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Full instructions for the task

Before beginning the task, participants read a set of illustrated on-screen instructions. Each

bullet point below shows text from a single screen (illustrations are omitted here to save

space). The order in which participants were introduced to the gains and losses conditions,

and all references to the tasks thereinafter, as well as the final example, reflected the block

order of gains and losses for each particular participant. The example below is one in which

the losses condition came first.

• Welcome! Thank you for participating in this experiment.

• In this experiment we would like you to choose between two one-armed bandits of

the sort you might find in a casino.

• The one-armed bandits will be represented like this

• For the first half of the experiment, your task is to minimize how many points you

lose overall. This is called the LOSSES task.

• For the LOSSES task, every time you choose to play a particular bandit, the lever

will be pulled like this ...

• ... and the amount of points lost will be shown like this. For example, in this case, the

left bandit has been played and is subtracting 23 points.

• For the second half of the experiment, your task is to maximize how many points you

gain overall. This is called the GAINS task.
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• The GAINS task is played similarly to the LOSSES task, but with points added to

your overall payment ...

• For example, in this case, the left bandit has been played and is adding 77 points.

• The points you lose and gain by playing the bandits will be converted into REAL

money at the end of the experiment. Therefore, the fewer points you lose and the

more points you gain, the more money you will earn.

• A given bandit tends to subtract (in the LOSSES task) or add (in the GAINS task)

the same amount of points on average, but there is variability in the amount on any

given play.

• For example, if you’re playing the LOSSES task, the average points subtracted for

the bandit on the right might be 50, but on the first play we might see -48 points

because of the variability ...

• ... on the second play we might see -44 points ...

• ... if we open a third box on the right we might see -55 points this time ...

• ... and so on, such that if we were to play the right bandit 10 times in a row we might

see these points ...

• If you’re playing the GAINS task, the average points added for the bandit on the right

might be 50, but on the first play we might see 52 points because of the variability ...

• ... on the second play we might see 56 points ...

• ... if we open a third box on the right we might see 45 points this time ...

• ... and so on, such that if we were to play the right bandit 10 times in a row we might

see these points ...

• Both bandits will have the same kind of variability and this variability will stay con-

stant throughout the experiment.

• One of the bandits will always subtract fewer points (on the LOSSES task) or add

more points (on the GAINS task) and hence be the better option to choose on average.

• When you move on to a new game, then the average amount of points of each bandit

will change.

• To make your choice: Press < to play the left bandit. Press > to play the right bandit

• On any trial you can only play one bandit and the number of trials in each game is

determined by the height of the bandits. For example, when the bandits are 10 boxes

high, there are 10 trials in each game ...

• ... when the stacks are 5 boxes high there are only 5 trials in the game.

• The first 4 choices in each game are instructed trials where we will tell you which

option to play. This will give you some experience with each option before you make

your first choice.
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• These instructed trials will be indicated by a green square inside the box we want

you to open and you must press the button to choose this option in order to move on

to see the outcome and move on the next trial. For example, if you are instructed to

choose the left box on the first trial, you will see this:

• If you are instructed to choose the right box on the second trial, you will see this:

• Once these instructed trials are complete you will have a free choice between the two

stacks that is indicated by two green squares inside the two boxes you are choosing

between.

• The first half of the experiment will be the LOSSES task, so remember to try to

minimize the overall number of points lost. You will be notified when you’re halfway

through the experiment, before the task changes.

• Press space when you are ready to begin. Good luck!
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Figure S1 – Graphical representation of the reward magnitude model.
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Model of optimal behavior

Adapted from Wilson et al. (2014).

We modeled optimal behavior by solving a dynamic programming problem that computes

the action that will produce the maximum expected outcome over the course of a game. The

model knows that the mean outcomes are generated from a truncated Gaussian distribution

with a given variance. It treats the gains and losses conditions equivalently. The optimal

model solves a dynamic programming problem (Bellman, 1957; Duff, 2002) to compute

the action that will maximize the expected total reward over the course of each game.

To do this the model first infers a distribution over the mean of each option given the ob-

served rewards. We write rt to denote the reward on trial t in the game, ct to be the choice

on trial t and Dt to be the set of choices and rewards up to and including time t. We assume

that the model knows that the rewards are generated from a truncated Gaussian distribu-

tion and we further assume that it knows that the standard deviation of this distribution,

σn.

In this case, the inferred distribution over the mean of option a, µa, given the history of

choices and rewards is

(1) p(µa|Dt) ∝
√

na
t

2π

1

σn

exp

(

−na
t (µ

a −Ra
t /n

a
t )

2

2σ2
n

)

p(µa)

where na
t is the number of times option a has been played, Ra

t is the cumulative sum of

the rewards obtained from playing option a and p(µa) is the prior of the mean. In our

model we assumed an improper, uniform prior on µa (although we should note that it is

straightforward to include a Gaussian prior instead). With this prior, equation (1) shows

that the model’s state of knowledge about option a is summarized by the two numbers, na
t

and Ra
t . We can thus define the hyperstate (Duff, 2002), St, the state of information that the

model has about both options as

(2) St = (nA
t , R

A
t , n

B
t , R

B
t ).

With the hyperstates defined in this way we can now specify a Markov decision process

within this state space. In particular we can define a transition matrix, T (St+1|St, a), which

describes the probability of transitioning between states St+1 and St given action a. To

compute this we note that if action a = A is chosen on trial t and reward rt is observed,

then new state on the next trial will be

(3) St+1 = (nA
t + 1, RA

t + rt, n
B
t , R

B
t ).

Further, given the distribution over the mean, using equation (1) we can predict that this

outcome will occur with probability
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p(rt|St, A) =
∫

dµAp(rt|µA)p(µA|St)

(4) =

√

nA
t

2π(1 + nA
t )

1

σn

exp

(

−(rt −RA
t /n

A
t )

2

2σ2
n

)

Note that this result comes because both p(rt|µa) and p(µa|Dt) are Gaussians, with p(µa|Dt)
defined in equation (1) and

(5) p(rt|µa) =
1√
2πσn

exp

(

−(rt − µa)2

2σ2
n

)

In practice, to make the algorithm tractable we only consider a subset of possible outcomes,

focusing on a set of 51 possible outcomes between 0 and 100 for the horizon 1 case and 21

possible outcomes in the horizon 6 case. Given this approximation we can then compute

the set of possible states encountered during the task and solve the dynamic program by

iterating the equations for the state values

(6) V (St) = max
a

Q(a, St)

and the action values

(7) Q(a, St) =
∑

S′

t+1

T (St+1|St, a)(rt(St+1) + V (St+1))

In particular we start at the last trial, t = H , and work backwards in time to the first trial.

Here, by definition the action value is just the expected value of the reward from each

option; i.e.,

(8) Q(aH , SH) =
RaH

H

naH
H

Finally the optimal action is to choose the option for which has the highest value on the

first free trial, i.e.

(9) c1 = argmax
a

Q(a, S1)

This analysis allows us to compute the optimal behavior on the task. To compute the opti-

mal performance shown in Figure 3, we simulated choices from this optimal model on the

same set of problems faced by the participants. We then computed performance in the same

way as we did for humans (see Methods).
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Choice curves analysis

Focusing our analyses on the first free-choice trial, we computed pa, the probability of

choosing bandit a over bandit b, as a function of the difference in observed mean of each

bandit, using Equation 2. The parameters in Equation 2 were set as the mean of the esti-

mated posterior distribution across participants. In the [1 3] unequal certainty condition,

bandit a was defined as the lesser known bandit (i.e. the bandit that had been observed

only once during the forced trials); in the [2 2] equal certainty condition, bandit a was ar-

bitrarily defined as the bandit on the right. The resulting choice curves are shown in Figure

S2, along with empirical averages across participants. The error-bars on the empirical data

points indicate the standard error of the mean across participants.
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Figure S2. Choice curves for the first free-choice trial in the (A) [1 3] unequal and (B) [2 2] equal

uncertainty conditions. Filled circles show experimental data averaged across participants, with error-bars

indicating the standard error of the mean across participants. Curved lines show model-derived probability

functions averaged across participants. (A) The fraction of times the more informative bandit is chosen, as a

function of the difference in means between the more and less informative options. Compared to horizon 1

trials (gray-scale curves), horizon 6 trials (orange curves) show a greater information bonus, indicated by a

shift in the indifference point (the point at which participants are equally likely to choose either option) further

away from zero on the x-axis, as well as an increase in decision noise, indicated by a flattening of the slope

of the curve. Within each horizon condition, the shift in indifference point is greater for the losses condition

(light curves) than the gains condition (dark curves), indicating a greater uncertainty seeking in the losses

condition. However, the slope of the curves within each horizon task is no different for the gains condition

and the losses condition, indicating no change in decision noise. (B) In the equal uncertainty condition, there

is less decision noise compared to the unequal uncertainty condition, as indicated by the steeper slopes of the

curves within each horizon condition. There was no difference observed between the gains condition and the

losses condition in the equal uncertainty condition. There is no information bonus in the equal uncertainty

condition since both options have been sampled twice.

Participants choices were sensitive to the difference in mean between the two options, such

that when the difference was large, participants were likely to choose the more rewarding

(or less punishing) option, but as the difference became smaller, participants were more

likely to choose either of the bandits.
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In line with our previous findings for gains alone (Wilson et al., 2014), in the [1 3] unequal

certainty condition there was a shift in the indifference point of the choice curves (the

point at which participants were equally likely to choose either option) between horizon

1 and horizon 6. This was true for both the gains and losses conditions, and is consistent

with directed exploration driven by an information bonus on the value of the lesser known

option. That is, when participants had a longer time horizon in which to explore, they were

biased towards the lesser known option, in hopes that acquiring more information about

it would allow them to make more informed decisions later on, and hence improve their

outcome overall.

In addition to directed exploration, participants also showed random exploration, indicated

by a flattening of the choice curve between horizons 1 and 6. This is also consistent with

previous findings for gains (Wilson et al., 2014), and was equally true for both the gains

and losses.

Comparing the gains and losses conditions, there was an overall increased bias toward the

uncertain option for the losses condition, indicated by the overall leftwards shift in curves

for the losses condition (light orange and grey curves), compared to the curves for the

gains condition (dark orange and black curves; Figure S2A). Decision noise, indicated by

the slope of the curve, does not change between gains and losses (Figure S2B).

MCMC sampling convergence

As noted in the main text, all parameters were fit simultaneously using a Markov Chain

Monte Carlo (MCMC) approach to sample from the joint posterior. We ran 4 separate

Markov Chains with 500 burn-in steps to generate 1000 samples from each chain with a

thin rate of 5. Below are serial plots of samples from one chain (after the burn-in) for the

parameters shown in Figure 5: information bonus, [1 3] decision noise, and [2 2] decision

noise.

Information bonus (µA):

0 100 200 300 400 500 600 700 800 900 1000
-5
0
5

10
horizon 1, gains

0 100 200 300 400 500 600 700 800 900 1000
-5
0
5

10
horizon 1, losses

0 100 200 300 400 500 600 700 800 900 1000
-5
0
5

10
horizon 6, gains

0 100 200 300 400 500 600 700 800 900 1000
-5
0
5

10
horizon 6, losses



8

[1 3] decision noise (kσ/λσ):
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