa, 2008, 2010b) this implies that the rules and/or heuris-
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tics adopted by many different people arrange for the same
transformation of submitted alternatives into choices. I con-
sider it implausible that many respondents actually applied
one of these WADD algorithms consciously, let alone that
app. 80% did so. If I am right, this study suggests that in ev-
eryday choice people intuitively deploy heuristics that are fit
to transform contextual information into choices that should
serve their interests; that similar personal circumstances in-
voke heuristics from the adaptive toolboxes of many different
people that provide similar transformations, resulting in the
same decisions; that these heuristics may require much more
cognitive effort than non-compensatory algorithms would
do; and that the mind can easily exert this effort. In other
words, I believe that most adaptive decision makers employ
fast and functional heuristics that may be far from frugal;
reducing cognitive effort does not seem to play an important
role in their adoption.

I also found the strong degree to which people attach a
higher weight to travel-time (or cost) savings when they have
less free time (or earn less money) conspicuous (see e.g.,
Figure 1). It underlines the relevance of long-established
psychological principles, like decreasing marginal utility
(Bernoulli, 1738), for the understanding of contemporary
everyday choices. Furthermore, the survey respondents cov-
ered the whole range of incomes, jobs, trip purposes, travel
modes, household types etc. as were common in the Nether-
lands in 1988 and 1997. It struck me that 80% of this very
heterogeneous population generated less than 1% of all fea-
sible CSs that, in turn, almost all would follow from faultless
application of just a few WADD-algorithms. Perhaps ev-
eryday human choice is more consistent and less stochastic
and error-prone than some contemporary choice paradigms
assume.

Returning from feeling to findings: taking things together
the present study does not shed more light on the choice algo-
rithm that any particular respondent actually employed. But
at the aggregate-population level, it revealed that WADD-
algorithms incorporating different degrees of loss aversion
could explain, or rather simulate, by far most of the recorded
choice behaviour while none of many non-compensatory al-
gorithms that were considered yielded a more than marginal
explanation. Replications of this study, preferably by re-
analysing other large-scale surveys with more complicated
choice sets, are recommended to find out whether or not
these findings are incidental.

7.3 Towards a World Database of Choice Be-

haviour?

The present re-analyses of the Dutch national VTTS surveys
show that choice data that were collected and filed in 1988
and 1997 are still useful for testing new research approaches
and for improving our understanding of human choice be-
haviour. Thanks to this journal there is now open access to

these data for other researchers. In travel behaviour research
there are dozens of large-scale stated choice surveys that may
still lay waste in archives, and it is hard to believe that the
situation is different in other applied disciplines like market-
ing and environmental science, for example. Most of these
studies were publicly funded, and this fact may lend support
to requests for unlocking the data in an open-access website,
like the World Database of Happiness (Veenhoven, 2014),
for example. This opportunity could give a boost to psycho-
logical and interdisciplinary research of choice behaviour.
It would be great if an international non-profit organization,
maybe the Society for Judgment and Decision-Making, or
one of its members would take the initiative to organise this.
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Appendix 1 Some inferential-statistical

assessments of the occurrence of

explanatory choice algorithms from

choice sequences generated in fictitious

surveys

This appendix analyses the occurrence of choice algorithms
that explain assumed distributions of choice sequences (CSs)
in fictitious surveys. All participants in each imaginary sur-
vey are assumed to have stated their choices from c = 5 choice
sets with each a = 2 alternatives. Each respondent thus gen-
erated one out of ac

= 25
= 32 different CSs. In each survey,

one or more respondents are assumed to have systematically
selected the left-side alternative, thus giving rise to choice
sequence CS1. One or more other respondents supposedly
selected the alternative with the cheapest available cost at-
tribute systematically and so generated CS2. Finally, the
frequencies of occurrence of the remaining 30 CSs (CS3 to
CS32) are assumed to be of the same order-of-magnitude.

For explanation of these imaginary surveys, three choice
algorithms are considered: an inertia-driven left-side-
preference rule, a budget-constraint-driven lexicographic
preference for the cheapest alternative, and an inertia-driven
random rule (Johnson et al., 1993). I assumed that all re-
spondents applied one of these algorithms consistently. This
implies that three subpopulations can be defined, each with
members following just one of these algorithms. The ra-
tionale behind the left-side preference rule implies that CS1

is selected by anyone who applies it consistently. The ra-
tionale behind the lexicographic algorithm implies that CS2

is selected by anyone who applies it consistently. The ra-
tionale behind the random rule is randomly selecting one
of both alternatives from each choice set, irrespective of
attribute levels, position on the questionnaire and personal

circumstances. It implies equiprobable choice from avail-
able alternatives. As a consequence, the CSs generated by
a subpopulation of n random choosers are stochastically in-
dependent and their probabilities follow a binomial distri-
bution. Thus, in this context with c = 5 choice sets each
containing a = 2 different alternatives, each feasible choice
sequence f (CS1 . . . CS32) can be generated by any random
chooser with a probability of occurrence ǫ = a−c = 3.1%;
and the probability that a particular f is chosen of times by
no more or less than k random choosers equals

Pr (of = k) =
n!

k! · (n − k)!
· ǫk · (1 − ǫ )n−k (6)

For any given subpopulation of n random choosers, the
probability that CS1, CS2 (and any CS3 . . . CS32) is gener-
ated more or less than k times can now be calculated straight-
forward.

The size of the random-choice subpopulation equals
the total survey population minus the left-side and
lexicographic-preference subpopulations. The size of the
subpopulations exhibiting left-side or lexicographic pref-
erences equals the numbers of respondents who generated
CS1 and CS2 minus those who did so by exhibiting random
choice. Following the principles of inferential statistics I
formulated sets of null-hypotheses (H0) to assess the latter
numbers. One H0-set implied that members of the random-
choice subpopulation generated less than k times CS1 and
and/or CS2. If the predicted probability p of H0 becomes
lower than the significance level α – here I adopted 1% –
the maximum sizes of the subpopulations of respondents
with left-side and lexicographic preferences are found by
subtracting the thus found (k − 1) from the total recorded
CS1 and CS2 numbers. Similarly, I formulated a set of null-
hypotheses that the members of the random-choice subpop-
ulation generated more than k times CS1 and/or CS2. Again,
the k-values for which the predicted probabilities drop just
below 1% are subtracted from the total numbers of recorded
CS1 and CS2, which yields the minimum subpopulation sizes
of respondents with left-side and lexicographic preferences.
The maximum and minimum random-choice-subpopulation
sizes are found by subtracting, respectively, the minimum
and maximum sizes of left-side-choice and lexicographic-
choice subpopulations from the total survey population. The
difference between maximum and minimum sizes of these
latter subpopulations indicates the degree to which random
choice offers an overlapping explanation for left-side prefer-
ence and lexicographic choice. Clearly, assessing the differ-
ent subpopulation sizes requires an iterative process. In the
following examples I use the size of the whole survey popu-
lation as a first iteration of the random-choice-subpopulation
size.

Example 1: In a small survey CS1 and CS2 were generated

by 5% of all 40 respondents. In this imaginary survey two
respondents complied CS1 and another two CS2. The prob-
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ability that n = 40 random choosers generate CS1 once or
less appears to be p = 64%; the probability that they generate
CS1 twice or more is 36%; and the same percentages hold for
CS2. An iteration with n = 36 yields similarly high p-values.
Thus, none of the considered H0-hypotheses is rejected and
the minimum and maximum sizes of left-side-preference and
lexicographic-choice subpopulations are 0% and 5%. It im-
plies that between 90% and 100% of all respondents chose
as if they applied the random rule while 0%–5% may have
exhibited a left-side-preference and 0%–5% a lexicographic
preference for the cheapest alternative. Adding the latter
algorithms to a random-choice model does thus not offer a
statistically significant contribution to the explanation of the
choice behaviour in this fictitious survey.

Example 2: In a small survey CS1 was generated by 5%

and CS2 by 75% of all 40 respondents. Thus, two respon-
dents generated CS1 and 32 CS2. In a first iteration, with n

= 40, none of the considered H0-hypotheses is rejected for
CS1. But the probability that CS2 is generated more than
4 times is well below p = 1%. Thus, it is almost certain
that at least 28 respondents did not apply the random rule
for generating CS2. This puts the maximum number of ran-
dom choosers at n = 12 for the second iteration. After two
more iterations it appears that lexicographic choice explains
75%–80% of the responses and random choice 15%–25%.
For 5% of the responses lexicographic choice offers an over-
lapping explanation for random choice, and for another 5%
left-side-preference does so. Adding the latter algorithm to
a mixture of random and lexicographic choice algorithms
does not offer a statistically significant contribution to the
explanation of the choice behaviour in this fictitious survey.

Example 3: In a large survey CS1 and CS2 both were

generated by 5% of all 1000 respondents. In this fictitious
survey CS1 and CS2 were generated 50 times. Setting n at
1000 yields p < 1% for the probabilities that application of
the random rule generates CS1 and CS2 less than 19 times.
It also yields p < 1% for the probabilities that this generates
these CSs more than 45 times. At the concerned levels both
H0-hypotheses are thus rejected, implying that both left-
side and lexicographic preference offer a statistically signifi-
cant contribution to the explanation of the choice behaviour
in this survey. In the next iterations, n was reduced with
the subpopulation sizes of the almost certainly left-side and
lexicographic choosers as found in the previous iteration.
After three iterations it appears that random choice explains
91.4%–96.6% of all responses while left-side-preference and
lexicographic choice each do so for 1.7%–4.3%. Adding the
latter algorithms to a random-choice model does thus offer
a small but statistically significant contribution to the ex-
planation of the choice behaviour in this fictitious survey.
Explanatory algorithms overlap for 5.2% of all responses.

Example 4: In a large survey CS1 was generated by 5%

and CS2 by 75% of all 1000 respondents. Here, CS1 was
completed by 50 respondents and CS2 by 750. Starting with

n = 1000 shows that the random rule can explain less than 46
recordings of CS2. After three iterations it appears that ran-
dom choice explains 20.2%–22.8% of all responses, lexico-
graphic choice for the least expensive alternative accounts for
73.6%–74.9% and left-side-preference for 3.6%–4.9%. The
statistically significant contribution of the latter algorithm to
the explanation of the survey outcomes is thus substantially
higher than in example 3. Overlapping explanations remain
for just 2.6% of all responses.

Appendix 2 Random choice in the

Dutch surveys

The probability that a particular CS is generated by no more
or less than k random choosers is discussed in Appendix
1 (Eq. 6). Starting with n = 7147 random choosers and a
significance level α = 1% converges within four iterations. It
yields a maximum of n = 395. For each of the s = ac = 4096
different feasible CSs the null-hypotheses that more than one
of these 395 random choosers generated it has to be rejected
(p = 0.44%) but the null-hypothesis that it is not generated at
all cannot be rejected (p = 90.8%). Note, however, that with
s different CSs the expected number of k-times-occurring
CSs becomes

s · Pr (of = k) = s ·
n!

k! · (n − k)!
· ǫk · (1 − ǫ )n−k (7)

According to this, 395 random choosers may generate an
expected number of 359 once-occurring, 17 twice-occurring
and zero to one thrice-occurring CSs. Now consider that all
4096 CSs should have an equal probability of being selected
by a random chooser. The expected frequency of random-
choice- generated CSs among the subset of 154 more than
twice occurring CSs should thus be the same as for the re-
maining 3942. Taking this into account yields, after three
iterations, an expected 207 random choosers, which con-
stitute 2.9% of the survey population. I also considered
that the expected frequency of random-choice-induced CSs
should be the same for CSs with and without violation of
dominance. This yields an expected 155 (2.2%) random
choosers. Finally, the percentage of choices for alt. 1 and
alt. 2 from each of the 12 choice sets should be the same
for subpopulations who selected a once-occurring, a twice-
occurring and a more-than-twice occurring CS.. I found
that about two-thirds of the once-occurring and one-third of
the twice-occurring CSs may be the consequence of random
choice which, again, yields 2.2% random choosers among
the survey population.

All three approaches show that random choice may ex-
plain an ample 2% of the Dutch survey results. But failures
to apply another compensatory or non-compensatory algo-
rithm consistently, due to errors and/or taste variations (not
investigated here), may explain at least a part of the same

http://journal.sjdm.org/vol12.3.html


Judgment and Decision Making, Vol. 12, No. 3, May 2017 Stated choice algorithms 279

CSs. The contribution of random choice to the explanation
of the Dutch survey results is thus marginal.

Appendix 3 People’s values of travel

cost and time, and their income and

free-time budgets

The marginal utility of a decrease in travel expenses can be
equated with the marginal value of income, while that of
a decrease in travel time is equal to the marginal utility of
substituting travel time for another activity (e.g., DeSerpa,
1971; Jara-Díaz & Guevara, 2003). In the context of the
Dutch VTTS surveys, the participants’ working hours and
other obligatory and personal time spending may be treated
as constant – they are not exchangeable with travel time.
This implies that an individual’s marginal utility of travel
time can be equated to that of her free-time budget. Fol-
lowing Bernoulli (1738) an individual’s utility of a decrease
in travel time will decrease in accordance with increases in
his free-time budget; his utility of a decrease in travel ex-
penses will decrease as his income increases. People who
trade-off the utilities of time and money will thus system-
atically choose the alternative with the shortest travel time
if their income is more than enough and/or their free-time
budget is very limited. Likewise, the probability that such
“trading” people systematically choose the alternative with
the lowest expenses will decrease with income and increase
with free-time budget. At the survey-population level, this
means that the percentage of “traders” among the respon-
dents who systematically choose the shortest feasible travel
time approaches zero at zero income; and among the traders
who prefer the cheapest trip alternative, that percentage ap-
proaches zero at a zero free-time budget. These features of
utility theory also hold for the hedonic values of time and
money gains according to Prospect Theory (Van de Kaa,
2010c).

The probability that a “non-trader” always chooses the
alternatives with the highest time saving may increase with
a decreasing free-time budget. However, by definition such
a strong-lexicographic chooser should disregard cost levels.
The probability should thus be the same for different in-
comes. Similarly, the probability that a non-trader always
chooses the cheapest alternative may increase with decreas-
ing income but should be the same for different free-time
budgets. At the population level, this means that the per-
centage of non-traders among the respondents who system-
atically choose the shortest feasible travel time at zero in-
come should also apply to other income levels. Likewise,
the percentage of non-traders among those who systemati-
cally choose the cheapest alternative should be the same for
all free-time levels.
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