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A Bayesian latent mixture model approach to assessing performance in
stock-flow reasoning
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Abstract

People often perform poorly on stock-flow reasoning tasks, with many (but not all) participants appearing to erroneously
match the accumulation of the stock to the inflow – a response pattern attributed to the use of a “correlation heuristic”. Efforts
to improve understanding of stock-flow systems have been limited by the lack of a principled approach to identifying and
measuring individual differences in reasoning strategies. We present a principled inferential method known as Hierarchical
Bayesian Latent Mixture Models (HBLMMs) to analyze stock-flow reasoning. HBLMMs use Bayesian inference to classify
different patterns of responding as coming from multiple latent populations. We demonstrate the usefulness of this approach
using a dataset from a stock-flow drawing task which compared performance in a problem presented in a climate change context,
a problem in a financial context, and a problem in which the financial context was used as an analogy to assist understanding in
the climate problem. The hierarchical Bayesian model showed that the proportion of responses consistent with the “correlation
heuristic” was lower in the financial context and financial analogy context than in the pure climate context. We discuss the
benefits of HBLMMs and implications for the role of contexts and analogy in improving stock-flow reasoning.
Keywords: stock-flow reasoning, climate change, Bayesian models, mixture models

1 Introduction
Systems with a stock-flow structure involve an accumulating
(or decreasing) stock that is determined by inflows and out-
flows. Such systems are common in business, public policy
and everyday life. From warehouses, to the carbon cycle, to
a standard bathtub, these systems have a common underly-
ing mathematical structure. Formally, stock-flow problems
belong in the domain of calculus. However, knowledge of
the formal processes underlying stocks and flows may not
be required to understand these concepts, or to solve simple
stock-flow problems.
One apparently simple way to understand how stock-flow

systemswork is to imagine thewater level in a bathtub (Booth
Sweeney & Sterman, 2000; Cronin, Gonzalez & Sterman,
2009). If thewater pouring from the tap is flowing at a greater
rate than the water is draining out of the (unplugged) bathtub,
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then the water level will rise. Conversely, if the water is
draining from the bathtub at a greater rate than it is flowing
from the tap, the water level will fall. If the water is pouring
into the bathtub at the same rate at which it is draining, then
the water level will remain constant. More generally, the
correct solution depends on the difference between inflows
and outflows.

Despite the seemingly intuitive nature of this description,
and the demonstrable fact that most of us know how to run
a bath, experiments testing abstract reasoning about stock-
flow systems have found that many people are unable to solve
even simple stock-flow problems (Booth Sweeney & Ster-
man, 2000; Cronin et al., 2009; Sterman & Booth Sweeney,
2007). A consistent finding is that people frequently follow
a “correlation heuristic” (Cronin, et al., 2009), whereby they
infer that the stock of the system should be positively corre-
lated with the inflow of the system. For example, if people
are told or shown that the amount of water flowing into a
bath is steadily increasing, they often infer that the level in
the tub (the stock) will rise at a similar rate irrespective of
the drainage rate – thereby positively correlating the inflow
rate with the stock. Reliance on the correlation heuristic has
been found to persist across manipulations of motivation,
presentation format, and cognitive effort, suggesting that it
is a robust cognitive error (Cronin, et al., 2009).

Failure to grasp the dynamics of stock-flows and the sub-
sequent reliance on the correlation heuristic can have serious
consequences. In the context of atmospheric CO2 accumu-
lation, for example, it is generally accepted that outflows
(e.g., CO2 absorption by carbon sinks) are likely to remain
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Figure 1: Screenshot of the CO2 drawing task adapted from Sterman and Booth Sweeney (2007). The task is to complete
the emissions trajectory in the bottom graph so that the stabilization of atmospheric CO2 shown in the top graph is achieved.
The solid blue sketched line in the bottom graph shows a correct response trajectory in which the emissions and absorption
lines converge at the point of stabilization (2100). The red dashed line is a typical “correlation heuristic” response in which the
emissions line mirrors the trajectory of the accumulation (i.e., continues steadily increasing). In our latent mixture model we
describe participants who complete the lines in the lower panels by plotting an upward trajectory as “Up responders”, those
who plot a downward trajectory as “Down responders” and those whose responses fit neither class as “Other responders”.

constant for the foreseeable future. Hence, increases in CO2
emissions or maintenance of current emission levels will in-
evitably lead to a net increase in the accumulating “stock” of
CO2, which in turn will cause the temperature of the planet
to rise. Adherence to the correlation heuristic, however,
leads to the erroneous belief that stabilizing current carbon
emissions (inflow), will lead to stabilization of atmospheric
CO2 even when outflows are constant. Sterman (2008) has
argued that such mistaken beliefs can lead to “wait-and-see”
attitudes which are inconsistent with the urgency required
to mitigate dangerous climate change (e.g., Lewandowsky,
Risbey, Smithson, Newell & Hunter, 2014).

1.1 The correlation heuristic in graph draw-
ing tasks

A popular experimental test of stock-flow reasoning involves
graph-drawing tasks (Cronin et al., 2009; Moxnes & Saysel,
2009; Sterman & Booth Sweeney, 2007). In these tasks, par-
ticipants are given a graphical depiction of previous trends in
stock flow components (e.g., past inflows, outflows and accu-

mulated stock). They are then asked to plot the future trend
in one or more components that will best achieve a stated
outcome in the system (e.g., increase, decrease or stabilize
accumulated stock). These tasks can vary in their complexity
depending on the functional form of the stocks and flows, but
even under relatively simple conditions such as the carbon
emissions scenario tested by Sterman and Booth Sweeney
(2007) (see Figure 1), performance on this task is poor —
at least half of participant responses were characterized as
following the correlation heuristic. As the functional com-
plexity of the stocks and flows increase, so does reliance on
the correlation heuristic (e.g., Cronin, et al., 2009).

This previous work highlights the utility of the graph-
drawing approach as a way of assessing people’s under-
standing of stock-flow dynamics. The primary aim of this
paper is to augment this work by proposing a new method
that provides a more principled approach to classifying and
evaluating participants’ responses in graph-drawing tasks
than those currently in use. Our novel method employs
hierarchical Bayesian latent mixture models (HBLMM; see
Bartlema, Lee, Wetzels &Vanpaemel, 2014, for an introduc-
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tion). HBLMMs assume that the data from an experiment
might be generated from multiple latent populations. The
experimenter can define the properties they expect to be asso-
ciated with the latent populations, and once those properties
are defined there is no possibility of the experimenter affect-
ing the inferences. This is because the model simultaneously
infers the quantitative properties of the latent populations and
the probability that each participant belongs in each latent
population. This result allows inference beyond the observed
data; it can infer the probability that a new (unobserved) par-
ticipant will arise from each latent population. It also allows
(because of the hierarchical structure) an inference about the
likely parameter values that a new participant will use, given
their belonging to that latent population.
As explained in more detail in the Model section, a key

advantage of the HBLMM approach is that every step of the
analysis takes into account (and quantifies) the uncertainty
of response classification. This quantification of uncertainty
allows us to side-step the qualitative methods that are com-
monly used to determine response classifications (e.g., Ster-
man & Booth Sweeney, 2007). These standard methods
necessarily involve the subjective process of deciding what
kinds of responses count as representative of different types
of reasoning strategies (e.g., how closely does an inflow re-
sponse trajectory need to match a stock trajectory to decide
that a participant has used the correlation heuristic), and
there is the possibility that the classification strategy can
change after data has been collected. This sort of post-hoc
classification of responses is potentially problematic when
counts based on these strategy classifications represent a key
dependent measure in studies that examine the impact of
various manipulations designed to promote better stock-flow
reasoning (e.g., Dutt & Gonzalez, 2012b; Cronin, Gonzalez
& Sterman, 2009, Experiment 5).
One existing approach to overcoming post-hoc qualita-

tive assessment is to record, via computer, more precise co-
ordinates of participants’ response trajectories, rather than
just eyeballing pencil-and-paper sketches (e.g., Moxnes &
Saysel, 2009; Newell, Kary, Moore, & Gonzalez, 2013).
These precise estimates can then be used to assess the im-
pact of manipulations by creating average response trajec-
tories in different conditions of an experiment. However,
averaging data across participants when there are discrete
types of responses may also be inappropriate and can lead to
non-normal distributions which may affect the conclusions
of standard analyses (see Dutt & Gonzalez, 2012b, who
used non-parametric tests to counter this particular prob-
lem). Outside of the assumptions of statistical tests, averag-
ing data in a context where our theories of behavior predict
that some (but not all) participants will follow a heuristic fails
to address what is often a key research question: how do ex-
perimental manipulations affect the prevalence of heuristic
use?
Our novel HBLMMapproach provides amethod for secur-

ing the best of both worlds: all of the data generated by every
individual in an experiment is included in the analysis, and
the principled quantification of classification-uncertainty al-
lows for group-level conclusions regarding the impact of dif-
ferent experimental manipulations. This allows for a more
fine-grained examination of the effects on stock-flow un-
derstanding of a potentially important manipulation – fa-
miliarity with the context in which the stock-flow problems
are presented (e.g., Brunstein, Gonzalez & Kanter, 2010).
Our approach builds on previous work where HBLMM ap-
proaches have proved useful in evaluating how changes in
instructions and task structure affect the use of heuristics in
multi-attribute choice (e.g., van Ravenzwaaij, Moore, Lee &
Newell, 2014) and base rate neglect (e.g., Hawkins, Hayes,
Donkin, Pasqualino & Newell, 2015).

Several recent papers have examined the effect of using
more familiar stock-flow contexts in attempts to improve un-
derstanding — and communicate the urgency — of the CO2
accumulation problem (Dutt & Gonzalez, 2012b; Dutt &
Gonzalez, 2013; Gonzalez & Wong, 2012; Guy, Kashima,
Walker & O’Neill, 2013; Moxnes & Saysel, 2009). Various
research groups have used contexts such as the bathtub anal-
ogy (introduced earlier), balloons with two-openings, and
inner-tubes surrounding the planet, with varying degrees of
success. Herewe build on recentwork byNewell et al. (2013)
and Newell, Kary, Moore and Gonzalez (2016) that used a fi-
nancial debt context. Specifically, Newell et al. (2013) found
that participants given a more familiar financial debt prob-
lem in a stock-flow drawing task made fewer responses that
were consistent with a correlation heuristic than those given a
structurally identical CO2 accumulation problem (see Figure
2 for examples of the tasks and an explanation of the sim-
ilarities and differences between them; see Appendix A for
specific experimental instructions). Moreover, participants
who were given the CO2 accumulation problem but invited
to think about the flows and stocks in terms of financial debt
(a type of analogy) showed fewer correlation heuristic re-
sponses than those given the CO2 accumulation task alone
(Newell et al., 2013). Since Newell et al. (2013) reported a
subset of the data we present here (studies 2–4 in Table 1),
we expected to find the same pattern of effects over the full
set of studies we report, now using our improved method
of analysis instead of the averaging approach that they ap-
plied. The General Discussion reviews this evidence of an
effect of familiar contexts on solving and understanding the
CO2 accumulation problem and examines the implications
for theory development.

1.2 Case Study
To demonstrate the benefits of HBLMM, we use a dataset
from a computer-based version of the stock-flow drawing
task based on Sterman and Booth Sweeney’s (2007) hand-
drawn task. Our version of the task required participants to
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Figure 2: Screenshot highlighting the similarities and differences between the Pure Climate (a) and Pure Financial (b) tasks.
Note that panel (a) depicts the same task as shown in Figure 1 but no longer shows the sketched “up” and “down” responses.
In the studies we analyzed, participants were given the Pure Climate task, the Pure Financial task or a Climate/Financial task
(the two tasks were never presented side by side). In the Climate/Financial task participants solved the Climate task but were
given the financial context as an analogy to aid reasoning. In this condition, the inflows, outflows and stock were labelled
with the climate information and the financial information alongside in parentheses (e.g., “CO2 absorption (earnings)”. The
screenshot for this condition is not shown.

undertake a single trial where they plotted, on a computer
interface, an inflow line relative to a fixed outflow line, so
that the flows were consistent with the provided depiction of
stock (see Method for details).

1.2.1 The Model

The existing literature has focused on responses that ei-
ther exhibited correlational reasoning or were accurate (e.g.,
Booth Sweeney & Sterman, 2000; Gonzalez et al., 2009;
Sterman & Booth Sweeney, 2007). Thus we assumed a pri-
ori that there would be two basic response classes in the stock
flow drawing task: participants who complete the emissions
/ amount spent lines in the lower panels of Figure 2a and
2b, respectively, by following an upward trajectory (“Up re-
sponders”), and those who indicate a downward trajectory
(“Down responders”). However, in previous studies (Booth
Sweeney & Sterman, 2000; Gonzalez et al., 2009; Ster-
man & Booth Sweeney, 2007), some participants did not
fit well in either category. Thus, we also included a third
class (“Other”) to capture these participants. As specified
below, we had to define two rules for the “Other” class,
but we subsume them in one class because the experimental
manipulations focused on those who respond downwards or

upwards.1
We use the more generic “Up” and “Down” responder

labels rather than “correlation heuristic” and “correct”, re-
spectively, because the mapping of trajectories to discrete
strategy use is not one-to-one. Indeed, an advantage of
our approach is the ability to quantify the uncertainty sur-
rounding the allocation of participants to different response
classes. Nonetheless, it is still the case that Up responders
are more likely to be following a strategy akin to correlation-
heuristic use, while Down responders are more likely to be
using a qualitatively correct strategy (i.e. recognizing that
some decrease in inflow is necessary to stabilize the system).

1One can think of responses allocated to this extra class in the same way
that one thinks of chance responders as a model contaminant in other tasks.
Hence to make accurate inferences about the proportion of responders using
an “Up” or “Down” data generating strategy, we need to remove responders
that are not using either strategy. Instead of using exclusion criteria to
remove such responders from our analysis completely, we instead create the
“Other” class and use the same model to probabilistically classify contam-
inant responders as we do to classify responders to our target categories.
In this case, we have defined the “Other” class to capture contaminants in
a post-hoc fashion, given that it was difficult to predict a priori the kind of
responses that would not fit into either target category, but ideally contam-
inant strategies should be defined before collecting data. Nonetheless, an
extra benefit of HBLMMs is that they can also help us address the “fuzzy”
boundary problem associated with exclusion criteria.
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Table 1: Summary of the Studies and conditions used in the
analyses.

Study Condition# Context N

1 1 Pure Climate 25
2 Pure Climate 25

2 1 Pure Financial 25
3 1 Pure Climate 25
4 1 Climate/Financial 25
5 1 Pure Climate 26

2 Climate/Financial 26
6 1 Pure Financial 25

Note: To simplify the modeling,
some conditions from Study 1 and 6
were excluded from the analysis. See
Appendix A for details of all condi-
tions.

We then used Bayesian hypothesis tests (Morey, Romeijn &
Rouder, 2009) to determinewhether the proportion of the dif-
ferent types of responders was the same or different across
contexts (Pure Climate, Pure Financial, Climate/Financial).
Our particular focus is on Up responders because this type
of erroneous response pattern has received the most interest
in the literature (e.g., Cronin et al., 2009).

1.2.2 Studies Overview

We conducted 6 studies over 2 years using UNSW under-
graduate Psychology students. Each of these studies in-
volved versions of stock-flow problems instantiated in the
CO2 and/or financial context, similar to the examples shown
in Figure 2. For the purpose of illustrating the benefits of the
HBLMM approach, we combined data from all 6 studies.
Table 1 contains the designs of each of the studies, with

the order in which the studies were conducted preserved
(See Appendix A for further details of each study). For
the conditions coded as in a Pure Climate context, the task
only included information about CO2 accumulation – i.e.
emissions, absorptions and atmospheric CO2 (see Figure
2a; Pure Climate). For the conditions coded as in a Pure
Financial context, the task included only information about
financial debt accumulation – i.e. spending, earnings and
total debt (see Figure 2b; Pure Financial). For the conditions
coded as in a Climate/Financial context, the primary task that
participants had to solve was the CO2 accumulation one, but
participants in these conditions were invited to think about
the CO2 task as analogous to accumulation of financial debt
(Climate/Financial). To assist with the use of this analogy,
the labels of the inflows, outflows and stock on the graphs
in the climate/financial conditions contained both climate

and financial terms, with the analogous financial terms in
brackets, e.g., “CO2 absorption (earnings)” (this condition
is not shown in Figure 2).

2 Method

2.1 Participants

We tested 202 participants (mean age = 19.48, SD = 2.81), of
which 121 were female. Participants received course credit
for their participation.

2.2 Procedure

Before the task, participants were given some information
about climate change (or financial debt) and were told about
the inflows, outflows and stock in the system associated with
their experimental condition. The text in the climate con-
ditions was modeled on that used by Sterman and Booth
Sweeney (2007).

Participants in the Pure Climate and Climate/Financial
conditions were presented with on-screen figures which
showed a) past and future net CO2 stocks, and b) past CO2
inflows (i.e., emissions) and outflows (see Figure 2a for an
example). Before the task started, participants completed
a small practice session to make sure they understood how
to read the graphs. They had to read and report three val-
ues. For the actual task, participants were required to plot
the future CO2 emissions trajectory that would achieve the
given net stock of atmospheric CO2. Participants in the
Pure Financial conditions were required to plot the future
inflow (spending) trajectory to achieve a depicted stock of
accumulated financial debt (see Figure 2b).

Estimation of inflows was requested for each of 10
“decades” (climate) or “weeks” (financial). For each time-
period participants had to adjust an on-screen slider to their
desired inflowvalue, whichwas displayed numerically. Once
they clicked a button labelled “next decade”, a line would be
drawn connecting the emissions/spending line to the point
that the slider was moved to. Participants repeated this pro-
cess until they had entered all 10 values. After the partici-
pants had entered each decadal (or weekly) value, they had
an opportunity to adjust their response across all decades (or
weeks). Across all studies, 69.8% of participants adjusted at
least one slider. For our analysis of inflow trajectory estima-
tion, we included only the final response (after adjustment)
for each time-period. (Appendix A contains specific pro-
cedural details about each study, and Appendix B presents
sample instructions from Studies 2–4).
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Figure 3: The graphical model used for data analysis.

3 Results

3.1 Bayesian Model-Based Analysis

We used a hierarchical Bayesian analysis that explicitly ac-
counts for the mixture of latent classes of responders on the
trajectory estimation task. Participant data and R and JAGS
code for performing the analysis have been made available
on the Open Science Framework (http://osf.io/5m4y7).
As noted earlier, our a priori assumption was that there

would be three basic latent categories: Up responders, Down
responders, and Other responders. However, our initial
model-based analyses revealed that the “Other” category
contained two distinct types of responders: those produc-
ing a flat line but also those who showed an abrupt trajectory
change (e.g., up and then down). Thus the Bayesian mixture
model we used for our main analysis assumes that there are
four populations of responders in the trajectory estimation
task, and we estimate the percentage of the four types of
responders in each condition.
Figure 3 shows the graphical model we used for data anal-

ysis, with standard graphical model notation. Latent and
observed variables are represented with open and shaded
nodes, respectively. Circular and square nodes represent
continuous and discrete variables, respectively. Single and
double-bordered nodes indicate stochastic and deterministic

variables, respectively. Rectangular plates represent inde-
pendent replications over participants and scenario condi-
tions. To facilitate comparison across data sets we simulta-
neously estimated parameters for all experimental conditions
(combined N = 202). This assumes that the parameters es-
timated for each study are informed by data from the other
studies; that is, we pooled information from common con-
ditions (Pure Climate, Pure Financial, Climate/Financial)
across the six studies.

The model assumes the 10 decadal (Pure Climate and Cli-
mate/Financial) or weekly (Pure Financial) responses from
each participant will be approximated by one of four linear
regressionmodels. Three of the four regressionmodels differ
only in the prior distribution placed on the regression coef-
ficient: biased to positive values (for upward trajectories),
negative values (for downward trajectories), or very close to 0
(for flat, or uncorrelated, trajectories). The fourth regression
model assumed a piecewise linear function: early responses
followed the upward trajectory and then, at one of themid-to-
late responses, dropped to a low value, after which responses
were equivalent to the ‘flat’model (i.e., regression coefficient
very close to 0). For each participant we estimated which of
the four regression models provided the best account of their
10 responses. We used these participant-level estimates to
inform group-level estimates of the proportion of the four
types of responders. These group-level mixture proportions
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– the percentage of each type of responder – are the pri-
mary focus of the inferential tests reported in the Bayesian
Hypothesis Tests section.
The model assumes the ith estimate of participant j, Ri j ,

comes from a normal distribution with mean R̂i j and stan-
dard deviation ε j . ε j is a participant-level parameter that
reflects how closely participant j’s estimates approximated
the regression line parameterized by R̂i j . R̂i j is a determinis-
tic node whose value depends on the regression coefficients
βup ,βdown,β f lat or a combination of βup , βdrop and β f lat ,
which correspond to the four classes of responders; Up,
Down, Other-Flat, and Other-Strategy change, respectively.
Whether R̂i j is generated from the Up, Down, Other-Flat or
Other-Strategy change regression model is determined by z j ,
a subject-level indicator variable that takes the value of 1, 2,
3 or 4 on the basis of πk . πk is a four-length vector that gives
the probability of a responder arising from the Up, Down,
Other-Flat or Other-Strategy change regression models, such
that πmk represents the probability of allocation to regres-
sion model m in scenario condition k, where

∑4
m=1 πmk = 1.

w j is an indicator variable that codes participant j’s scenario
condition (i.e., w j takes the value 1, 2, or 3 for Pure Climate,
Pure Financial, or Climate/Financial). There is a single z j
for each participant, meaning that each participant’s data are
assumed to arise from a single regression model throughout
the entire experiment. Uncertainty around which regression
model is correct is represented with probabilities.
For the Up, Down and Other-Flat regression models, the

corresponding regression coefficient is substituted into a lin-
ear regression equation, along with the ith response position
(1, 2, . . . , 10), and α j , a subject-level estimate of the re-
gression intercept. The Other-Strategy change regression
model assumes a piecewise linear function which involved
estimation of an additional participant-level parameter: yj ,
which codes the response position (2, 3, . . . , 10) of the strat-
egy change (N.B. yj is only updated by data when z j = 4;
that is, parameter yj carries no meaningful information for
participants classified in the Up, Down, or Other-Flat regres-
sion models). The specific parameterization of the Other-
Strategy change model is shown at the upper right of Figure
3. Subject-level estimates of a j and ε j were hierarchically
drawn from normal hyper-distributions with means αµ and
εµ, and standard deviations ασ and εσ , respectively.
Prior settings on parameters are given on the right of Fig-

ure 3. All prior distributions were relatively vague (i.e., large
dispersion) except for those relating to the regression coef-
ficients that define the four models, for which we assumed
more informative priors (small dispersion). This is because
the expected pattern of responses for Up responders (those
that closely adhere to the correlation heuristic) and Down
responders (the correct response) are clearly prescribed for
the stock-flow tasks analyzed here. Specifically, a response
trajectory that follows the correlation heuristic will rise from
a response of 90 at decade/week 0 to 160 by decade/week

10, implying a regression coefficient of 7 (Figure 2). Simi-
larly, the correct response trajectory will drop from an initial
response of 90 to 40 by decade/week 10, implying a regres-
sion coefficient of –5. We assumed that responses following
these trajectories would be fairly precise, so we assumed
a small standard deviation around these means (Figure 3).
This pair of prior distributions on the regression coefficients
for each responder type means that our approach classifies
participants based on their proximity to the stereotyped pat-
terns of responses in stock-flow tasks. We also allowed for
minor deviations from a regression coefficient of 0 for the
‘flat’ responders, implying that a response trajectory could
be classified as flat even if its slope was not strictly equal to
0.
We performed Bayesian inference over the graphical

model using Markov chain Monte Carlo (MCMC) methods
in the R statistical programming environment (R Develop-
ment Core Team, 2015) and Just Another Gibbs Sampler
(JAGS, Plummer, 2003), using the R2jags package (Su &
Yajima, 2015). We took 25,000 samples from the posterior
distribution of the parameters from each of four chains with a
burn-in period of 12,500 samples, for a total of 50,000 sam-
ples from the posterior distributions of the parameters. The
convergence of the posterior distributions of the parameters
was checked using the R̂ statistic (Brooks & Gelman, 1998;
see Supplementary Material for trace plots and marginal
posterior distributions of model parameters).

3.2 Classification
The rightmost three panels of Figure 4 show the response
trajectories of participants allocated to the three main re-
spondent classes. The quality of the assignment to each
category is evident in the extent that individual trajectories
conform to the regression line of the category (i.e., down-
ward in the middle left column, upward in the middle right
column, and no relationship [flat] or strategy change in the
rightmost column). The Bayesian analysis assigns a proba-
bility of classification to each latent class for each participant.
This is shown in summary form in Figure 4: participants
with greater than .9 classification certainty are shown with
solid lines; the remaining participants are shownwith dashed
lines. Figure 5 shows the uncertainty quantification in more
detail. For all but a few participants, there was strong evi-
dence for the probability of assignment to a single category
(i.e., above .9), indicating little uncertainty in the classifica-
tion to latent classes, and that the Bayesian mixture suggests
a good account of the data.

3.3 Bayesian Hypothesis Tests
To test whether the percentage of Up responders differed
as a function of climate or financial scenarios, we con-
ducted Bayesian hypothesis tests using the Savage-Dickey

http://journal.sjdm.org/vol12.5.html
http://journal.sjdm.org/16/161207/supp.pdf


Judgment and Decision Making, Vol. 12, No. 5, September 2017 Bayesian mixture model for assessing stock-flow reasoning 437

Down

Up

Other

●

●

●P
ur

e 
C

lim
at

e

0

40

80

120

160

A
nt

hr
op

og
en

ic
 to

ta
l C

O
2 e

m
is

si
on

s 
(G

tC
de

ca
de

)

Down responders

(18)

Up responders

(76)

Other responders

(7)

Down

Up

Other

●

●

●

C
lim

at
e 

/ F
in

an
ci

al

0 25 50 75 100

Posterior Probability For Each Model
20

10
20

20
20

30
20

40
20

50
20

60
20

70
20

80
20

90
21

00

0

40

80

120

160 (18)

20
10

20
20

20
30

20
40

20
50

20
60

20
70

20
80

20
90

21
00

Year

(27)

20
10

20
20

20
30

20
40

20
50

20
60

20
70

20
80

20
90

21
00

(6)

Down

Up

Other

●

●

●

P
ur

e 
F

in
an

ci
al

0 25 50 75 100

Posterior Probability For Each Model

12 13 14 15 16 17 18 19 20 21
0

40

80

120

160

M
on

ey
 s

pe
nt

 (
$/

w
ee

k)

(26)

12 13 14 15 16 17 18 19 20 21

Week

(19)

12 13 14 15 16 17 18 19 20 21

(5)

Figure 4: Estimated emissions and debt trajectories in data (upper two rows and lower row, respectively). Rows represent
the Pure Climate, Climate/Financial, and Pure Financial scenario conditions, collapsed across experiments. The first column
shows the Bayesian model-based estimates of the percentage of each type of responder for each grouping (i.e., posterior
probability for each model), where the dot and error bars represent the median and 95% highest density interval of the
posterior distribution, respectively. The rightmost three columns show the trajectories of individual participants as separate
lines, classified into one of three respondent categories (“Up”, “Down”, “Other”). Solid and dashed lines show participants
with, respectively, greater than 90% certainty and less than or equal to 90% certainty in the model’s estimated assignment to
the respondent category. The number of participants assigned to each responder category is shown in brackets in the upper
left of the panels. Note that “Other” contains participants classified as “Other-Flat” and “Other-Strategy Change.

density ratio test (for tutorial, seeWagenmakers, Lodewyckx,
Kuriyal &Grasman, 2010). The Savage-Dickey density ratio
gives a Bayes factor indicating the weight that the evidence
affords to one of two models, in particular a null hypothesis
of no difference between groups versus (i.e., nested within)
the alternative hypothesis that groups may differ (see Ap-
pendix C for details of the Savage-Dickey density ratio and
our hypothesis tests). We use the notation BF10 to refer to
Bayes factors where BF01 > 1 indicates support for the null
hypothesis and BF10 > 1 indicates support for the alternative
hypothesis (i.e., we report all Bayes factors in the direction
in which they provide evidence). For example, BF10 = 10
indicates the data are 10 times more likely to have come from
the alternative hypothesis (the two conditions have different
values of the parameter) than the null hypothesis (no differ-
ence in the value of a parameter between two conditions),
and BF01 = 10 indicates the opposite conclusion.

In the Pure Climate scenario, a greater percentage of
participants estimated an upward trajectory compared to a
downward trajectory (BF10 > 200, 000). This is consis-
tent with previous research, which has found that partici-
pants provide an upward inflow trajectory when the rate of
CO2 accumulation is decreasing (Dutt & Gonzalez, 2012a;
Sterman & Booth Sweeney, 2007). As a measure of the
size of this effect, the 95% highest density interval [HDI]
of the difference in the proportion of Up and Down re-
sponders was [.396, .693]. In contrast, for both the Cli-
mate/Financial and Pure Financial scenarios the evidence
was indeterminate in discriminating for or against the null hy-
pothesis that the percentage of Up responders and Down re-
sponders was equal (BF10 = 1.08, 95% HDI [−.081, .398],
and BF01 = 1.31, 95% HDI [−.368, .120], for the Cli-
mate/Financial and Pure Financial scenarios respectively).

The most important comparison is whether the per-
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Figure 5: Classification probabilities for the response classes in each condition. The X-axis shows individual participants in
order of decreasing probability of being assigned to the Up responder category from left to right. Note that there were 101
participants in the Pure Climate conditions, 51 in the Climate/Financial and 50 in the Pure Financial (see Table 1). The Y-axis
is the estimated probability of classification assigned by the Bayesian analysis. The vast majority of participants are assigned
either a 0 or 1 classification certainty for a particular latent response class indicating that the Bayesian mixture provides a
good account of the data.

centage of Up relative to Down responders was different
across the conditions. There was a greater percentage
of Up relative to Down responders in the Pure Climate
condition compared to the Pure Financial condition (BF10 ≈

4, 000, 95% HDI [.384, .957]) and the Climate/Financial
condition (BF10 = 13.68, 95% HDI [.105, .666]). These
results provide strong evidence that 1) participants can rea-
son more appropriately when the relevant stocks and flows
are presented in the more familiar context of a financial debt
problem, and 2) that providing a financial analogy alongside
the climate scenario reduced the proportion of inappropriate
responses as compared to the climate scenario in isolation.
There was indeterminate evidence regarding whether the
percentage of Up vs Down responders was the same or
different across the Pure Financial and Climate/Financial
groups (BF10 = 1.46, 95% HDI [−.063, .622]). This
suggests that providing a financial debt analogy to as-
sist reasoning in the climate problem might (but also
might not) reduce the relative difference between Up
and Down responders to the same extent as presenting
the task entirely within the financial context, though this
requires further investigation. There was weak evidence
that the proportion of Other responders was the same
across conditions: Pure Climate vs. Climate/Financial
(BF01 = 2.86, 95% HDI [−.166, .058]); Pure Climate vs.
Pure Financial (BF01 = 3.57, 95% HDI [−.149, .065]);
Climate/Financial vs. Pure Financial (BF01 =

3.42, 95% HDI [−.121, .146]).

4 General Discussion
People’s failure to reason appropriately about stock-flow sys-
tems is an enduring and intriguing theoretical puzzle that
has widespread real-world implications. None more so than
its potential to reinforce wait-and-see attitudes towards tak-
ing action on climate change (Newell, McDonald, Hayes &
Brewer, 2014; Sterman, 2008). A commonly used assay
of performance on such problems is the stock-flow drawing
task. However, defining the appropriate measurement of in-
dividual performance in this task is a difficultmethodological
problem. We have provided a novel method that addresses
this difficulty by quantifying the uncertainty in classification
of individual stock-flow task responses.

Using hierarchical Bayesian latent mixture models
(HBLMM)with three basic response classes, wewere able to
classify most participants into one class with high certainty
(over 90%). Broadly consistent with previous research, we
found a larger proportion of participants in the climate ver-
sion of the trajectory estimation task responded with an Up
trajectory relative to a Down trajectory. We also found evi-
dence that presenting the same problem in a familiar financial
context and using a financial analogy for the climate context
produced fewer Up responders relative to Down responders
than in the climate context alone. However, we only found
indeterminate evidence for whether there was a difference in
the proportion ofUp relative toDown responders between the
financial context and the climate/financial context. The cli-
mate/financial context may or may not improve performance
on the task to the same degree that the financial context does.
This comparison requires further investigation.
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4.1 The benefits of HBLMM

Our use of HBLMM builds on recent successful applica-
tions in other decision-making problems such as base-rate
neglect (Hawkins et al., 2015) and multi-attribute choice
(van Ravenzwaaij et al., 2014). Performance in these tasks,
in common with the stock-flow problem, is often attributed
to the use of a heuristic, or a discrete strategy that is con-
sistently applied by multiple individuals in an experiment
(e.g., Gigerenzer & Goldstein, 1996; Tversky & Kahneman,
1974). However, it is rarely the case in any given experiment
that all participants are using the same heuristic – some par-
ticipants may know the solution to the problem they are faced
with, or be applying another strategy (e.g., Newell, 2005).
Popular responses to this analysis problem are to ignore the
individual variability by averaging across all participants, or
to engage in post-hoc classification of response profiles; an
inherently subjective process which can lead to the drawing
of “fuzzy” boundaries that are potentially problematic for
some types of statistical inference. Subjectivity in response
classification could be reduced by including multiple inde-
pendent raters. This approach however would still produce
problem cases where the raters disagree about the appropri-
ate classification. Currently no principled method exists for
resolving such disagreements beyond encouraging raters to
reach a consensus or using the classification favored by a
majority of raters. Researcher classification (by either single
or multiple raters) also ignores classification uncertainty, or
the extent to which a classified response could have been
produced by a different strategy.
HBLMMs provide a more principled and more fruitful

solution by acknowledging the presence of individual dif-
ferences in responding—thereby incorporating all the data
from all individuals—and providing an objective quantifi-
cation of the uncertainty associated with different response
classes. HBLMMs are, however, not a panacea for analyzing
these kinds of data. A close inspection of Figure 4 reveals
some examples of idiosyncratic responses that are catego-
rized with high probability into one of the classes (e.g.,
the participant in the Climate/Financial condition who pro-
duced a downward response with a “triangle” mid-trajectory
– middle panel of middle left column). While it may be
tempting to create new classes in the model to capture these
unusual responses, this raises the problem that as the number
of classes increases, the probability of an individual being
assigned to a given category is reduced. This is because
as the number of classes increases, the difference between
the classes becomes smaller, and any particular individual’s
data could have been generated by more than one strategy
in the model. Thus there is a trade-off between the preci-
sion of the model (or how well it captures the individual
differences in the population) and its explanatory power (or
how we can use the model to make theoretical advances).
The point raised here is not a problem for the model per se.

The problem arises because the experimental task allows for
unconstrained responding, which causes a problem for any
analysis approach.

In the current research, we suggest that the classes we
defined are useful to developing theories of performance
in stock-flow reasoning, but also differentiated enough to
maintain a high level of certainty for most of our classifica-
tions (> 90% in most instances). If we chose to define our
“downward trajectory” class as the actual correct response,
we would have to define a very flexible rule (the correct re-
sponse is nonlinear – see Figure 1) which would undermine
the certainty in our classification. Yet, someone drawing an
upward trajectory is qualitatively different in important ways
to someone drawing a downward trajectory. This difference,
which is captured by the model, allows us to advance un-
derstanding of how factors such as context familiarity affect
performance on this task.

4.2 The role of context familiarity in stock-
flow reasoning

The research presented here converges with Newell et al.
(2016) in establishing the financial context as one which re-
duces the proportion of participants using correlation-like
(upward trajectory) responding in comparison to a CO2 ac-
cumulation scenario. In contrast with Newell et al. (2016),
we also found a beneficial effect of presenting the financial
analogy in the climate context. The reason for this inconsis-
tency might lie in procedural differences between the tasks
used in the two studies. Newell et al. (2016) used a modified
version of the graph drawing task that only required partic-
ipants to enter the final value of the emissions or spending
trajectory (i.e., at the year 2100 or week 21 in the lower pan-
els of Figure 2a and b, respectively) rather than plot the entire
line (see Guy et al., 2013 for a similar method). Newell et
al. (2016) speculated that the one-shot nature of this single-
value prediction task might attenuate the beneficial effect of
the financial analogy. Perhapswhen participants are required
to draw the line in its entirety, they have more instances (10
responses compared to 1) to reflect on the analogy and inte-
grate it into their responses. Future research into the effects
of analogy on reasoning in stock-flow problems could in-
vestigate how the task (e.g., final-value estimate vs. entire
trajectory drawing) interacts with the analogy to help pro-
mote appropriate responding.

An outstanding question regarding the financial context
is why it works. Does it encourage fewer people to use
correlation-like responding because the context helps them
better understand the structure of stock-flow systems (be-
cause the concepts of earning, spending and debt are more
familiar than emissions, absorption and CO2 accumulation),
or are people simply relying on a different cognitive bias,
such as valence? Newell et al. (2016) found evidence to
suggest that individuals may draw a downward trajectory
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because they are following a valence rule such as “debt is
bad, so reduce spending” rather than because they under-
stand the relationship between the stock and flows. Thus the
financial context and analogy may reinforce the idea that the
world needs to reduce CO2 emissions (as opposed to simply
stopping them from rising) — a desirable outcome from a
climate science communication perspective — but it does
not necessarily indicate an improved understanding of how
stock-flow systems work.
While it seems unlikely that any single context can lead

to perfect performance on stock-flow problems, there is still
scope to find a series of contexts, analogies and tasks that can
be combined to help people better understand the abstract re-
lationship between stocks and flows. Gonzalez and Wong
(2012) suggest that successful analogies need to maximize
both the surface and behavioral similarity of the analogy to
the target problem, with behavioral similarity indicating that
the analogy has the same underlying functional form as the
target problem. Beyond that, we can also make the com-
parison between contexts even more explicit by asking par-
ticipants to list the similarities and differences between the
contexts (in our example, climate change and debt), which
has been shown to have positive effects on analogical transfer
(e.g., Gonzalez and Wong, 2012; Smith & Gentner, 2012).

4.3 Limitations and Future Research
One potential limitation of the current work is that the stud-
ies were conducted sequentially over time and as a result
participants were not allocated randomly to the contexts an-
alyzed here (with the exception of data from study 5 – see
Appendix A). While we acknowledge that a randomized ex-
periment is the gold standard of empirical research, we do
not think that the lack of random allocation is a serious
problem in the current analysis. The population remained
approximately constant, as all participants were students of
the same university. Each context also featured data from
more than one study (conducted at different times), which
reduces the chances that all data in a context reflect a biased
sample rather than a genuine effect.
There were also some small differences between the stud-

ies that were not simply due to changes in instructions. For
example, some conditions included in the model came from
factorial designs or featured additional tasks (e.g. Study 1).
In future, the HBLMM could be extended to take such study
differences into account by allowing the parameters of the
model to vary across studies. We decided only to allow pa-
rameters to vary across individuals in the current work in
order to provide a relatively simple demonstration of the po-
tential of HBLMMs for the analysis of stock-flow reasoning
data. Without having strong reasons for expecting theoret-
ically important effects to be driven by study differences,
we think that our admittedly more coarse level of analysis
provides a good compromise.

The HBLMM approach we have outlined in this paper
could also be used to analyze other variants of stock-flow
tasks. For example, researchers have used a stock-flow draw-
ing task in which participants had to draw the accumulating
stock rather than the inflow (Cronin et al., 2009). In the
stock drawing task, a typical correlation heuristic response
would be to draw a stock line that mimics the inflow line;
it would be simple to apply our approach to characterizing
responses in this version of the task. HBLMMs can also
be applied to one-shot responses such as those found in the
“department store” task (Sterman, 2002) or the climate task
used by Newell et al. (2016). In the department store task,
participants are presented with a graph tracking the inflow
and outflow of customers in a store over a certain time pe-
riod and are asked when the most and fewest customers are
in the store. This task also involves a continuous depen-
dent variable, but there is a correct response and a typical
correlation heuristic response, likely leading to a bimodal
distribution of responses. Hawkins et al. (2015) presented a
HBLMM for one-shot responses in the context of a base-rate
neglect problem also characterized by bimodal distributions
of responses, so a similar approach to theirs could be applied.

Regardless of the task that researchers use to measure
stock-flow reasoning, we need an appropriate method of
inferring the impact of any manipulation on performance.
HBLMMs provide such a principled inferential method to
classifying responses in this important class of reasoning
problems.
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Appendix A
In this appendix, we provide brief summaries of the origi-
nal studies. All studies featured a Pure Climate condition,
a Pure Financial condition or a Climate/Financial condition
as specified in the main text. In addition, some studies con-
tained further manipulations, with those conditions removed
from the HBLMM. For each study, we specify the conditions
that were used in the HBLMM, the total N for each study
and any additional manipulations that were not included in
the main text. For further information on the protocols of
the studies, please contact the corresponding author.

Study 1
Conditions in Model: Pure Climate (n = 50).
N: 100 participants (70 female)
Additional manipulations: This study featured a 2 x 2 fac-
torial design, with participants randomly allocated to condi-
tions. The first factor was whether participants were required
to draw the inflow of accumulating stock of CO2. The sec-
ond factor was an analogy manipulation based on Gick and
Holyoak (1980). Participants were given a relevant or ir-
relevant story before completing the Pure Climate condition,
were providedwith a hint about the story, and then completed
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the Pure Climate condition again. The relevant story invited
participants to think about how inflatable jumping castles are
inflated and kept “solid” enough to jump on. This involved
some descriptions of in-flows and out-flows and stock of air.
The irrelevant story asked participants to think about a logic
problem (a variation on a Knights and Knaves problem) —
there was no mention of stocks and flows. Using the non-
Bayesian RMSD analysis method described in Newell et al.
(2013), we found no statistically significant effect of analogy
on any aspect of responding, so in the analysis reported in the
body of the paper we included data from the two conditions
in which participants drew the inflow.

Study 2
Conditions in Model: Pure Financial (n = 25).
N: 25 participants (12 female)
Additional manipulations: None.

Study 3
Conditions in Model: Pure Climate (n = 25).
N: 25 participants (15 female)
Additional manipulations: None.

Study 4
Conditions in Model: Climate/Financial (n = 25)
N: 25 participants (17 female).
Additional manipulations: None.

Study 5
Conditions in Model: Pure Climate (n = 26) and Cli-
mate/Financial (n = 26).
N: 52 participants (27 female)
Additional manipulations: In this study, participants first
completed a Pure Climate condition. They then completed
either the Climate/Financial condition or repeated the Pure
Climate condition, with participants randomly allocated to
conditions. We only used the responses from the second
attempt (Climate/Financial or Pure Climate) in the model.2
This study also involved a modification to the graphs pre-

sented to participants. Instead of the formatting displayed
in Figure 1, participants saw a stock graph that had a larger
range on the y-axis (from 600 to 1000 GtC). This meant that
there was some additional whitespace between the stock line
and top of the graph in an attempt to aid the visualization of
stabilization in the stock graph.

Study 6
Conditions in Model: Pure Financial (n = 25)
N: 101 participants (61 female)
Additional manipulations: This study also included a 2 x

2This study also included some measures related to climate change
attitudes after the drawing task, but these are not considered relevant to the
primary research question of this article.

2 factorial design, with participants randomly allocated to
conditions. The first factor was whether participants drew
the inflow or stock in a Pure Financial condition. The second
factor was the shape of the stock-flow function. We only
included the condition that involved drawing the inflow and
had the same function as the other studies.

Appendix B
This appendix contains samples of the instructions used in
Studies 2–4. For the Pure Climate and Pure Financial con-
texts, participants read the instructions specified below. For
the Climate/Financial context, the text below was presented
after participants had read the instructions for the Pure Cli-
mate context.

Sample instructions for the Pure Climate con-
text:
Consider the issue of global warming. In 2001, the Inter-
governmental Panel on Climate Change (IPCC), a scientific
panel organized by the United Nations, concluded that car-
bon dioxide (CO2) and other greenhouse gas emissions were
contributing to global warming. The panel stated that “most
of the warming observed over the last 50 years is attributable
to human activities.”

The amount of CO2 in the atmosphere is affected by natu-
ral processes and human activity. Anthropogenic CO2 emis-
sions (emissions resulting from human activity, including
combustion of fossil fuels and changes in land use, espe-
cially deforestation), have been growing since the start of
the industrial revolution. Natural processes gradually ab-
sorb CO2 from the atmosphere (for example, as it is used by
plant life and dissolves in the ocean). The top graph shows
an atmospheric CO2 scenario, in which the amount of at-
mospheric CO2 rises from an initial value of just over 600
gigatonnes of carbon (GtC) but then over a period of 210
years stabilises (does not increase any more) at 945 GtC.

On the bottom graph the green line shows how much CO2
is absorbed per decade – it remains constant at 40GtC – the
black line shows how much CO2 is emitted per decade – it
rises up to the year 2000.

Your task will be to correctly extend the line (on the lower
graph) representing “CO2 emissions” in relation to the “CO2
absorption” line, from the year 2010 to 2100, so that the
bottom graph depicts the atmospheric CO2 scenario shown
in the top graph.

Sample instructions for the Pure Financial con-
text:
The amount of money in your bank account is determined
by how much you earn and how much you spend.
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Imagine that you have gotten yourself into debt, but you
are now trying to prevent the debt from getting any bigger.
For example, the top graph below shows how your debtmight
increase from an initial value of just over $600 but then over
a period of 21 weeks stabilises (does not increase any more)
at $945. There is no interest charged on the debt you owe.
On the bottom graph the green line shows how much you

earn per week – it remains constant at $40 – the black line
shows how much you spend per week – it rises up to week
11.
Your task will be to correctly extend the line (on the lower

graph) representing “dollars spent”, from weeks 12 to 21,
given the debt shown in the top graph.
For each week after Week 10 you will be presented with a

slider, which you need to adjust to show the number of dollars
spent that week. Once you adjust the amount and click “next
week” you will not be able to change your response.

Additional instructions for the Cli-
mate/Financial context:
You might like to think of controlling the level of CO2 in the
atmosphere as similar to controlling your personal finances.
If you spend more than you earn you get into debt, and if you
keep spending more than you earn that debt grows.
The amount of CO2 in the atmosphere is like our current

‘debt’ level and just as you would not want your debt to get
bigger, we don’t want atmospheric CO2 levels to keep rising.
The top graph shows a situation inwhich this goal is achieved
(i.e. CO2 levels stop rising) by 2100.
You can think of the CO2 emissions line on the bottom

graph as the money you spend and the absorption line as the
money you earn. In order to stabilise CO2 levels (or in other
words stop your debt increasing) what would you need to
do?
Try to use this idea to extend correctly the line (on the

lower graph) representing “CO2 emissions”, from the year
2010 to 2100, given the amount of atmospheric CO2 shown
in the top graph.

Appendix C
In this appendix we provide a detailed explanation of the
Savage-Dickey density ratio test used in the main text to
conduct hypothesis tests. Our hypothesis tests examined
whether there was a difference in the number of particu-
lar types of responders within and between conditions. For
example, in one test we examined whether there was a dif-
ference in the percentage of Up and Down responders in
the Pure Climate condition. In another test, we examined
whether the difference in the proportion of Up and Down
responders was different between the Pure Climate and Pure
Financial conditions. Our tests thus focused on the π pa-

rameter from our Bayesian mixture model, which refers to
the probability of an emissions/debt trajectory arising from
the “Up”, “Down”, “Other-Flat”, or “Other-Strategy change”
regression models. To be precise, πk is a four-length vector
with elements that correspond to the four latent populations,
such that πmk represents the probability of assignment to re-
gression model m ∈ {Up, Down, Other-Flat, Other-Strategy
change} in scenario condition k where and

∑4
m=1 πmk = 1.

Our hypothesis tests were comprised of pairwise depen-
dent comparisons between pairs of posterior distributions of
π. In a similar vein to the paired samples t-test, we take the
difference between the posterior distributions of elements
of π and test whether the difference is equal to zero (null
hypothesis) or different to zero (alternative).

Our analyses had two broad aims. Firstly, in each con-
dition we tested whether there was a different proportion
of participants responding in a manner consistent with the
correlation heuristic (Up) or trending toward the correct re-
sponse (Down). We denote this difference between two
elements of the posterior distribution of π as δ; for example,
δclimate = πup,climate − πdown,climate. Comparison of the
respective elements from Figure 4 of the main text (upper
andmiddle dots of the upper left panel) suggests the posterior
density of δclimate is shifted away from 0 in this example,
indicating a difference in the proportion of the two responder
types for this condition. Secondly, and our primary focus,
we tested whether the difference in the proportion of Up
and Down responders differed across scenarios, implicating
a role of framing on comprehension of the trajectory esti-
mation task; for example, whether the posterior density of
δclimate − δ f inancial is centered at 0. The Savage-Dickey
density ratio uses the prior and posterior distributions of
δ to compare two models that correspond to conventional
two-tailed hypothesis tests: the null hypothesis that there is
no difference in the posterior distributions of πmk between
two conditions, H0 : δ = 0, and the alternative hypothe-
sis of a difference between the two posterior distributions,
H1 : δ , 0.
We used uninformative Dirichlet distributions as prior dis-

tributions on πk . The Dirichlet distribution is the multivari-
ate generalization of the beta distribution and is the conjugate
prior of the categorical distribution. The prior distribution
for the two types of differences – that is, differences in the
proportion of Up and Down responders within and between
conditions – differ slightly in form. We obtained these prior
distributions through sampling in our model-based analysis,
and use these as the prior distribution for H0.

The Savage-Dickey density ratio is given as the ratio
of the density of the prior to posterior distributions at
the point value of relevance to the null hypothesis (i.e.,
δ = 0). For example, the Bayes factor for the difference
in the proportion of Up and Down responders between the
Pure Climate Climate/Financial scenarios is approximately
1/.0731 ≈ 13.68). This ratio is a Bayes factor (BF) that
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gives the relative odds that the data were generated by the al-
ternative hypothesis compared to the null hypothesis, where
BF10 > 1 indicates support for H1 and BF01 > 1 supports
H0. Following Lee and Wagenmakers (2013), we used the
logspline non-parametric density estimator from the pol-
spline package in R (Kooperberg, 2015) to obtain prior and
posterior density estimates for hypothesis testing.

http://journal.sjdm.org/vol12.5.html
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