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Reference dependence, cooperation, and coordination in games

Mark Schneider∗ Jonathan W. Leland†

Abstract

The problems of how self-interested players can cooperate despite incentives to defect, and how players can coordinate

despite the presence of multiple equilibria, are among the oldest and most fundamental in game theory. In this report, we

demonstrate that a plausible and even natural specification of the reference outcome in a game simultaneously predicts sys-

tematic cooperation and defection in the Prisoner’s Dilemma, as well as equilibrium selection and out-of-equilibrium play in

coordination games. The predictions hold even if players are purely self-interested, there are no salient labels, the game is

played only once, and there is no communication of any kind. Furthermore, the predictions are unique, as opposed to the

multiplicity of equilibria in the infinitely repeated Prisoner’s Dilemma and in coordination games. We apply experimental

results to test the predictions of the model.

Keywords: prisoner’s dilemma, coordination games, reference-dependent preferences.

1 Introduction

Two of the most fundamental challenges in the social sci-

ences concern how groups, from dyads to firms to na-

tions, achieve cooperation and coordination. The Prisoner’s

Dilemma, a situation in which two players each choose

between a socially desirable (cooperative) strategy and an

alternative strategy more aligned with their material self-

interests, epitomizes the difficulty of achieving cooperation.

It has served as a paradigm for understanding a broad range

of social, economic and political phenomena from the pric-

ing decisions of firms to arms races during the cold war

(Rapoport, 1974). Games like Rousseau’s Stag-hunt, ex-

emplify the difficulty of achieving coordination in settings

with multiple Nash equilibria. In this report, we show that a

simple heuristic in which players have reference-dependent

preferences predicts cooperation and defection in the Pris-

oner’s Dilemma and identifies when and how coordination

problems will be solved. Previous explanations of cooper-

ation in the Prisoner’s dilemma rely on the game being re-

peated (Mas-Colell, Whinston & Green, 1995) or on players

having preferences for altruism or reciprocity (Camerer &

Fehr 2006). Common explanations for coordinated behavior

rely on communication or salient labels (Schelling 1960). In

contrast, our results obtain with purely self-interested play-

Copyright: © 2015. The authors license this article under the terms of

the Creative Commons Attribution 3.0 License.
∗University of Connecticut, School of Business, 2100 Hillside Road

Unit 1041. Storrs, CT 06269-1041. E-mail: markschneider@aya.yale.edu.
†National Science Foundation, Arlington VA. Email: JLeland@nsf.gov.

This work was done while serving as Senior Fellow in the Consumer Finan-

cial Protection Bureau’s Office of Research. The views expressed are those

of the authors and do not necessarily represent those of the Consumer Fi-

nancial Protection Bureau, the National Science Foundation, or the United

States Government.

ers in single-shot games, without salient labels or commu-

nication.

Classical game theory assumes a great deal of sophis-

tication on the part of players. Such players reason us-

ing backward induction and common knowledge, and they

assume that their opponents are as sophisticated as them-

selves. This sophistication in strategic thinking seems at

odds with the Bayesian view of choice under uncertainty

that permeates classical decision theory, in which agents

assign probabilistic beliefs over their opponent’s strategies

and maximize their expected payoff given their subjective

information. This Bayesian approach to game theory has

been advocated prominently by Aumann (1987) and others.

Still the assumption inherent in the Bayesian approach that

agents have uniquely defined subjective beliefs which sat-

isfy the laws of probability theory has also been viewed as a

strong assumption (e.g., Gilboa, 2009).

In this paper, we take an approach rooted in the judg-

ment and decision-making literature (e.g., Payne, Bettman,

& Johnson, 1993; Gigerenzer & Todd, 1999) by assum-

ing agents use simple heuristics when formulating strategy

choice, without requiring the aid of either strategic or prob-

abilistic sophistication.

We note that one strong property of Nash equilibrium is

that players focus only on unilateral deviations, assuming

others are playing their best responses. But why should a

reasonable player not be permitted to consider, or at least

entertain the possibility, of bilateral, or even multilateral de-

viations? The types of games we will focus on in this paper

are primarily coordination games in which players can ei-

ther choose a safe strategy or a riskier strategy that offers

the possibility of gain from mutual coordination as well as

the possibility of loss if coordination is not achieved.
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In this context, and when defining a “safe” strategy with-

out requiring the existence of probabilistic beliefs, we return

to a strategy from classical game theory in which an agent

seeks to maximize his minimum gain. We refer to this as the

maximin strategy and the minimum payoff in this strategy is

called the player’s maximin payoff. The maximin strategy

is a natural analog to a riskless option since it guarantees a

player at least as much as can be obtained with certainty, in-

dependent of the other players’ actions. We propose that, in

games involving coordination, a player’s payoff at the max-

imin strategy profile serves as a natural reference point from

which to evaluate gains or losses arising from success or

failure to coordinate.

Most game theoretic treatments of issues of cooperation

and coordination assume players choose strategies in accor-

dance with the expected utility hypothesis. However, re-

searchers have long questioned the descriptive validity of

expected utility theory (e.g., Kahneman & Tversky 1979;

Tversky & Kahneman 1981). One criticism concerns the

assumption that final wealth levels are the carriers of value.

Instead, abundant experimental evidence suggests that the

carriers of value are gains and losses relative to some ref-

erence point. This observation has spawned an entire class

of “reference-dependent” utility models, most notably Kah-

neman and Tversky’s Prospect theory. Given the success

of such models at explaining risky decisions, it seems natu-

ral to examine the consequences of reference dependence

in strategic settings. While prior research has proposed

that reference dependence can be applied to game theory

(Shalev, 2000), no general specification for the reference

point has been provided. For this purpose, the classical max-

imin strategy provides a natural definition of the reference

outcome and default strategy in a game. Recent work shows

that many of the classical expected utility paradoxes can be

resolved in a model that is linear in probabilities for any

choice set when the maximin payoff serves as an agent’s

reference point (Schneider, Day & Garfinkel, 2014). Here

we consider the implications of a maximin reference strat-

egy when applied to games.

For simplicity and illustration purposes, our analysis fo-

cuses on 2x2 normal form games. Our argument is gen-

eral in the sense that the maximin strategy can be identi-

fied in any game, although in general it need not be unique.

We introduce a heuristic for predicting when a player will

play or deviate from the maximin strategy. In particular, we

consider agents who anchor on the maximin strategy profile

(i.e., the strategy profile where all players play the maximin

strategy), and then decide whether to deviate from that strat-

egy according to the following criterion (stated for Player 1,

but analogous for Player 2):

1. If the gain to Player 1 from bilateral deviation exceeds

his loss from unilateral deviation, and Player 2 also

benefits from bilateral deviation, then deviate from the

maximin strategy.

2. If the gain to Player 1 from unilateral deviation exceeds

his loss from bilateral deviation, and Player 2 is worse

off from bilateral deviation, then deviate from the max-

imin strategy.

3. Otherwise, play the maximin strategy.

Note that Player 1 strives for bilateral deviation from the

maximin strategy profile only if both players benefit from

that deviation. In contrast, Player 1 strives for unilateral

deviation from the maximin strategy profile only when such

deviation benefits Player 1, but a simultaneous deviation is

harmful, and therefore unlikely, for Player 2.

We can formalize the heuristic as follows: In a two player

game, denote Player i’s payoff at strategy profile (si, sj) by

xi(si, sj). Let (m1,m2) denote the strategy profile when

both players play their maximin strategies. For a strategy

profile (s1, s2) let x∗

1
(s1, s2) denote Player 1’s gain from

bilateral deviation from the maximin strategies (i.e., if both

players deviate from (m1,m2) to strategy profile (s1, s2)).
That is, x∗

1
(s1, s2) = max[x1(s1, s2)−x1(m1,m2), 0]. De-

note Player 1’s loss from bilateral deviation by x
1
(s1, s2) =

max[x1(m1,m2) − x1(s1, s2), 0] with analogous notation

for Player 2. In addition, denote Player 1’s gain or loss from

unilateral deviation by x∗

1
(s1,m2) or x

1
(s1,m2) respec-

tively. The reference-dependent maximin criterion (stated

for Player 1) can be formalized as follows:

Reference-Dependent Maximin (RDM) Criterion:1

1. If x∗

1
(s1, s2) > x

1
(s1,m2) and x2(s1, s2) >

x2(m1,m2), play s1.

2. If x∗

1
(s1,m2) > x

1
(s1, s2) and x2(s1, s2) <

x2(m1,m2), play s1.

3. Otherwise, play m1.

We thus consider a decision rule in which a player deviates

from the maximin strategy profile when it is advantageous to

deviate, given the possible gains and losses from deviation

and the incentives of the other player. The key assumptions

of the RDM criterion are that players anchor on the maximin

strategy profile, that gains and losses are measured relative

to one’s payoff at this strategy profile (which will always

be the maximin payoff in any Prisoner’s Dilemma or Stag-

Hunt game, but may not be in other games), and that players

consider both gains and losses due to unilateral deviation

or bilateral deviation from the maximin strategy profile and

whether their opponent is better or worse off in the event

that both players deviate (and thus whether their opponent

has an incentive to deviate to that outcome, relative to his

payoff at the maximin strategy profile).

We apply the RDM criterion to experimental results from

classic 2x2 games in the sections to follow.2 Let x∗

i denote

1This strategy may be more broadly defined in terms of utility differ-

ences and may be further generalized to account for loss aversion.
2The data on the prisoner dilemma games are from Holt and Capra

(2000). The data for the Stag-Hunt game are from Leland (2013). The data
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Figure 1: The prisoner’s dilemma. Here and in Figures 2–

4, the rows are Player 1’s choices, the columns, Player 2’s.

Each cell shows payoffs for Players 1 and 2, respectively.

PD0 C D

C
a x c z

D
b y d w

b > a > d > c z > x > w > y

the highest possible payoff to Player i from deviating from

the maximin strategy, and let zi denote the highest payoff

to Player i from playing either strategy. We consider games

where payoffs are scaled such that x∗

i > czi for c in (0, 1),
where c is chosen so that x∗

i and zi are not very different in

magnitude.

2 Reference dependence in the pris-

oner’s dilemma

We now consider the implications of the reference-

dependent maximin (RDM) criterion in the context of the

Prisoner’s Dilemma. For the general game PD0 in Figure

1, and in all subsequent games, the left-most payoff in each

cell corresponds to Player 1’s payoff. In the experimental

games in subsequent figures, Nash equilibria are highlighted

in yellow in the bottom half of a cell, and the predictions of

the RDM criterion are highlighted in blue in the top half of

a cell. The modal outcome of the experiment is displayed in

bold. In game PD0, each player chooses between cooperate

(C) and defect (D). The game PD0 is a Prisoner’s Dilemma

if b > a > d > c and z > x > w > y.

Payoffs d and w are the maximin payoffs for Players 1

and 2, respectively. If Player 1 follows the RDM criterion,

the gain from switching from D to C, a−d, is compared with

the potential loss from switching (d − c). Under the RDM

criterion, Player 1 will cooperate in the Prisoner’s Dilemma

if and only if the possible gain from cooperating (relative to

the maximin payoff) exceeds the possible loss from cooper-

ating and x > w (i.e., Player 2 benefits from bilateral devia-

tion from the maximin strategy profile). More formally, we

have the following:

Proposition 1: If Player 1 and Player 2 each follow the

RDM criterion then in a Prisoner’s Dilemma (Game PD0)

both players cooperate if and only if d < 0.5(a + c), w <

0.5(x+ y).

on battle of the sexes are from Leland and Schneider (2014). The minimum

effort coordination game experiment is from Goeree and Holt (2001).

Figure 2: Experimental test of Proposition 1.

PD1 C D

C
3.00 3.00 0.00 5.00

17%

D
5.00 0.00 2.00 2.00

83%

PD2 C D

C
8.00 8.00 0.00 10.00

58%

D
10.00 0.00 2.00 2.00

42%

Note that the RDM criterion also requires x > w and

a > d, but these conditions are already given as part of

the definition of a Prisoner’s Dilemma. As noted, the ob-

servation that players sometimes cooperate in the Prisoner’s

dilemma has been a theoretical challenge. The theory of

repeated games can explain cooperation in the infinitely re-

peated prisoner’s dilemma. However, in repeated games the

same theory permits too many equilibria to reliably predict

which strategy profile will be played and when cooperation

will be observed. In addition, the theory of repeated games

cannot explain the observation that players sometimes co-

operate even when the game is played only once. Coopera-

tion in the one-shot prisoner’s dilemma can be explained by

players with other-regarding preferences (Camerer & Fehr,

2006, Fehr & Schmidt, 1999). In contrast, Proposition 1

predicts that cooperation may arise even in a one-shot pris-

oner’s dilemma with entirely self-interested players if the

players use reference-dependent decision rules of the kind

embodied in the RDM criterion. To test the necessary and

sufficient conditions for cooperation, predicted in Proposi-

tion 1, first consider game PD1 reported in Holt and Capra

(2000) and displayed in Figure 2.

Let the maximin payoff serve as a reference point for

Player 1 and Player 2. Game PD1 tests the sufficient condi-

tion for equilibrium play in Proposition 1. In PD1, a+c = 3
and d = 2. Also, x + y = 3 and w = 2. By Proposition 1,

the RDM criterion predicts both players to play D in PD1.

In the experiment from Holt and Capra (2000) only 17% of

players played C in PD1.

Game PD2 tests the necessary condition for equilibrium

play in Proposition 1. In this game, a + c = 8 and d =
2. Also, x + y = 8 and w = 2. By Proposition 1, the

RDM criterion predicts both players to play C in PD2. In

the experiment, Holt and Capra (2000) found that 58% of

players now played C in this game.

http://journal.sjdm.org/vol10.2.html
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Figure 3: Experimental test of Proposition 2.

SH0 L R

U
a x c z

D
b y d w

a > b ≥ d > c x > z ≥ w > y

SH1 L R

U
8.00 8.00 2.00 2.10

94% 3% 97%

D
2.10 2.00 2.10 2.10

3% 0% 3%

97% 3%

SH2 L R

U
8.00 8.00 2.00 7.90

13% 24% 37%

D
7.90 2.00 7.90 7.90

21% 42% 63%

34% 66%

SH3 L R

U
8.00 8.00 2.00 2.10

41% 4% 45%

D
7.90 2.00 7.90 2.10

51% 4% 55%

92% 8%

3 Reference-dependence in coordina-

tion games

We next consider implications of the RDM criterion for

coordination games. Since Schelling (1960), coordination

games have posed a fundamental challenge for game theory

because it is not clear how to uniquely predict an outcome if

there are multiple Nash equilibria.

3.1 The stag-hunt

Consider the stag-hunt coordination games in Figure 3. The

general game SH0 is a stag-hunt coordination game if the

payoffs for each player satisfy the inequalities specified in

the figure. As before, d and w are the maximin payoffs for

Players 1 and 2, respectively. This game has two pure strat-

egy Nash equilibria, UL and DR. UL is the payoff dominant

equilibrium. We refer to DR as the security-minded equi-

librium, since it reflects a preference for smaller guaranteed

payoffs over larger riskier payoffs. It is widely recognized

that play sometimes results in a payoff-dominant equilib-

rium, and sometimes in a security-minded equilibrium, but

it is not clear how to systematically predict when each will

be played. Formally, we have the following proposition:

Proposition 2: If Players 1 and 2 follow the RDM crite-

rion in a stag-hunt coordination game:

1. Both players will coordinate on the payoff-dominant

Nash equilibrium if and only if d < 0.5(a + c) and

w < 0.5(x+ y).

2. Both players will coordinate on the security-minded

Nash equilibrium if and only if d > 0.5(a + c) and

w > 0.5(x+ y).

3. Players’ choices will produce one of the non-

equilibrium outcomes if neither the conditions in (1)

nor (2) hold.

As before, the RDM criterion also requires x > w and a > d

for both players to coordinate on the payoff dominant equi-

librium, but these conditions are given as part of the struc-

ture of the Stag Hunt game. In Figure 3, games SH1, SH2,

and SH3 test necessary and sufficient conditions for equi-

librium play in Proposition 2. These games were played by

experimental subjects (Leland, 2013). Of the two pure strat-

egy Nash equilibria, UL is always payoff dominant, and DR

is always security-minded. Equilibrium refinements predict

that a Nash equilibrium will be played.

In SH1, a + c = 10 and d = 2.10. Also, x + y = 10
and w = 2.10. Thus, by Proposition 2, the payoff-dominant

equilibrium, UL, should be played. As predicted by RDM,

the experiment in Leland (2013) found that UL was the

modal outcome in SH1, played 94% of the time.

In SH2, a + c = 10 and d = 7.90. Also, x + y = 10
and w = 7.90. Thus, by Proposition 2, the security-minded

equilibrium, DR, should be played. As predicted by RDM,

Leland (2013) found that DR was the modal outcome in

SH2, played 42% of the time (No other outcome was played

more than 25% of the time).

In SH3, a+ c = 10, and d = 7.90. Also, x+ y = 10 and

w = 2.10. Thus, Proposition 2 predicts a non-equilibrium

outcome to be played. More specifically, RDM predicts the

particular disequilibrium outcome DL to be played. As pre-

dicted, DL was the modal outcome in SH3, played 51% of

the time.

3.2 Battle of the sexes

A second classic coordination game is the battle of the sexes,

illustrated in Figure 4. Game BOS0 is a generic battle of

the sexes game if the payoffs for each player satisfy the in-

equalities specified in the figure. The game has two pure

strategy equilibria, one which favors Player 1 (UL) and the

other which favors Player 2 (DR). We refer to UL as the P1-

preferred equilibrium and DR as the P2-preferred equilib-

http://journal.sjdm.org/vol10.2.html
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Figure 4: Experimental test of Proposition 3.

BOS0 L R

U
a x c z

D
b y d w

a > b ≥ d > c w > y ≥ x > z

BOS1 L R

U
10.00 9.00 1.00 1.00

87% 3% 90%

D
2.00 9.00 2.00 10.0

10% 0% 10%

97% 3%

BOS2 L R

U
10.00 2.00 1.00 1.00

13% 51% 64%

D
2.00 2.00 2.00 10.00

7% 29% 36%

21% 79%

BOS3 L R

U
10.00 9.00 1.00 1.00

9% 1% 10%

D
9.00 9.00 9.00 10.00

81% 9% 90%

90% 10%

rium. The RDM criterion provides a way to systematically

predict when we will observe players coordinating on UL or

DR, as well as when a non-equilibrium outcome will result.

Note first that the maximin strategy profile is DL and thus

payoffs b and y serve as reference points for Players 1 and

2, respectively. Under the RDM criterion, we have the fol-

lowing result:

Proposition 3: If Players 1 and 2 follow the RDM crite-

rion in a battle-of-the-sexes game:

1. Both players will coordinate on the P1-preferred equi-

librium if and only if b < 0.5(a+ c) and y > 0.5(w+
z).

2. Both players will coordinate on the P2-preferred equi-

librium if and only if b > 0.5(a+ c) and y < 0.5(w+
z).

3. Players’ choices will produce one of the non-

equilibrium outcomes if neither the conditions in (1)

nor (2) hold.

Note that the RDM criterion also requires b > c and y > z,

but these are given as part of the structure of the battle-

of-the-sexes game. Consider three instantiations of a bat-

tle of the sexes coordination game in Figure 4. Games

BOS1, BOS2, and BOS3 test necessary and sufficient con-

ditions for equilibrium play in Proposition 3. The games

were played by experimental subjects (Leland and Schnei-

der, 2014).

In BOS1, a + c = 11 and b = 2. Also, w + z = 11 and

y = 9. By Proposition 3, the P1-preferred equilibrium, UL,

should be played. As predicted by the RDM criterion, UL

was the modal outcome in BOS1, played 87% of the time.

In BOS2, a + c = 11 and b = 2. Also, w + z = 11
and y = 2. By Proposition 3, we should observe one of the

non-equilibrium outcomes to be played. In particular RDM

predicts the disequilibrium UR to be played. As predicted

by the RDM criterion, UR was the modal outcome in BOS2,

played 51% of the time.

In BOS3, a + c = 11 and b = 9. Also, w + z = 11 and

y = 9. Proposition 3 predicts a non-equilibrium outcome to

be played. In particular, RDM predicts the disequilibrium

outcome DL to be played. As predicted, DL was the modal

outcome in BOS3, played 81% of the time.

4 Games with more than two strate-

gies

In this section, we briefly illustrate how the RDM criterion

may be extended to games with more than two strategies.

Denote the set of strategies available for Players 1 and 2

by S1 and S2, respectively. We can generalize the RDM

criterion to larger games as follows. Define:

y := max{[x1(s1, s2)− x1(m1,m2), 0] | s2 in S2}

−max{[x1(m1,m2)− x1(s1, s
′

2
), 0] | s′

2
in S2}

Then the generalized RDM criterion (for Player 1) can be

formalized as follows:

1. If strategy s1 maximizes y over all strategies s1 in S1

(other than m1), and if x2(s1, s2) > x2(m1,m2), play

s1.

2. Otherwise play m1.

The first part of Condition (1) states that Player 1 deviates

from the maximin strategy to strategy s1 only if the differ-

ence between the maximum possible gain and the maximum

possible loss from playing s1 (relative to her payoff at the

maximin strategy profile) is greater than for any other strat-

egy s1 in S1 (other than m1) available to Player 1. The

second part of Condition (1) states that Player 2 is better off

at that new strategy profile than she would be at the max-

imin strategy profile (and thus views the change in payoffs

as a gain). If no such strategy profile satisfies the properties

in Condition (1), then Player 1 plays m1.

http://journal.sjdm.org/vol10.2.html
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4.1 A minimum effort coordination game

In this section, we illustrate how the generalized RDM cri-

terion can be applied to a coordination game with more

than two strategies. Goeree and Holt (2001) consider a

coordination game as follows: Two players, P1 and P2,

choose “effort” levels, e1 and e2 simultaneously. P1 receives

min(e1, e2) − ce1 where c < 1 is a coefficient indicating

the cost of effort. Likewise, P2 receives min(e1, e2)− ce2.

Effort levels are integers in the interval [110, 170]. Any

common effort level in this game is a Nash equilibrium and

thus it is not clear how to select among the 61 different Nash

equilbria, and whether players will be able to coordinate on

an equilibrium at all.

In their experimental implementation, Goeree and Holt

considered two variants of the game, one in which c = 0.10

and the other in which c = 0.90. Note that, for any c >

0, the maximin strategy is to choose an effort level of 110,

which guarantees that player a payoff of 110(1 − c). For a

given Player i, any other strategy admits the possibility of a

lower payoff since any effort level ei > 110 yields payoff

110− cei, whenever Player j chooses effort level 110.

For the case where c = 0.10, under the generalized RDM

criterion, Player i deviates from the maximin strategy to the

strategy that maximizes the expression in condition 1. The

strategy that does so is to choose effort level 170. To see

this, note that the maximum possible loss to Player 1 can

occur only when e2 = 110. Setting e2 = 110 in com-

puting Player 1’s maximum loss from deviating from the

maximin strategy, the generalized RDM criterion recom-

mends the strategy for Player 1 that maximizes the expres-

sion, min(e1, e2) − 2c(e1 − 110) over all possible strate-

gies for Player 2. For c = 0.10, Player 1 is predicted

to choose the effort level that maximizes the expression,

min(ei, e2)− 0.2e1.

For the cases when e1 < e2 or e1 = e2, note that 0.8e1 is

maximized at the highest possible value of e1. Also note that

for a fixed e1, Player 1 is always worse off when e1 > e2
compared to when e1 < e2 or e1 = e2. Thus, the strat-

egy profile which maximizes Player 1’s payoff occurs when

e1 = e2 = 170. Since Player 2 also benefits from deviating

to this strategy, the generalized RDM criterion predicts play-

ers to choose the highest effort level of 170 when c = 0.10.

For the case where c = 0.90, the generalized RDM crite-

rion recommends the strategy which maximizes the expres-

sion, min(e1, e2)− 1.8e1 + 88.

For the cases when e1 < e2 or e1 = e2, note that −0.8e1is

maximized at the lowest possible value of e1. As before,

note that for a fixed e1, Player 1 is always worse off when

e1 > e2 as compared to when e1 < e2 or e1 = e2. Thus,

the strategy profile that maximizes Player 1’s payoff occurs

when e1 = e2 = 110. Hence, due to the high cost of effort,

the downside from deviating from the maximin strategy out-

weighs the upside, and the generalized RDM criterion pre-

Table 1: Game SH3 with inequality-averse payoffs.

L R

U 8,8 2− 0.1α1, 2.1− 0.1β2

D 7.9− 5.9β1, 2− 5.9α2 7.9− 5.8β1, 2.1− 5.8α2

dicts players to choose the lowest effort level (110) when

c = 0.90.

As predicted, for c = 0.10, Goeree and Holt observed “be-

havior is quite concentrated at the highest effort level of

170; subjects coordinate on the Pareto-dominant outcome.

The high effort cost treatment (c = 0.9), however, produced

a preponderance of efforts at the lowest possible level.” (p.

1408).

5 Alternative models of behavior in

games

We have seen that, at least for situations that admit the possi-

bility of coordination or cooperation, the RDM criterion has

some descriptive advantages over the Nash equilibrium. In

the previous sections, the predictions made by the RDM cri-

terion are unique, as compared to the multiplicity of Nash

equilibria in coordination games. The RDM criterion also

predicts experimentally observed out-of-equilibrium play in

the stag-hunt and battle of the sexes, as well as when play-

ers will systematically cooperate and defect in the prisoner’s

dilemma.

More recently, a plethora of alternative models have

emerged to predict behavior in games. Here we focus

on two prominent examples—cognitive hierarchy models

(e.g., Stahl & Wilson 1994, Camerer et al., 2002) and mod-

els of other-regarding preferences (e.g., Fehr and Schmidt,

1999). Models of boundedly rational behavior such as level-

k thinking or cognitive hierarchy models postulate different

levels of strategic thinking with higher level players best-

responding assuming their opponents are less sophisticated

than they are. One of the most successful implementations

of this model for coordination games posits players who are

level 1 boundedly rational and best respond assuming their

co-players are level-0 players who play randomly. How-

ever, this model cannot explain cooperation in the prisoner’s

dilemma since D is always a dominant strategy, and thus C is

never a best response under any probabilistic beliefs a player

might have over his opponent’s strategies. In addition, this

model does not explain equilibrium selection in the mini-

mum effort coordination game discussed in Section 4.1. If

one treats each of his opponent’s strategies as equally likely,

he will choose an effort level of 164 when c = 0.10 and an

effort level of 116 when c = 0.90, in contrast to the pre-

dominant equilibrium behavior at experimentally observed

effort levels 170 when c = 0.10 and 110 when c = 0.90.

http://journal.sjdm.org/vol10.2.html


Judgment and Decision Making, Vol. 10, No. 2, March 2015 Reference dependence in games 129

The classic model of other-regarding preferences (Fehr

& Schmidt, 1999), postulates that in a two player game in-

volving Players i and j, Player i will transform his payoffs

according to the utility function

Ui(x) = xi − αimax[xj − xi, 0]− βimax[xi − xj , 0]

where Fehr and Schmidt (1999) assume that αi and βi are

non-negative. Players then best respond according to Nash

equilibrium strategies, given their transformed payoffs. For

game SH3, the transformed payoffs are shown in Table 1.

Note that even under the transformed payoffs, players

would never play DL in equilibrium, since Player 1 has an

incentive to deviate to strategy U whenever α1 and β1 are

non-negative. Thus, other-regarding preferences cannot ex-

plain the experimentally observed out-of-equilibrium play

in game SH3 even when accounting for the two free param-

eters in the model. In contrast, the RDM criterion makes all

of its predictions without any free parameters.

6 Conclusion

In this paper, we have introduced a player’s maximin strat-

egy as a plausible reference point in strategic settings as

well as a criterion for predicting when a player will play

or deviate from her maximin strategy in games involv-

ing coordination or cooperation. We have shown that this

reference-dependent maximin criterion predicts experimen-

tally observed systematic cooperation, coordination, and

out-of-equilibrium play in classic games such as the Pris-

oner’s Dilemma, the Stag Hunt, and the Battle of the Sexes.

We also illustrated how the criterion may be generalized to

games with more than two strategies and showed that this

generalization predicts experimentally observed equilibrium

selection in a minimum effort coordination game with 61

different Nash Equilibria. All of these results obtain even if

players are purely self-interested, there are no salient labels,

the game is played only once, and there is no communica-

tion of any kind. Furthermore, these predictions that follow

from the RDM criterion are unique, in contrast to the mul-

tiplicity of equilibria which arise in coordination problems

and infinitely repeated games.

In obtaining our results, the principle of reference depen-

dence has been extended from individual decisions into the

domain of strategic interactions via the maximin strategy of

classical game theory. The Prisoner’s Dilemma and the stag

hunt are two of the most widely studied social dilemmas

in game theory, as they epitomize the tension between so-

cial welfare and individual rationality. The results presented

here provide a mechanism for predicting how this tension

can be resolved.
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