
Judgment and Decision Making, Vol. 10, No. 1, January 2015, pp. 18–33

Evidence for and against a simple interpretation of the less-is-more

effect

Michael D. Lee∗

Abstract

The less-is-more effect predicts that people can be more accurate making paired-comparison decisions when they have

less knowledge, in the sense that they do not recognize all of the items in the decision domain. The traditional theoretical

explanation is that decisions based on recognizing one alternative but not the other can be more accurate than decisions

based on partial knowledge of both alternatives. I present new data that directly test for the less-is-more effect, coming

from a task in which participants judge which of two cities is larger and indicate whether they recognize each city. A

group-level analysis of these data provides evidence in favor of the less-is-more effect: there is strong evidence people

make decisions consistent with recognition, and that these decisions are more accurate than those based on knowledge.

An individual-level analysis of the same data, however, provides evidence inconsistent with a simple interpretation of

the less-is-more effect: there is no evidence for an inverse-U-shaped relationship between accuracy and recognition, and

especially no evidence that individuals who recognize a moderate number of cities outperform individuals who recognize

many cities. I suggest a reconciliation of these contrasting findings, based on the systematic change of the accuracy of

recognition-based decisions with the underlying recognition rate. In particular, the data show that people who recognize

almost none or almost all cities make more accurate decisions by applying the recognition heuristic, when compared to the

accuracy achieved by people with intermediate recognition rates. The implications of these findings for precisely defining

and understanding the less-is-more effect are discussed, as are the constraints our data potentially place on models of the

learning and decision-making processes involved.
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1 Introduction

Perhaps the simplest heuristic proposed within the “fast

and frugal” approach to understanding human decision

making developed by Gigerenzer, Todd, and the ABC

Group (1999) is the recognition heuristic (Goldstein &

Gigerenzer, 2002). It applies to the common decision-

making situation in which a decision maker must choose

between two presented alternatives on the basis of some

criterion. The recognition heuristic assumes that, when

decision makers recognize one of the alternatives, but not

the other, they choose the recognized alternative. Thus, if

a decision maker is asked whether Frankfurt or Paderborn

has the greater population, and has only heard of Frank-

furt, then Frankfurt will be chosen based on recognition.

The recognition heuristic has been widely studied, both

empirically and theoretically. Empirically, the use of the

recognition heuristic under various experimental manipu-

lations has been studied for questions including the pop-

ulation of cities, the length of rivers, the age of famous

people, and so on (e.g., Bröder & Eichler, 2006; Hof-
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frage, 2011; Oppenheimer, 2003; Pohl, 2006). Theoret-

ically, there has been work at both the algorithmic level

in Marr’s (1982) hierarchy, studying how the recognition

heuristic can be integrated with process models of re-

lated elements of cognition such as memory (e.g., Erd-

felder, Küpper-Tetzel, & Mattern, 2011; Pleskac, 2007),

and at the computational level, studying its optimality

properties with respect to different decision-making en-

vironments (e.g., Davis-Stober, Dana, & Budescu, 2010;

Katsikopoulos, 2010; Smithson, 2010). The usefulness

of the recognition heuristic as a means of making deci-

sions has also been studied in a number of applied con-

texts, including predicting the winners of sporting compe-

titions (e.g., Herzog & Hertwig, 2011; Pachur & Biele,

2007; Scheibehenne & Bröder, 2007; Serwe & Frings,

2006), political elections (Gaissmaier & Marewski, 2011),

consumer choice (Hilbig, 2014; Oeusoonthornwattana &

Shanks, 2010), and choosing stock market portfolios (An-

dersson & Rakow, 2007; Borges, Goldstein, Ortmann, &

Gigerenzer, 1999). A relatively recent series of three spe-

cial issues on the recognition heuristic in this journal pro-

vides an excellent survey (Marewski, Pohl, & Vitouch,

2010, 2011a, 2011b), including many of the articles cited

above, as well as the reflections, evaluations, and perspec-

tives of those who developed the heuristic (Gigerenzer &

Goldstein, 2011).
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Figure 1: The intuition underlying the less-is-more effect. The left panel shows the number of decisions out of a total

of 45 made by guessing, recognition, and partial knowledge as the number of recognized alternatives increases from 0

to 10. The right panel shows the number of correct decisions made by guessing, recognition, and partial knowledge,

assuming accuracy rates of 0.5, 0.8, and 0.6 respectively. The total number of correct decisions is shown by the solid

line, and peaks when 6 out of 10 alternatives are recognized.
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One interesting prediction based on the use of the recog-

nition heuristic is the “less-is-more” effect (Goldstein &

Gigerenzer, 2002). The premise is that it is possible that

the decisions made by the recognition heuristic (applica-

ble when only one alternative is recognized) could be more

accurate than decisions made on the basis of partial knowl-

edge (applicable when both alternatives are recognized).

When this assumption is met, people who recognize all

of the alternatives will have a lower overall accuracy than

at least some people who do not recognize all of the al-

ternatives. Knowing less about the alternatives leads to

the more accurate decisions, and this is coined the less-is-

more effect.

Formal analyses proving the less-is-more result were

provided originally by Goldstein and Gigerenzer (2002),

and have been carefully analyzed and generalized by Kat-

sikopoulos (2010) and Smithson (2010). An important

generalization has involved considering the potential role

of recognition memory in the recognition heuristic, and

its impact on predictions about the less-is-more effect. In

this paper, I consider only the original statement of the

effect, which assumes that recognition memory is perfect,

and provides the simplest framework for analysis. The key

intuition of these formal analyses—which Katsikopoulos

(2010, p. 249) terms the accurate heuristics explanation,

to distinguish it from other possibilities involving recogni-

tion memory—is that, if recognition is more accurate than

knowledge, some ignorance (non-recognition) is needed

so that recognition can be applied to improve overall ac-

curacy.

Figure 1 attempts to convey the accurate heuristics ex-

planation in a concrete way, considering the case where

there are 10 alternatives, and so
(

10

2

)

= 45 comparisons.

The left panel shows how many of these 45 comparisons

are made by guessing (when neither alternative is recog-

nized), by using the recognition heuristic (when one al-

ternative is recognized), and by using partial knowledge

(when both alternatives are recognized) as the number of

recognized alternatives increases from 0 to 10. When none

of the alternatives are recognized, every decision must be

made by guessing. When all of the alternatives are recog-

nized, every decision must be made using partial knowl-

edge. Between these extremes, a number of decisions are

made by the recognition heuristic, with its use peaking

when exactly half the alternatives are recognized.

The right-hand panel of Figure 1 considers the num-

ber of correct decisions. This depends on the total num-

ber of decisions being made by guessing, recognition, and

partial knowledge, and by the accuracy of each of those

methods. To demonstrate the less-is-more effect in Fig-

ure 1, it is assumed that recognition is 80% accurate, par-

tial knowledge is 60% accurate, and guessing is 50% accu-

rate. The individual lines now show the number of correct

decisions, which is simply the total number of decisions

made by each method, scaled by the accuracy of each

method. Thus, the guessing line is exactly half as high

in the right-hand panel compared to the left hand panel.

Because it is assumed recognition is more accurate than

partial knowledge, the inverse-U-shaped recognition line

is not shrunk to the same extent as the partial knowledge

line. The net result of these differences is seen in the to-

tal number of correct decisions, shown by the bold line,

which simply sums the number of correct decisions across

all three cases. This line is non-monotonic, and peaks
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when 6 alternatives are recognized. This is the less-is-

more effect. Total accuracy is highest when some number

of alternatives is not recognized.

There is empirical evidence both for (e.g., Frosch,

Philip Beaman, & McCloy, 2007; Goldstein & Gigeren-

zer, 2002; Reimer & Katsikopoulos, 2004) and against

(e.g., Boyd, 2001; Dougherty, Franco-Watkins, &

Thomas, 2008; Pohl, 2006) the less-is-more effect. A

good review of the empirical evidence is provided by

Pachur (2010, see especially Table 1 and Figure 2).

There is also some empirical evidence for extensions of

the less-is-more effect to choices that involve more than

two alternatives (Frosch et al., 2007), and predictions of

less-is-more effects in collective group decision-making

(Reimer & Katsikopoulos, 2004). Theoretically, the less-

is-more effect has been integrated with cognitive models

of recognition, within both standard signal detection the-

ory (Pleskac, 2007) and multinomial processing tree (Erd-

felder et al., 2011) frameworks. The extended theoreti-

cal assumption of imperfect recognition memory—which

seems very plausible in many experimental and real-world

situations—complicates the analysis of the less-is-more

effect in interesting ways, and basic properties of the

accurate heuristics explanation no longer hold (see Kat-

sikopoulos, 2010, pp. 250–255)..

As Beaman, Smith, Frosch, and McCloy (2010) note,

the less-is-more prediction is “surprising”, and so provides

a strong test of the theory from which it is derived (Roberts

& Pashler, 2000). This means, in turn, that theoretical

and empirical evidence for and against the less-is-more

effect is used rhetorically to support or attack the recog-

nition heuristic in particular, and fast and frugal heuristic

approaches in general. Of course, the recognition heuris-

tic alone does not imply a less-is-more effect, so failure to

find the effect does not imply that the heuristic is not used.

Against this background, the aim of this paper is to

test the use of the recognition heuristic, and the existence

of the less-is-more effect, based on new empirical evi-

dence. The next section describes experimental data de-

signed to examine both questions in a direct way, using

a task in which participants judge which of two cities is

larger for cities in four different countries, and indicate

whether or not they recognize the cities. The data are then

analyzed in two ways. The first analysis is at a group level,

testing whether the recognition heuristic is followed, and

how its accuracy compares to the decisions based on par-

tial knowledge. The second analysis is at an individual

level, examining how the accuracy of individual partic-

ipants changes as function of their different recognition

rates. These two analyses suggest different conclusions,

but I reconcile them by examining limitations in the as-

sumption that the recognition heuristic provides equally

accurate decisions for all people.

2 Experiment

A total of 225 participants—all students in a large un-

dergraduate class at the University of California, Irvine—

provided data from the experiment. The experimental task

presented participants with pairs of cities, and required

them to indicate which city they believed had the larger

population, and whether or not they recognized each city.

The task was repeated for each of four countries, and par-

ticipants were free to choose in which order they com-

pleted both the countries, and the comparisons within the

countries.

The countries were Germany, the United States, Italy,

and the United Kingdom. The cities were the 82 most pop-

ulous from the set of German cities reported by Gigerenzer

and Goldstein (1996, Appendix), and the 74 United States

cities, 48 most populous Italian cities, and 66 United King-

dom cities reported by Lee and Zhang (2012). One fewer

German city and one fewer Italian city was used than was

available in the complete set, to give an even number, and

enable unique presentation of each city in paired compar-

isons.

The empirical data were collected over three years as

part of a class requirement. In each of the three years, 12

different versions of the task were constructed—selecting

different city pairs at random subject to the constraint each

city was presented exactly once—and participants com-

pleted the version corresponding to their birth month. If

a participant did not complete any comparison within a

country, all of their data for that country were discarded.

This was done because a number of key measures, includ-

ing a participant’s recognition rate for a country, rely on

complete data.

3 Results

I analyze the data to examine the less-is-more effect from

two different perspectives. First, I present a group-level

analysis, which produces results consistent with the effect.

Then, I present an individual-level analysis, which pro-

duces results inconsistent with the effect. Consequently,

I present an additional analysis that attempts to reconcile

the group-level and individual-level results.

3.1 Group-level analysis

A group-level analysis is shown in Figure 2. The main

panel considers all of the answers given by all partici-

pants to all of the comparisons for all countries. The four

bars divide the city pairs into those cases where both cities

were recognized, where one city was recognized and was

chosen as the most populous, where one city was recog-
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Figure 2: The main panel shows the number and accuracy of the four possible classes of decisions in judging which

of two cities has the larger population. The problems are divided according to whether both cities were recognized

(“both recognized”), one city was recognized and was chosen (“choose recognized”), one city was recognized but the

unrecognized one was chosen (“choose unrecognized”), or neither city was recognized (“neither recognized”). The

overall height of each bar corresponds to the proportion of all decisions that belonged to that class. The darker and

lighter areas within bars indicate how many of these decisions were correct and incorrect, respectively. The label above

each bar gives the overall percentage of correct decisions so that, for example, the accuracy of decisions when neither

city is recognized is close to 50% consistent with guessing. The arrow indicates how many times more often the “chosen

recognized” rather than “chosen unrecognized” class occurred, and so measures how many times more often decisions

followed the recognition heuristic. The four sub-panels show the same information, for each country separately.
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nized but the unrecognized city was chosen as the most

populous, and where neither city was recognized. Each

bar is sub-divided into a darker area representing correct

choices, and a lighter area representing incorrect choices.

The accuracy rate is displayed as a percentage above each

bar. The four sub-panels in Figure 2 show exactly the same

analysis for each country separately.

Figure 2 presents two important results. The first is that

when participants are able to apply the recognition heuris-

tic, they almost always do. The total height of the “choose

recognized” bar compared to the “choose unrecognized”

bar measures how often participants chose the recognized

rather than unrecognized city for those pairs where only

one is recognized. The main panel shows that the recog-

nized city is 10 times more likely to be chosen overall,

and this result is consistently seen for the individual coun-

tries. The second result is that the recognition heuristic

leads to more accurate decisions than ones based on par-

tial knowledge of the cities. The “both recognized” bar

represents those comparisons where both cities are recog-

nized, and the accuracy of these decisions is the accuracy

based on partial knowledge. The “choose recognized” bar

represents comparisons where the choice made is consis-

tent with applying the recognition heuristic, and the ac-

curacy of these decisions is the accuracy of the heuristic.

Overall, the recognition heuristic is 74% accurate, com-

pared to 64% when both cities are recognized. The same

superior accuracy for the recognition heuristic is found in
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all four of the countries. It is a large superiority of around

20% for the German and Italian cities, around 10% for

United States cities, and around 5% for United Kingdom

cities.

The superior accuracy of decisions consistent with us-

ing the recognition heuristic was found to apply not just

in aggregate for each country, but at the level of individual

participants.1 Combining the decisions each participant

made across all of the countries, 96% were more accurate

in making “choose recognized” than “both recognized”

decisions. Exactly the same result was found when each

country for each participant was considered separately, un-

der the restriction that at least 5 decisions were required to

estimate the accuracy rate as a proportion. Once again,

96% of these individual participant-by-country sets of de-

cisions showed greater accuracy for “choose recognized”

than “both recognized” decisions.

These results are highly consistent with the less-is-more

effect, and its theoretical underpinnings, at least under

the assumption of perfect recognition memory. The ba-

sic finding is that people make more accurate decisions

when they make a choice consistent with the recogni-

tion heuristic than when they recognize both cities. It is

also clear, in the city domains considered, that people al-

most always make choices consistent with the recognition

heuristic when this is possible. Thus, both the empirical

finding of differences in accuracy, and the proposed mech-

anism for this difference in terms of applying the recogni-

tion heuristic, are found in the group-level analysis of the

data.

3.2 Individual-level analysis

While the group-level analysis provides evidence for the

use of the recognition heuristic, and for its accuracy rela-

tive to the use of knowledge, it does not take the same form

as the standard presentation of the less-is-more effect. The

standard form closely follows the right-hand panel of Fig-

ure 1, by relating the recognition rates of people to their

accuracies in making decisions. The less-is-more effect,

stated in these terms, implies that there are people who

recognize fewer cities but are more accurate than peo-

ple who recognize more cities. Goldstein and Gigerenzer

(2002, Figure 2) caricature the less-is-more effect in this

way, by imagining younger, middle, and older sisters who

have low, medium, and high recognition rates respectively,

and making the prediction that the middle sister will make

the most accurate decisions.

Figure 3 presents this analysis for the current data.

The main panel considers every set of country questions

completed by individual participants, showing by circular

markers the accuracy and recognition rate of that partici-

1I thank Konstantinos Katsikopoulos for suggesting these analyses.

pant. A trend line based on binning is overlaid. The sub-

panels repeat this analysis for each of the countries sepa-

rately, so that the main panel is simply the superimposition

of the four sub-panels. It is clear that there are large indi-

vidual differences in both recognition rates and accuracy,

as well as overall effects for the different countries, with

United States cities being more often recognized than for

the other countries. Despite this variation in both recog-

nition and accuracy, however, there is no evidence that

accuracy changes as an inverse-U-shaped function with

recognition. The distribution of accuracy over people—

and the averages shown by the trend lines—appears to be

very similar at all levels of recognition, perhaps with a

slow linear increase in accuracy with recognition.

The Appendix presents a formal Bayesian statistical

analysis that bears out these conclusions. The key findings

are based on Bayes factors, which quantify the relative

evidence data provide for two or more alternative models

(Kass & Raftery, 1995). The data provide at least 15 times

more support for a model that assumes a linear increase in

accuracy with recognition, when compared to a quadratic

model that makes inverse-U-shaped predictions consistent

with the less-is-more effect.2 The data also provide over-

whelmingly more support for the linear model than for al-

ternative models that that assume accuracy is constant, or

that accuracy is consistent with guessing. Thus, I con-

clude that there is evidence for a linear relationship be-

tween accuracy and recognition, rather than evidence for

an inverse-U-shaped relationship. I note that the failure to

find an inverse-U-shaped curve relating accuracy to recog-

nition appears to be consistent with the majority of previ-

ous data sets conveniently displayed in Pachur (2010, Fig-

ure 2).

3.3 Reconciling the group and individual

analyses

One way to reconcile the group-level analysis (indirectly)

in support of the less-is-more effect with the individual-

level analysis (directly) failing to support the effect, is to

consider a basic assumption in the original analysis. Gold-

stein and Gigerenzer (2002, p. 80) were clear that an as-

sumption underlying the prediction of the standard less-

is-more effect is that “the recognition validity alpha and

the knowledge validity beta remain constant as the num-

ber of cities recognized, varies.” A number of authors

have pointed out that his is a strong assumption that seems

unlikely to be met (Beaman et al., 2010; Pachur, 2010;

2The appendix presents two analyses that support this conclusion.

One is based on relatively general specifications of the alternative rela-

tionships being considered between recognition and accuracy. The other

analysis is based on stronger assumptions about the alternative relation-

ships, including predictions about the size and nature of the less-is-more

effect more tightly matched to the underlying theory and previous empir-

ical findings.
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Figure 3: The main panel shows the number of cities recognized and accuracy for each participant as a small circular

marker. The larger markers connected by the line show the trend in the relationship between recognition and accuracy.

The four panels below show the same information for each country separately.
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Pachur & Biele, 2007; Smithson, 2010). Figure 4 tests this

assumption directly, by presenting an analysis of how the

accuracy of recognition, knowledge, and guessing deci-

sions change as a function of individual-level recognition.

These curves were found by considering all of the partici-

pants who, for a set of country questions, had a recognition

rate in a small range, and calculating the proportion of cor-

rect decisions they made for comparisons where they rec-

ognized one city (recognition), both cities (knowledge), or

neither city (guess).3 The relative number of participants

in each recognition range is shown by the histogram at the

bottom of Figure 4

The accuracy of guessing is variably estimated for high

levels of recognition (because these participants have to

guess relatively rarely), but is consistent with an expected

value around 0.5 across the entire range of recognition.

The statistical analyses presented in the appendix find

3The statistical analyses in the appendix present each of these curves

separately, and so are able to display error bars without visual clutter.

strong evidence that accuracy of guessing is constant over

changes in recognition rate, but is slightly higher than the

chance rate of one-half.

The accuracy of knowledge-based decisions is variably

estimated for low levels of recognition, but appears to be

consistently around 0.6 and 0.7 across the entire range of

recognition. The statistical analyses presented in the ap-

pendix find that the data provide the most evidence for

accuracy being constant with respect to recognition rate,

although more complicated relationships, such as a grad-

ual linear increase, cannot be ruled out. If the constant re-

lationship holds, it would constitute an interesting finding,

because it is not consistent with the reasonable prediction

that people who know more cities make more accurate de-

cisions choosing between those cities they know. A previ-

ous finding is that people who know more items are more

accurate in choosing between those cities they recognize

(Pachur, 2010), which has a natural interpretation in terms

of those people being generally more intelligent, and so

knowing more answers, or using their partial knowledge
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Figure 4: The pattern of change in the accuracy of recognition (squares), knowledge (circles), and guessing (dashed

line), in choosing the larger city, for individuals with different recognition rates. The bars show the distribution of

individuals over the recognition rates.
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better. The evidence for constancy of the knowledge curve

in Figure 4 is inconsistent with these findings and interpre-

tations.

Most importantly, however, Figure 4 clearly shows the

accuracy of recognition based decisions changes as a func-

tion of the underlying recognition rate. At very high and

very low levels of recognition, accuracy is around or above

0.9. At intermediate levels of recognition, accuracy is

between about 0.6 and 0.7. The statistical analyses pre-

sented in the appendix show that the data provide strong

evidence for this conclusion. In particular, Bayes factors

provide strong evidence for a quadratic, rather than linear

or constant, relationship between recognition-based deci-

sions and the recognition rate. This non-monotonic U-

shaped change is a clear violation of the assumption of

constant accuracy. It is also inconsistent with previous

analyses that have focused on the possibility of a linear

relationship, and not considered non-monotonic relation-

ships, by relying on correlation coefficient measures of the

association between the accuracy of recognition-based de-

cisions and recognition rates (Pachur, 2010).

The U-shaped relationship is easily and intuitively inter-

preted. It means that people who recognize very few cities

in a country tend to recognize the large cities, and so deci-

sions consistent with the recognition heuristic will tend to

be very accurate. Similarly, people who recognize almost

all the cities in a country tend only not to recognize a few

of the smallest cities, and so the decisions they make that

are consistent with the recognition heuristic will also tend

to be very accurate. The dip in the accuracy of recognition

decisions for people with moderate recognition rates for a

country means that, when a person knows about half the

cities, those cities recognized follow the city populations

less closely. These people do not simply recognize the

largest 50% of cities. Instead, recognition is more loosely

related to city population, and so decisions consistent with

the recognition heuristic will only sometimes be correct.

In effect, it is the exactness or looseness of the relation-

ship between the decision criterion and recognition that

the accuracy of the recognition heuristic measures.

The change in the accuracy of recognition decisions nat-

urally reconciles the contrasting results from the group-

level and individual-level analyses. Figure 4 shows that,

overall, recognition decisions are more accurate than those

based on knowledge. At worst, the accuracy of deci-

sions consistent with the recognition heuristic falls to the

level the knowledge decisions show throughout. Thus the

overall difference in accuracy observed in the group-level

analysis makes sense. For the individual-level analysis,

however, Figure 4 shows that for recognition levels cor-

responding to knowing very few or very many cities—

those cases in which recognition heuristic is applicable

relatively less often—the accuracy of decisions consistent

with the recognition heuristic is high. Thus, the decrease

in accuracy for high and low recognition rates, which gen-

erates the less-is-more effect in the standard analysis pre-

sented in Figure 1, does not eventuate. Guessing is equally

accurate, and knowledge is equally accurate, but decisions

consistent with the recognition heuristic are less accurate

for recognition levels where it can often be applied, but
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more accurate for recognition levels where is can be less

often applied. The net result of this relationship between

frequency of use and accuracy of use is that overall accu-

racy does not change as function of recognition rate. A

geometric intuition for this reconciling explanation is that

the U-shaped curve for the accuracy of recognition deci-

sions “undoes” the inverse-U-shaped curve predicted by

the less-is-more effect. The two nearly cancel each other

to produce the gentle linear relationship between accuracy

and recognition rate observed in Figure 3.

4 Discussion

The analyses and reconciliation presented here show that it

is important to be precise about what is meant by the less-

is-more effect. Goldstein and Gigerenzer (2002, p. 83)

distinguished between three different versions of the less-

is-more effect, and these versions have been influential

in subsequent theorizing (e.g., Pachur, 2010; Smithson,

2010). Smithson (2010, p. 232) provides a concise sum-

mary of the three versions: “One comparing more and less

knowledgeable agents, another comparing performance in

different domains, and a third comparing performance as

an agent learns new items.”

The first of these versions can be interpreted as claim-

ing that accuracy based on recognition is greater than ac-

curacy based on knowledge. This interpretation is con-

sistent with the finding, for example, that Londoners are

more accurate than New Yorkers in choosing Detroit as

having a larger population than Milwaukee (see Gigeren-

zer & Goldstein, 2011, p. 101). The group-level analysis

presented here tests this version, since it examines aver-

age performance of a group of people for questions where

recognition can and cannot be used. The results for these

data, summarized in Figure 2, are consistent with this ver-

sion of the less-is-more effect, since they show decisions

consistent with the recognition heuristic to be more accu-

rate than those made in situations where the recognition

heuristic cannot be applied.

The second version of the less-is-more effect can be in-

terpreted (loosely) as claiming that individuals who rec-

ognize many items will be more accurate than individuals

who recognize a moderate number. This interpretation is

the one made by the standard account of the effect, es-

pecially in the graphical form presented by Goldstein and

Gigerenzer (2002, Figure 2). The individual-level analy-

sis presented here tests this version, since it examines the

relationship between levels of recognition and accuracy

over individuals. The results, summarized in Figure 3,

are inconsistent with this version of the less-is-more ef-

fect, since they do not show the predicted non-monotonic

inverse-U shape relationship.

The data presented here do not directly address the third

version of the less-is-more effect, involving changes in

performance over time. To test this version longitudinal

data, tracking the accuracy of people as they learn to rec-

ognize items over time, are required.

The reconciliation of the group-level and individual-

level analyses suggested here—hinging on the systematic

and interpretable change in the accuracy of the recognition

heuristic over different levels of individual recognition—

is useful for a number of reasons reasons. The reconcil-

iation highlights the difference between the first and sec-

ond versions of the less-is-more effect. It is possible for

recognition-based to be more accurate than knowledge-

based decision-making overall, without implying that

there are individuals who use recognition more often who

are more accurate than individuals using knowledge. In

fact, one way of summarizing the main result is that three

conditions are needed for the standard less-is-more effect,

without the complication of considering recognition mem-

ory. One condition is that people must often follow the

recognition heuristic when it is possible to do so. The data

provide compelling evidence this condition is met. A sec-

ond condition is that the accuracy of decisions following

the recognition heuristic must be greater than the accu-

racy of decisions based on partial knowledge. The data

also show this condition being satisfied in each country

domain considered, as well as overall, and for the vast ma-

jority of individuals, both per country, and over all coun-

tries. The third condition, however, is that the accuracies

of the recognition-based and knowledge-based decisions

must be constant with respect to the recognition rate. It is

this condition that is not satisfied by the data, and the vio-

lation explains the lack of an individual-level less-is-more

effect.

A more general contribution of examining the accuracy

of recognition-based, knowledge-based, and guessing-

based decisions for different levels of recognition is to pro-

vide empirical constraints to guide theorizing and model

development. The empirical regularities evident in Fig-

ure 4 are non-trivial. The accuracy of decisions made

when both alternatives were recognized seems not to

change with a person’s level of recognition. Thus, it does

not appear that people who know more cities are more in-

telligent or knowledgeable, because they are not able to

make better decisions when they know both cities. The

implication for theories and models of individual differ-

ences in the current task is that mechanisms such as mem-

ory capacity or decision bias need to be carefully included,

so that they do not predict improved knowledge-based

performance for people with higher levels of recognition.

Similarly, the accuracy of guessing appears to be constant

around one-half across all recognition levels. This is in-

tuitive, but it would also have been plausible to expect,

for example, an increase in guessing accuracy for people

with higher recognition levels, again on the grounds they
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are more intelligent, and so more able to make educated

guesses.

Most importantly, the relationship between the accu-

racy of recognition-based decision-making and the level

of recognition, evident in Figure 4, provides a strong con-

straint on theorizing. It is clear that the decisions made by

following the recognition heuristic are, at least in some sit-

uations, not equally accurate for all levels of recognition.

The possibility of non-constancy was anticipated theoreti-

cally in general terms by a number of authors (e.g., Gold-

stein & Gigerenzer, 2002; Katsikopoulos, 2010; Pachur,

2010; Smithson, 2010). Goldstein and Gigerenzer (2002)

conducted simulations to examine whether constancy was

a necessary condition for the less-is-more effect. Pachur

(2010) examined the possibility of non-constancy by mea-

suring correlations in existing data sets, and showed the

consequences of these correlations by simulation. The

empirical regularities found in the data, however, are dif-

ferent. In particular, they reveal a non-monotonic re-

lationship between recognition rate and the accuracy of

recognition-based decisions that cannot be expressed by

linear correlations.

For these reasons, I think the analysis of how

recognition-based accuracy changes with recognition rate

provides a new sort of empirical evidence that should be

an especially valuable guide for model development. It is

possible to give an interpretation of the shape of the recog-

nition accuracy curve in Figure 4, which shows that very

low and very high recognition levels permit the most accu-

rate use of recognition. One explanation for the increase in

recognition-based accuracy at low recognition rates is that

people learn about cities in a way that depends on their

populations. Each of the countries considered here has a

small number of cities that are much larger than the others,

and if these are learned first, people with very low recogni-

tion rates will be be very likely only recognize these cities,

making their use of the recognition heuristic very accurate.

This sort of interpretation relates to the sequences with

which people learn to recognize items over time. Such

an explanation is more difficult to apply to the increased

accuracy of recognition-based decision making for high

recognition rates, since there are many cities with similar

small populations. Additional empirical evidence would

be useful for replicating the increase in recognition-based

accuracy for high levels of recognition that is evident in

the main panel of Figure 4.

A weakness of the current data is that they rely on the

use of different countries to ensure sufficient variation in

individual recognition rates to test the less-is-more effect.

It is an established experimental manipulation in the lit-

erature on the less-is-more effect to change countries in

order to induce changes in recognition rates within indi-

viduals, as when US and German residents are asked about

both US and German cities (e.g., Goldstein & Gigerenzer,

2002). Nonethelss, a narrow interpretation of the precon-

ditions for evaluating the less-is-more effect articulated

by (Gigerenzer & Goldstein, 2011) could challenge the

current data, claiming that the combination of countries

means there is no unitary “reference class” of items over

which recognition and accuracy measures are established.

I think, however, that the current data do usefully address

the existence and nature of the less-is-more effect, for two

reasons. First, the failure to find the less-is-more effect in

the individual-level analysis—in the sense of a failure to

find decrease in accuracy for individuals with very high

levels of recognition—is almost entirely driven by the US

country data. It is clear from Figure 3 that most the the

cases of individuals with high recognition rates come from

comparing US cities, and that there is no systematic and

discernible decrease in accuracy for individuals with high

recognition rates in these comparisons, as required by a

substantive interpretation of the less-is-more effect. In

this sense, the US country data provide evidence against

the less-is-more effect in a way that does meet reference

class preconditions. Secondly, and most generally, I think

the reference class conception does not need to be applied

narrowly to test the less-is-more effect in useful ways. All

of the countries in the data set have the key properties that

recognition-based decisions are more accurate than those

based on partial knowledge, and that the decisions people

make are consistent with the recognition heuristic. These

are the key theoretical elements underpinning the standard

accurate heuristics exposition of the less-is-more effect.

The data clearly show, however, that accuracy does not

decrease at high levels of recognition, which is what a the-

oretically interesting and empirically meaningful less-is-

more effect predicts. My reconciling analysis suggests this

is because the accuracy of recognition-based decisions is

not constant, but varies in an interpretable way. Thus, I

think the data have both the properties needed to test the

less-is-more effect, and the richness to allow for an analy-

sis that furthers our theoretical understanding.

5 Conclusion

The recognition heuristic makes a compelling contribution

to the general case for fast and frugal heuristic accounts of

human decision making. It is simple and plausible, and

presents a concrete way in which a heuristic following an

environmental regularity can generate impressively accu-

rate decisions. The data provide strong evidence for peo-

ple making decisions consistent with this heuristic. The

less-is-more effect is a surprising prediction derived from

the recognition heuristic by making some simple assump-

tions. The data, suggest, however, that these assumptions

are too simple. The accuracy of the recognition heuristic,

for the city domains considered, is not constant over the
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level of recognition in the way required for the standard

account of the less-is-more effect to emerge. Instead, the

accuracy of the recognition heuristic varies in systematic

and interpretable ways.

Future work should focus on developing models of

decision-making that explicitly tackle the issues of how

the environment supplies the information that drives

recognition and learning. To the extent that the regularities

evident in Figure 4 are replicable and generalizable, mod-

els need to be consistent with the relationship between the

accuracy of recognition-based and knowledge-based deci-

sions and recognition rate. The challenge is to understand

and model how people encounter and recognize items in

their environment, and the consequences of these inter-

actions and abilities for the performance of recognition-

sensitive decision heuristics.
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Appendix

This appendix presents the details of the statistical infer-

ences reported in the main text. The first analyses test

whether the relationship between accuracy and recogni-

tion at the individual level, as presented in Figure 3, fol-

lows the inverse-U-shape predicted by the less-is-more

effect. The second analyses test the patterns of change

in the accuracy recognition-based, knowledge-based, and

guessing-based decisions for different recognition rates, as

presented in Figure 4.

5.1 Individual-level relationship between

accuracy and recognition

The relevant data are the counts of ka
i

accurate deci-

sions out of na
i

questions, and kr
i

recognitions out of nr
i

cities, made by the ith individual. From these data, it

is natural to consider underlying accuracy θa
i

and recog-

nition θr
i

rates, defined as ka
i

∼ Binomial
(

θa
i
, na

i

)

and

kr
i
∼ Binomial

(

θr
i
, nr

i

)

.

I consider four interesting statistical models of the re-

lationship between θa
i

and θr
i
, corresponding to different

psychological interpretations of the relationship between

accuracy and recognition rate. The first model simply

assumes people guess all their answers, independent of

their recognition rates. The second assumes that people

have some constant rate of accuracy, independent of their

recognition rates. The third assumes a linear relationship,

so that accuracy increases or decreases with recognition

rate. The fourth assumes a inverse-U-shaped relationship,

in the form of a quadratic with a negative quadratic coef-

ficient, as predicted by the less-is-more effect.

I formalize these models—which in a Bayesian analysis

requires formalizing both the likelihood function and pri-

ors on parameters, since both express theoretical assump-

tions (Vanpaemel & Lee, 2012)—as

Hg : θa
i
=

1

2
,

Hc : θa
i
= c1, c1 ∼ U

(

0, 1
)

,

Hl : θa
i
= b2θ

r
i
+ c2, b2 ∼ N

(

0, 1
)

, c2 ∼ U
(

0, 1
)

,

Hq : θa
i
= a3 (θ

r
i
)
2
+ b3θ

r
i
+ c3, a3 ∼ T N

−
(

0, 1
)

,

b3 ∼ N
(

0, 1
)

, c3 ∼ U
(

0, 1
)

.

The priors were chosen by inspecting prior predictive dis-

tributions, and choosing combinations that corresponded

to reasonable expressions of the different alternative rela-

tionships between recognition and accuracy being tested.

In particular, the quadratic coefficient was constrained to
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Figure 5: The left-hand panels show the prior predictive (broken lines) and posterior predictive (solid lines) distribu-

tions for the constant (top), linear (middle), and quadratic (bottom) models of the relationship between accuracy and

recognition rate. The right-hand panels show the prior (broken line) and posterior (solid histogram) distribution for

the parameters corresponding to the constant (top), linear (middle), and quadratic (bottom) terms that allow for the

estimation of Bayes factors between the models using the Savage-Dickey density ratio method.
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be negative, corresponding to the prediction of the less-is-

more effect of an inverse-U-shaped function.

All four of these models were implemented as graph-

ical models in JAGS (Plummer, 2003), which allows for

Bayesian inference using computational sampling meth-

ods (see Lee & Wagenmakers, 2013, for an introduction

to Bayesian graphical models aimed at the cognitive sci-

ences), and applied to the data shown in Figure 3. The

results are based on 3 chains of 50,000 posterior samples

collected after 1000 discarded “burn in” samples for all

4 models, with the standard R̂ statistic used to check the

convergence of the chains (Brooks & Gelman, 1997).

The results of this analysis are shown in Figure 5. The

left-hand panels show the data, in the form of proportions

of recognized cities and accurate decisions for each indi-

vidual, as in Figure 3. The solid overlaid lines show the

posterior distribution of the constant, linear, and quadratic

models. The broken lines show samples from the prior

predictive distribution of each model.

The histograms in the right-hand panels show the pos-

terior distributions over the key coefficient parameters in

each of the models. These are the c1 constant term in the

constant model, the b2 slope term in the linear model, and

the a3 quadratic term in the quadratic model. The broken

lines show the prior distributions for these coefficients. A

standard Bayesian method, known as the Savage-Dickey

method, for finding Bayes factors between nested models

involves the ratio of prior to posterior densities at critical

values of the parameter that reduces the more complicated

model to its nested special case (Lee & Wagenmakers,

2013; Wetzels, Grasman, & Wagenmakers, 2010). Thus,

for example, the Bayes factor for comparing the constant

model to the guessing model is the ratio of the prior to

posterior density of the coefficient c1 at the value c1 = 1
2

.

Using this method, and approximating the posterior

densities with Normal distributions, the log Bayes factors

were estimated to be greater than 50 in favor of the con-

stant model over the guessing model, and for the linear

model over the constant model. This is overwhelming evi-

dence. The crucial log Bayes factor between the linear and

quadratic models was estimated to be 2.75, which means

the data provide about 15 times more evidence for the lin-
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Figure 6: The left-hand panels show the prior predictive (broken lines) and posterior predictive (solid lines) distributions

for the modified constant (top), linear (middle), and quadratic (bottom) models of the relationship between accuracy and

recognition rate. The right-hand panels show the prior (broken line) and posterior (solid histogram) distribution for the

parameters corresponding to these modified constant (top), linear (middle), and quadratic (bottom) terms that allow for

the estimation of Bayes factors between the models using the Savage-Dickey density ratio method.
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ear than the quadratic model. I interpret this as moderately

strong evidence.

An anonymous reviewer suggested that an additional

analysis should be done, using a quadratic model that more

closely reflected the predictions of the less-is-more effect

and, in particular, predicted the peak in the curve to be at

very high values of the recognition rate near 90%. To im-

plement this suggestion, I conducted a second version of

the analysis, using more informative priors on the param-

eters for the constant, linear, and quadratic models. The

intention was that these priors would capture additional

theory that—while not formally stated in the literature—

could reasonably be inferred from interpreting the theory

underlying the less-is-more effect and findings from previ-

ous relevant data. This additional theory serves to simplify

the models, make their predictions more precise, and al-

low the data to provide potentially more decisive evidence

for-and-against the models (Vanpaemel & Lee, 2012).

Once again, the exact prior distributions were largely

determined by inspecting prior predictive distributions.

For the quadratic model, standard results from the

quadratic formula were also applied so that he peak would

be near 90% recognition. These considerations resulted in

the new models4

Hc′ : θa
i
= c′1, c

′

1 ∼ U
(

0.5, 0.75
)

,

Hl′ : θa
i
= b′2θ

r
i
+ c′2, b

′

2 ∼ N
(

0,
1

0.052
)

,

c′2 ∼ U
(

0.5, 0.75
)

,

Hq′

: θa
i
= a′3 (θ

r
i
)
2
+ b′3θ

r
i
+ c′3, a

′

3 ∼ U
(

−0.3, 0
)

,

b′3 ∼ N
(

−1.8a′3,
1

0.052
)

, c′3 ∼ U
(

0.5, 0.75
)

.

The results of this analysis are shown in Figure 6. The

left-hand panels again show the data, the solid overlaid

lines show the posterior distribution of the constant, linear,

and quadratic models, and the broken lines show samples

from the prior predictive distribution of each model. The

4Note that I parameterize Normal distributions in terms of means and

precisions, to be consistent with their implementation in JAGS, so that,

for example, N
(

0,
1

0.052

)

is a Normal distribution with a mean of zero

and standard deviation of 0.05.
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Figure 7: The left-hand panels show the prior predictive (broken lines) and posterior predictive (solid lines) distribu-

tions for the constant (top), linear (middle), and quadratic (bottom) models of the relationship between the accuracy of

recognition-based decisions and recognition rate. The right-hand panels show the prior (broken line) and posterior (solid

histogram) distribution for the parameters corresponding to these constant (top), linear (middle), and quadratic (bottom)

terms that allow for the estimation of Bayes factors between the models using the Savage-Dickey density ratio method.

The error bars in the left-hand panels show one standard error for the binomial proportions.
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histograms in right-hand panels show the posterior distri-

butions over the key coefficients in each of the models,

allowing the estimation of Bayes factors.

The log Bayes factors for these modified models were

estimated to be greater than 50 in favor of the modified

constant model over the guessing model, and for the lin-

ear model over the constant model. This is overwhelm-

ing evidence. The log Bayes factor between the modi-

fied linear and modified quadratic models was estimated

to be 4.72, which means the data provide about 100 times

more evidence for the modified linear than the modified

quadratic model. I interpret this as strong evidence. In

short, the modified models using prior distributions that

made stronger theoretical assumptions, especially about

the nature of the less-is-more effect, led to the same con-

clusions as the original analysis.

Intuitively, these analyses provide evidence that the re-

lationship between accuracy and recognition rate is well

captured by a gently increasing linear relationship, and

that there is no evidence for the non-monotonicity of ac-

curacy via a decrease at high levels of recognition, even

when considering a quadratic model specifically designed

to predict such a decrease.

5.2 Changes in accuracy with recognition

Figure 4 shows the accuracy recognition-based,

knowledge-based, and guessing-based decisions, as

a function of (binned) recognition rates. I examine

whether these data provide evidence for guessing, con-

stant, linear, or quadratic relationships using essentially

the same methodology used to examine the relationship

between individual-level accuracy and recognition. The

same Hg, Hc, and Hl models were used, but the Hq

model was modified to test U-shaped, rather than inverse-

U shaped quadratics, in order to test for the apparent

increase in accuracy with high and low recognition rates

for recognition-based decisions. This change in the model

was achieved simply by truncating to positive values of

the quadratic coefficient, so that a3 ∼ T N
+
(

0, 1
)

.
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Figure 8: The left-hand panels show the prior predictive (broken lines) and posterior predictive (solid lines) distribu-

tions for the constant (top), linear (middle), and quadratic (bottom) models of the relationship between the accuracy of

knowledge-based decisions and recognition rate. The right-hand panels show the prior (broken line) and posterior (solid

histogram) distribution for the parameters corresponding to these constant (top), linear (middle), and quadratic (bottom)

terms that allow for the estimation of Bayes factors between the models using the Savage-Dickey density ratio method.

The error bars in the left-hand panels show one standard error for the binomial proportions.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Constant

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Linear

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recognition Rate

A
cc

ur
ac

y 
R

at
e

Quadratic

0.5 0.55 0.6 0.65 0.7
0

2000

4000

6000

Constant Term

−0.05 0 0.05 0.1 0.15 0.2
0

1000

2000

Linear Term

0 0.4 0.8 1.2 1.6 2
0

2000

4000

6000

8000

Quadratic Term

The results for this analysis for decisions consistent

with recognition are shown in Figure 7. The log Bayes

factors for the constant over the guessing model, and for

the quadratic over all of the other three models, are all

greater than 50. The log Bayes factor for the constant over

the linear model is 3.22. More importantly, though, the

data provide evidence for an above-guessing constant ac-

curacy rather than a linear relationship between accuracy

and recognition, if only constant or monotonic relation-

ships are considered. They, however, provide overwhelm-

ing evidence for a non-monotonic quadratic model over

the monotonic alternatives. Intuitively, the posterior distri-

butions in Figure 7 show that it is not definitively clear that

the linear coefficient is not 0, but it is clear the quadratic

term is not. I conclude that the data provide evidence

for a non-monotonic relationship between the accuracy

of recognition-based decisions and recognition rate, with

greater accuracy at high and low levels of recognition.

The results for knowledge-based decisions are shown

in Figure 8. The log Bayes factor for the constant over the

guessing model is greater than 50. The log Bayes factors

for the constant over the linear and quadratic model are

1.45 and 1.31, respective. Thus, the data provide evidence

for the constant model. This evidence is overwhelming

when considering the guessing model as an alternative,

but weak in relation to the linear and quadratic models.

My conclusion is that the constant model is favored by

the current data, but the possibility of linear or more com-

plicated relationships remains, and additional evidence—

most obviously in the form of additional data—would be

valuable.

The results for guessing-based decisions are shown in

Figure 9. The log Bayes factor for the constant over the

guessing model is again greater than 50, but the log Bayes

factor favoring the constant over the linear model is about

3.6. This means the data provide about 30 times more

evidence for a constant rather than linear relationship. Be-

cause of the strength of this evidence, there is no need to

report the results for the quadratic model. Overall, I inter-

pret the results as showing that the accuracy of guessing-
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Figure 9: The left-hand panels show the prior predictive (broken lines) and posterior predictive (solid lines) distributions

for the constant (top) and linear (bottom) models of the relationship between the accuracy of guessing-based decisions

and recognition rate. The right-hand panels show the prior (broken line) and posterior (solid histogram) distribution for

the parameters corresponding to these constant (top) and linear (bottom) terms that allow for the estimation of Bayes

factors between the models using the Savage-Dickey density ratio method. The error bars in the left-hand panels show

one standard error for the binomial proportions.
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based decisions is constant over recognition rate, but a lit-

tle higher than the chance accuracy of one-half.
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