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Choice-induced preference change and the free-choice paradigm: A

clarification
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Abstract

Positive spreading of ratings or rankings in the classical free-choice paradigm is commonly taken to indicate choice-

induced change in preferences and has motivated influential theories as cognitive dissonance theory and self-perception

theory. Chen and Risen (2010) argued by means of a mathematical proof that positive spreading is merely a statistical

consequence of a flawed design. However, positive spreading has also been observed in blind choice and other designs

where the alleged flaw should be absent. We show that the result in Chen and Risen (2010) is mathematically incorrect,

although it can be recovered in a particular case. Specifically, we present a formal model of decision making that satisfies

all assumptions in that article but implies that spreading need not be positive in the absence of choice-induced preference

change. Hence, although the free-choice paradigm is flawed, the present research shows that reasonable models of human

behavior need not predict consistent positive spreading. As a consequence, taken as a whole, previous experimental results

remain informative.
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1 Introduction

The relation between preferences (or attitudes) and

choices has received a great deal of attention. It is both

unsurprising and uncontroversial that choices are at least

partially guided by preferences, that is, one should observe

preference-based choices. A large number of experimen-

tal studies have shown that the link is bidirectional, that is,

choices actually feed back into and modify preferences,

and one speaks of choice-induced preference change (see

Ariely and Norton, 2008). This bidirectionality is impor-

tant for social psychology, judgment and decision making,

and microeconomics.1
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1Classical economics takes a very pragmatic approach to prefer-

ences, which frequently creates confusion among psychologists. For

economists, the link between choices and preferences is a tautological

one, because the latter are defined to be the ordering revealed by the for-

mer, i.e. if a consumer chooses A over B, an economist would say that

A is preferred to B by definition. This approach (called “revealed prefer-

ence”) is prone to create confusion in the interdisciplinary dialogue, es-

pecially when economic models assume preference stability, which nec-

essarily would exclude choice-induced preference change. In the interest

The evidence showing that choice might alter prefer-

ences started with the free-choice paradigm of Brehm

(1956). In this experimental design, participants rate (or

rank) several alternatives (e.g., potential holiday destina-

tions or artistic paintings), then make choices among cer-

tain selected pairs of those alternatives, then re-rate or re-

rank all alternatives. Changes in later ratings or rankings

conditional on whether a given alternative has been cho-

sen or not have been taken as evidence that choice alters

preferences. The results have been replicated in dozens of

studies published in a span of over half a century. Specif-

ically, one observes positive spreading, with chosen alter-

natives being rated better and unchosen ones worse than

before. This result is called spreading.

Classical, widely influential theories of behavior have

been developed on the basis of such data. According

to cognitive dissonance theory (Festinger, 1957; Joule,

1986), when a decision between two similarly rated al-

ternatives is made, a psychological tension (dissonance)

is created by the desirable aspects of the unchosen al-

ternative and the undesirable aspects of the chosen one.

This tension is reduced by altering the preference. Self-

perception theory (Bem, 1967a,1967b) also predicts post-

choice changes in preferences, postulating that decision

makers learn their preferences better by observing their

own choices. The effects experimentally observed in the

free-choice paradigm have also motivated other models

such as those of Shultz and Lepper (1996) and Van Over-

walle and Jordens (2002).

of disclosure, we would like to make explicit that we are mathematical

economists but here we write with a psychology audience in mind.
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A recent controversy has cast doubts on the validity of

decades of experimental evidence collected using the free-

choice paradigm. Chen (2008) and Chen and Risen (2010)

(see also Risen and Chen, 2010) suggested that studies

of choice-induced preference change suffer from a fun-

damental, methodological (and, one dares to say, embar-

rassing) flaw. Essentially, the intuitive argument is that the

change in ratings or rankings is measured conditionally on

the results of the intermediate choice task, giving rise to

a purely statistical bias. There is much to say about this

intuition, but intuitions can be misleading. To settle the

argument, Chen and Risen (2010) provide a mathematical

proof showing that the usual procedure in the free-choice

paradigm will always result in positive spreading.

This critique, however, is at odds with recent experi-

mental evidence. Sharot et al. (2010) present a remark-

able study where participants are made to believe that they

have made certain choices, which in reality have been pre-

determined by the experimenter. This blind-choice de-

sign neatly escapes the conditioning problem pointed out

by Chen and Risen (2010). Positive spreading is still

observed, which casts doubts on the arguments against

the free-choice paradigm.2 Alós-Ferrer et al. (2012)

present a different paradigm avoiding both blind choice

(i.e., choices actually come from the participants’ prefer-

ences) and the conditioning problem, and also find evi-

dence of choice-induced preference change. Further, brain

imaging studies (Izuma et al., 2010; Jarcho et al., 2011;

Sharot et al., 2009) have identified neural correlates of

post-decision attitude change which are hard to explain if

spreading is unrelated to the participant’s attitudes.

Still, the current state of the field can be described as

one of mild confusion. Apparently, a mathematical proof

carries an intimidating weight in a predominantly empiri-

cal field (on a related topic, see Eriksson, 2012). Here we

intend to clarify the situation.

The message of this paper is as follows. It is not

true that the usual procedure in the free-choice paradigm

would always result in positive spreading in the absence

of preference change, due to statistical biases. What Chen

and Risen (2010) actually state is that, given any formal

model of abstract decision makers taking part in an ex-

periment employing the free-choice paradigm, if a num-

ber of natural assumptions are fulfilled, positive spread-

ing will be generated even if those agents’ preferences

are unaffected by their choices. To establish this point,

the authors state a theorem and provide a proof. Alas,

that proof turns out to be incorrect, although the presenta-

tion in the original contribution, maybe due to space con-

2Chen (2008) also included a criticism of a different class of studies

which involve two successive choices. The arguments for that paradigm

were challenged by Sagarin and Skowronski (2009a,2009b), who also

first suggested the use of blind choice. Egan et al. (2010) used blind

choice in that paradigm and found that choice-induced preference change

still occurs.

straints, might be confusing for many readers. Since the

mistakes might be fixable, an incorrect proof does not im-

ply that the claimed result is false, merely that it is not

proven. In mathematically-oriented disciplines mistakes

are often uncovered and then corrected in specialized jour-

nals (through Corrigenda) without much ado. Alas, in this

case the mistakes cannot be fixed. In order to prove this

point, we exhibit a formal model satisfying the assump-

tions of Chen and Risen (2010) as stated in that work and

show that this model need not give rise to positive spread-

ing, and that it can even generate negative spreading. In

fact, it is not necessarily biased toward positive spreading

over negative. The model then becomes a counterexample

for the result, which is thereby proven false.

Does this mean that the free-choice paradigm is “res-

cued”? Absolutely no. The paradigm is flawed, and the

discipline should move forward to better and improved

ones. Chen and Risen (2010) should be credited with

having brought this point to the attention of the research

community. Our model shows that it is possible that

agents whose preferences are immutable still generate ap-

parent preference change, in the form of strictly positive or

strictly negative spreading. Although it is not true that this

will always be the case, this possibility is enough to inval-

idate the paradigm. For, in order to provide an uncontro-

versial measure of choice-induced preference change, the

formal analysis of a paradigm should predict no change for

abstract agents with immutable preferences. No theorem

or even general model was needed for this. Indeed, the

most elegant demonstration of the problems of the free-

choice paradigm has been provided by Izuma and Mu-

rayama (2013), who simply simulated the experimental re-

sults of a free-choice paradigm employing artificial agents

whose true, immutable preferences were drawn from nor-

mal distributions. The results of their simulated experi-

ment indicated misleading positive spreading.

Does this mean that almost 60 years of research have

to be tossed into the wastebasket as flawed and irrelevant?

Again, absolutely no. The difference between “can gen-

erate false positive spreading” and “will always generate

false positive spreading” is crucial here. A large body of

research has systematically observed positive spreading,

which is consistent with both cognitive dissonance and

self-perception theory. Even if the free-choice paradigm

is flawed, the fact that it does not necessarily generate

a systematic bias in one direction implies that the gen-

eral lessons learned from this literature remain informa-

tive. For, if a reasonable formal model needs not generate

positive spreading, the systematic, empirical observation

of positive spreading points to a psychological effect not

covered in the assumptions of the model, which in this

case might well be that choice affects preferences.

In other words, the current state of affairs does not trans-

late into “back to square zero.” Of course, it does not
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mean “business as usual” either. Observed effect sizes,

for instance, should be called into question given the arti-

ficial errors built into the paradigm. Additionally, publi-

cation bias might have caused studies not finding positive

spreading to remain unpublished. Hence, it is clear that

well-known effects should be reexamined using alterna-

tive paradigms.

The remainder of the article is organized as follows.

First we will explain the formal approach to experimen-

tal decision-making paradigms, reviewing the free-choice

paradigm and discussing the formal statements that have

led to the recent controversy. Second, we will discuss why

intuitive arguments on the free-choice paradigm can be

misleading. Then we will present our formal behavioral

model and show that this model can give rise to negative

spreading even though all assumptions in Chen and Risen

(2010) are fulfilled, proving their formal critique to be in-

correct. We will subsequently identify the mathematical

mistake in Chen and Risen (2010). The following section

is devoted to a brief analysis of arguments involving re-

gression to the mean. In the last section before the conclu-

sion, we show that the claim that the free-choice paradigm

always generates positive spreading can actually be proven

for a particular (but relevant) case, namely when the initial

ratings of alternatives is numerically identical.

2 The free-choice paradigm and its

formal analysis

2.1 The free-choice paradigm

A typical implementation of the free-choice paradigm, or

FCP (for the ratings case; the case of rankings is analo-

gous) runs as follows. The experimenter has collected a

set of comparable options to be used as stimuli. Those can

be, for instance, holiday destinations (as in Sharot et al.

2009, 2010) or artistic paintings and posters (as in Ger-

ard and White, 1983; Jordens and Van Overwalle, 2005;

Lieberman et al., 2001; Shultz et al., 1999). Each partici-

pant in the experiment is confronted with these options in

three different phases.

In the first phase, the participant provides a rating r1k for

each option xk in the set, in a pre-determined scale, e.g.,

1 to 8 or 0 to 100, with higher values indicating higher

desirability. In the second phase, the participant is con-

fronted with pairs of objects (xi, xj) and asked to choose

among them, i.e., indicate whether, if faced with the possi-

bility of receiving either xi or xj , he or she would choose

xi or rather xj . In the third phase, the participant is pre-

sented with the same set of options and asked to provide

ratings r3k again, for each option xk, according to how he

or she feels at that point. That way, for each relevant op-

tion xk, the experimenter obtains three pieces of informa-

tion: the pre-choice rating r1k, the post-choice rating r3k,

and whether the option was hypothetically chosen in the

corresponding pair or not.

Crucially, and unbeknownst to the participant, the

choice pairs (xi, xj) are not randomly extracted from the

set of available options. Rather, the experimenter, or a

computer program on his behalf, selects pairs that have

been rated at a pre-determined distance D ≥ 0 from each

other in the first-phase rating. That is, each pair (xi, xj)
will be such that r1i −r1j = D. A few different values of D
might be used in a single experiment, but then each possi-

ble value of D is used as a within-subject condition, and

hence a given study might present results for D = 0, 1 and

2 (and later pool all of them). That is, the analysis is al-

ways conditional on the given value of D. To be clear, the

experimenter previously decides on a value D of interest

and then, within the experiment, selects pairs of alterna-

tives previously rated at a distance D from each other. For

notational convenience, within a given pair we denote by

xi the alternative rated weakly better, i.e. r1i = r1j +D.

Experimental and formal statements then refer to the

spread of alternatives. The spread ∆ of a pair (xi, xj) con-

structed as indicated is defined as follows. First, construct

the pre- and post-choice rating differences as the rating of

the option chosen in the second phase minus the rating of

the other (unchosen) option. Note that the pre-choice rat-

ing difference can hence be either D or −D, depending on

which option is chosen. The spread is then the post-choice

rating difference minus the pre-choice rating difference.

That is,

∆ =

{

(r3i − r3j )− (r1i − r1j ) if xi is chosen

(r3j − r3i )− (r1j − r1i ) if xj is chosen

Experimental evidence starting with Brehm (1956)

overwhelmingly shows that measured values of ∆, condi-

tional on, e.g., D = 0, D = 1, or D = 2, are strictly posi-

tive, indicating that the rating of the chosen option goes up

and/or the rating of the not chosen option goes down in the

third phase with respect to the first one. Cognitive disso-

nance theory (Festinger, 1957) and self-perception theory

(Bem, 1967a) give different interpretations of this rating

reevaluation. The construction of ∆, which conditions on

which is the chosen option, aims to measure precisely this

effect, and hence reflects the changes in the rating differ-

ence between the chosen option and the unchosen one.

As in any other experiment, due to noise in the decision-

making and experimental processes, all experimental ob-

servations can and should be treated as random variables.

It is important to specify right away what this means for

the FCP. The participants’ decisions are to be treated as

random variables. This means the ratings in Phases 1 and

3, i.e. all rtk for t = 1, 3, and also the choices in Phase

2, i.e. the binary variable indicating whether xi or xj is
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chosen. The distance D, however, is exogenously fixed

by the experimenter and has to be treated as a fixed value.

Hence, the quantity that experiments aim to measure is the

following expectation.

E[∆|r1i − r1j = D] =

Pr{xi chosen|r1i − r1j = D}·
E[(r3i − r3j )−D|r1i − r1j = D,xi chosen]+

Pr{xj chosen|r1i − r1j = D}·
E[(r3j − r3i ) +D|r1i − r1j = D,xj chosen]

2.2 The formal analysis of experiments

The key to understand the formal analysis of the FCP

or any other decision-making experiment is that one can

formally study the results that the experimental proce-

dure would elicit from a population of artificial, hypothet-

ical participants affected by a given psychological phe-

nomenon. Likewise, and even more easily, one can for-

mally study the results elicited from a population of hypo-

thetical participants not affected by such a phenomenon.

In particular, if an experimental paradigm is to be used

to collect evidence for the existence of choice-induced

preference change, the paradigm should not generate any

such evidence when applied to a set of artificial partic-

ipants with immutable preferences, i.e., whose choices

never feed back into their preferences. In the terms of

the FCP, for such artificial participants, one should obtain

E[∆|D] = 0 for any value of D. In other words, if the ex-

periments aim to reject the null hypothesis that the spread

is equal to zero, then a hypothetical control group not dis-

playing choice-induced preference change should not lead

to such a rejection.

In order to generate such populations of artificial agents,

Chen and Risen (2010) postulate a random utility model.3

Specifically, each agent is endowed with a randomly de-

termined “true” preference, which remains fixed for the

duration of the experiment. The random generation of

preferences reflects random sampling of participants and

the inherent randomness in the experiment (differences in

participants, options, etc). Hence, both Chen and Risen

(2010, footnote 8) and our model below treat preferences,

ratings, and choices as random variables. There is a fun-

damental difference between preferences and other vari-

ables, though. Suppose participants from a hypothetical

control group whose preferences never change are “re-

cruited.” Choices and ratings will vary randomly within

the experiment. In contrast, participants’ preferences re-

main fixed and will not change in the course of the exper-

3Random utility models were introduced in economics in response

to experimental evidence from psychology; see Anderson et al. (1992,

Chapter 2) for a review.

iment. Hence, for these participants no preference change

should be found.

An actual analytical computation of the expected value

of ∆, however, is not straightforward. One needs to be

clear about the modeling assumptions and spell out the

full expression of the mathematical expectation. Chen and

Risen (2010) postulate a setting where ratings and choices

are generated as noisy observations of a true underlying

preference. They then postulate a series of (reasonable) as-

sumptions and state a theorem claiming that the expected

value of ∆ is strictly positive. To examine this claim, we

need to spell out the relevant assumptions of Chen and

Risen (2010).

Let V be the set of possible rating values and let uk ∈ V
denote the actual, true rating (reflecting the actual, im-

mutable preference) of a given participant for alternative

xk. We start with the assumptions on ratings. Intuitively,

the assumptions aim to reflect that ratings are noisy per-

turbations of the true underlying preferences. We keep

the original assumption numbering from Chen and Risen

(2010).

Assumption 1: For each alternative xk and each possible

rating value vk, for both t = 1 and t = 3,

E[rtk|uk = vk] = vk. (1)

This assumption means that the ratings in Phases 1 and

3 are guided by the actual preferences of the participant,

with zero-mean noise.

Assumption 3: For each two alternatives xk, xℓ and for

both rating phases t = 1 and t = 3,

Pr{rtk > rtℓ|uk > uℓ} < 1 (2)

and

Pr{rtk > rtℓ|uk > uℓ} >
1

2
. (3)

This assumption indicates that a preference for one alter-

native (uk > uℓ) results in ratings consistent with the pref-

erence (rk > rℓ) with a large probability (larger than 1/2),

but with some residual noise (hence smaller than 1). That

is, preferences do guide ratings, but imperfectly. Note that

(3) is also referred to as Assumption 1a in Chen and Risen

(2010).

We now turn to choices. Let c : X2 → X be the choice

function of the participant in Phase 2, i.e., c(xi, xj) = xi

means that the participant, when presented with the possi-

bility of choosing either xi or xj , does choose the former,

while c(xi, xj) = xj means that he chooses the latter. The

assumption is that this choice is based on preferences (util-

ities) but is also subject to some stochastic noise.

Assumption 2: For each two alternatives xk, xℓ,

Pr{c(xk, xℓ) = xk|uk > uℓ} > 1/2. (4)
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That is, the choice in Phase 2 is partially guided by the

preference, in the sense that there is a larger probability of

choosing the alternative with the largest true utility.

Given these assumptions, Chen and Risen (2010) state

the following claim, which we reformulate for clarity.

Chen and Risen’s Claim: For any model of random util-

ities, ratings, and choices fulfilling Assumptions 1, 2, and

3, and for any value of D, the value of E[∆|D] is strictly

positive.

To summarize, classical studies using the free-choice

paradigm might have naïvely assumed that E[∆|r1i −
r1j = D] = 0 in the absence of choice-induced prefer-

ence change. As experiments obtained strictly positive

values for ∆ given D, results were interpreted as evi-

dence for choice-induced preference change. Chen and

Risen (2010) argue that, in models where ratings and

choices are just noisy realizations of immutable prefer-

ences, E[∆|r1i − r1j = D] > 0 even in the absence of

choice-induced preference change, and hence experimen-

tal evidence is meaningless.4

Anticipating our objective here, we will show below

that, actually, even though E[∆|r1i − r1j = D] 6= 0 in

general (which is enough to show that the FCP is partially

flawed), it is not true that E[∆|r1i − r1j = D] > 0 al-

ways holds, and even E[∆|r1i − r1j = D] < 0 might oc-

cur. Hence, experimentally observed strictly positive val-

ues still most likely point to a real phenomenon.

3 The problems with intuitive argu-

ments

The essence of the problems with the FCP is that the con-

struction of the spread ∆ relies on identifying which op-

tion is “chosen” and which is “unchosen”. This, in turn,

is based on the participant’s decision in Phase 2. Hence,

options are not randomly assigned to the roles of chosen

or unchosen, and a statistical bias appears. For instance,

Sharot et al. (2010) randomly assign options to such roles

by deceiving participants into believing they made a cer-

tain choice or another (“blind choice”), hence fully avoid-

ing any possible bias. The idea behind the “implicit choice

paradigm” (Alós-Ferrer et al., 2012) is also to randomly

assign the role of chosen or unchosen to the alternatives,

but then use the participant’s own preferences to induced

the desired choices, i.e., the (randomly selected) chosen

4At this point, we need to warn the reader that, since all the analysis

is conditional on the value of D, Chen and Risen (2010) often drop the

conditioning event r1i − r1j = D in their probabilistic statements. This

is natural, and the authors start the analysis by stating r1i − r1j = D in

their equation (1) anyway. However, we think that this notational con-

vention could lead to confusion here, and hence we always spell out the

conditioning events in full.

item is paired with a low-preference item, so that it will

very likely be chosen, and the (randomly selected) uncho-

sen item is paired with a high-preference item; positive

spreading must then be attributed to the two choices and

not to non-random selection of items. The FCP pays no

attention to this issue and hence contains a subtle form of

non-random assignment.

Once this problem is made explicit, it is obvious that the

claim that E[∆|D] = 0 in the absence of choice-induced

preference change is unwarranted. Imagine again a hy-

pothetical participant with immutable preferences, which

correspond to a “true rating”, but whose answers in each

phase of the experiment are based on ratings that are af-

fected by zero-mean noise, independently across phases.

The fact that an option has been chosen over the other one

is informative about the true preferences and hence influ-

ences the distribution of the rating differences. Since the

first rating difference is constrained by the value D, it is

clear that the expected value of ∆ will in general not be

zero, because conditioning has an effect on the expecta-

tion. It is, however, far from obvious what exactly the

expected value of ∆ should be in the absence of effects

along the lines of cognitive dissonance or self-perception

theory. A computation of the expected value of ∆ is not

trivial. One needs to actually be clear about the modeling

assumptions and spell out the full expression of the math-

ematical expectation.

The experimental design and the concepts underlying

the FCP are not straightforward. While it is tempting to

rely on intuitive arguments, intuitions can easily be led

astray. We present here a short discussion of why this is

the case.

Let us consider a first example, which specifies merely

one of many cases that ought to go into the computation

of the actual expected value of ∆. Let us go back mo-

mentarily to the case of rankings, and suppose that in an

initial ranking of options (Phase 1), a certain alternative

A has been ranked two levels above another alternative

B (D = 2). Suppose further that we do not even know

whether the participant has chosen A or B in the choice

task (Phase 2). Consider two hypothetical possibilities

for the later re-ranking (Phase 3). In the first possibil-

ity (re-ranking X), A is ranked two levels higher than it

was ranked in Phase 1 and B two levels lower than it was

ranked in Phase 1, so that A is again ranked above B, by

a larger amount. In the second possibility (re-ranking Y ),

A is ranked two levels lower and B two levels higher than

before, so that now B is ranked above A. Which of these

two possible re-rankings is more likely? It is easy to jump

to the conclusion that, since those re-rankings are in some

sense symmetric with respect to the initial one, they should

be equally likely. For instance, Chen and Risen (2010, p.

580) claim that “without choice information, re-rankings

X and Y are equally likely” and then go on to use this ex-
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ample in order to build intuition on their result. This state-

ment sounds very intuitive; however, it is incorrect, and so

is any intuition based on it. Suppose that, as assumed in

Chen and Risen (2010), rankings imperfectly reflect un-

derlying preferences. The subsequent re-rankings are not

noisy versions of the initial ranking. They are noisy ver-

sions of the true ranking which corresponds to the prefer-

ences; and, indeed, also the initial ranking is just a noisy

version of the true one. If the initial ranking places A and

B in the 5th and 7th positions, respectively, but the true

ranking would have them at the 3rd and 9th, then a re-

ranking exchanging their positions (so that A becomes 7th

and B becomes 5th) will be much less likely than a re-

ranking which puts A 3rd and B 9th (and hence actually

agrees with the true preferences).

The point we want to make here is not that, for this par-

ticular example, one or the other re-ranking is more likely.

The point is simply that one needs to consider all possi-

bilities and spell out all probabilities. An actual compu-

tation of ∆ conditions on the additional information re-

vealed by the choices in Phase 2. If we consider this in-

formation for the example above, the situation becomes

even less transparent. It is not warranted to claim that the

fact that, say, B has been chosen (even though the initial

ranking favored A) makes a re-ranking where B is placed

higher more likely. In order to compare the likelihood of

two re-rankings, one needs to compare the probability that

the initial ranking contradicted the true preferences but the

choice agreed with them with the probability that the ini-

tial ranking agreed with the true preferences but the choice

contradicted them. In order to precisely balance those pos-

sibilities, one needs to spell out a formal framework al-

lowing for exact computations. Intuitive shortcuts can be

misleading. The only way to make sure that all relevant

cases have been considered and our intuition is not based

on a partial analysis is to make the formal analysis precise.

This is what we will do below for a particular model.

A second argument more or less explicit in the critique

against the FCP is that choices should be a better predic-

tor of re-rankings than initial rankings. Chen and Risen

(2010, Table 2) discuss an example where both the choice

and the re-ranking contradict the initial ranking and argue

that this needs not reflect any cognitive dissonance, but

merely the fact that choices are informative on the under-

lying preferences. However, as pointed out by Sagarin and

Skowronski (2009a), empirically observed choices only

imperfectly reflect preferences. Hence, it is also easy to

consider examples where the choice contradicts the initial

ranking and also the true preferences, and the fact that the

re-ranking agrees with the choice reflects a reduction of

cognitive dissonance. Of course, one needs to precisely

balance the likelihood of these (and other) possibilities.

Again, this can be done only in the framework of a full-

fledged formal model of choice.

4 A sample model

4.1 A formal behavioral model

This section presents a formal behavioural model of the

free-choice paradigm which adheres to Assumptions 1–3

of Chen and Risen (2010) introduced earlier. We concen-

trate on the case of ratings. Our model is an example of the

framework developed above. Specifically, both choices

and ratings are based on preferences, but both are noisy.

In a nutshell, the ratings reported in Phases 1 and 3 will re-

flect underlying preferences, i.e., a true rating, with a large

probability, but occasionally deviate from them slightly;

specifically, the deviation will be just one position above

or below with respect to the true rating. Likewise, in Phase

2 the participant will choose the option prescribed by his

preferences with a large probability, but still occasionally

decide against the preferences and choose the other option.

Let us turn to the formal specification of the model. As

above, let uk be the participant’s utility level or true rat-

ing for option xk, i.e., a numerical representation of his

preferences. For each k = 1, . . . , n, we assume that uk

follows a finite discrete distribution (in the example be-

low, we will use a uniform distribution with 2m+1 levels)

with full support on a finite set Vk ≡ {µk −m, . . . , µk −
1, µk, µk + 1, . . . , µk +m} (µk,m ∈ N). In other words,

the actual preference of an individual for an option is de-

termined randomly “around” uk = µk, but it remains fixed

for the duration of the experiment. We further assume

that, for any two alternatives k, ℓ, |µk − µℓ| ≤ 2m − 1,

which guarantees that options are not ex ante too different

and there is always some (possibly small) probability that

uk = uℓ, uk > uℓ, and uk < uℓ.

Actual behavior is determined as follows. Let rtk be the

participant’s rating of option xk in Phase t = 1, 3. Let vk
denote a typical element of Vk. We assume that, for any

k = 1, 2, . . . , n, if uk = vk, then

rtk =











vk − 1, with probability β

vk, with probability 1− 2β

vk + 1, with probability β

where β < 1/4 measures the amount of noise in the partic-

ipant’s ratings. That is, the revealed rating is numerically

equal to the actual one, but occasionally differs from it by

one unit.

Under this modeling assumption, E[rtk|uk = vk] =
β(vk − 1) + (1 − 2β)vk + β(vk + 1) = vk, and hence

Assumption 1 holds. Let us turn to Assumption 3. It is im-

mediate that (2) is fulfilled due to the condition |µk−µℓ| ≤
2m− 1. For then there is positive probability that (for ex-

ample) uk = uℓ+1 but rtk = uk−1 and rtℓ = uℓ+1, hence

the conditional probability Pr{rtk > rtℓ|uk > uℓ} has to

be strictly smaller than one. To see (3), note that, condi-

tional on uk > uℓ, the events {rtk ≥ uk, r
t
ℓ ≤ uℓ} (which
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has probability (1 − β)2), {rtk = uk + 1, rtℓ = uℓ + 1}
(with probability β2), and {rtk = uk − 1, rtℓ = uℓ − 1}
(also with probability β2) all lead to rtk > rtℓ. Hence,

the conditional probability Pr{rtk > rtℓ|uk > uℓ} is larger

than or equal to (1 − β)2 + 2β2 = 1 − 2β + 3β2, which

is always strictly larger than 1/2.

Consider now Phase 2’s choices. We directly specify

the choice function c : X2 → X as follows.5

If ui > uj ,

c(xi, xj) =

{

xi, with probability 1− ε

xj , with probability ε;

if ui = uj ,

c(xi, xj) =

{

xi, with probability 1/2

xj , with probability 1/2;

and, if ui < uj ,

c(xi, xj) =

{

xi, with probability ε

xj , with probability 1− ε,

where 0 < ε < 1/2 measures the amount of noise in the

participant’s choices.

Under this modeling assumption, it follows that

Pr{c(xi, xj) = xi|ui > uj} > 1/2 and

Pr{c(xi, xj) = xj |uj > ui} > 1/2.

That is, Assumption 2 holds.

4.2 A Counterexample

We now spell out an example in the framework of the

behavioural model above which does not lead to positive

spreading, despite fulfilling Assumptions 1–3. It is a sim-

ple matter to construct other examples generating positive

spreading; however, for our purposes we only need to ex-

hibit an example with strictly negative spreading. Let x1

and x2 be the two options in the choice task in Phase 2. Let

u1 follow a uniform distribution with support {1, 2, 3} and

u2 follow a uniform distribution with support {2, 3, 4}.

That is, µ1 = 2, µ2 = 3, and m = 1.

Remark 1. We are, of course, free to choose any values

of µ1, µ2, and m in order to exhibit a counterexample to

a claimed result; a single counterexample suffices to es-

tablish that the claimed result is false. However, we also

provide a second counterexample in Appendix A where

5Mathematically, c can be made a function of ui, uj , xi, and xj to

avoid the specification of cases. Here and elsewhere, we choose to make

our presentation as intuitive as possible without sacrificing mathematical

rigor.

µ1 = µ2, i.e. under the additional (and unwarranted) as-

sumption that utilities are a priori identically distributed

for the two involved options.

Suppose that in Phase 1, the ratings of the subjects for

x1 and x2 are r11 and r12 respectively with r12 − r11 ≡ D =
2. According to Chen and Risen (2010), there must be a

positive rating spread in Phase 3, even though ratings in

that stage are generated from exactly the same preferences

as those in Phase 1. We now proceed to show that this

implication is false.

The rating spread for x1 and x2 is ∆ = (r32−r31)−(r12−
r11) = r32 − r31 −D if x2 is chosen, and ∆ = (r31 − r32)−
(r11 − r12) = r31 − r32 + D if x1 is chosen. We will show

that the expected value of ∆ given that D = 2 is smaller

than zero. Let r1 = (r11, r
1
2) denote a pair of ratings for x1

and x2 in Phase 1. First note that we can decompose the

expected value of ∆ as follows:

E[∆|D = 2] =

Pr{r1 = (2, 4)|D = 2}E[∆|r1 = (2, 4)]

+ Pr{r1 = (1, 3)|D = 2}E[∆|r1 = (1, 3)]

+ Pr{r1 = (0, 2)|D = 2}E[∆|r1 = (0, 2)]

+ Pr{r1 = (3, 5)|D = 2}E[∆|r1 = (3, 5)]. (5)

This equality follows from the fact that, in our example,

there are exactly four possible pairs of values for r1 giv-

ing rise to D = 2, which are (0, 2), (1, 3), (2, 4), and

(3, 5). We are going to compute the expected rating dif-

ference conditional on each specific r1 with D = 2, and

show that this expected rating difference is strictly smaller

than 0 given each r1. Hence, it will follow from (5) that

E[∆|D = 2] < 0.

In Phase 2, the participant may choose x1 or x2. Since

∆ depends on the actual choice in Phase 2, we need to

further decompose each E[∆|r1] as follows:

E[∆|r1] =
Pr{c(x1, x2) = x1|r1}·
E[(r31 − r32) +D|r1, c(x1, x2) = x1]+

Pr{c(x1, x2) = x2|r1}·
E[(r32 − r31)−D|r1, c(x1, x2) = x2] (6)

Since D = 2 is given, it is enough to compute the

expectations of the post-choice rating differences r3i −
r3j . Let the set of possible utility pairs be given by

U={(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)}. It is use-

ful to further decompose the computations as follows:

E[(r3i − r3j )|r1, c(x1, x2) = xi] =
∑

u∈U

Pr{u|c(x1, x2) = xi, r
1} · E[(r3i − r3j )|u] =

∑
u∈U

Pr{c(x1,x2)=xi|u,r1}Pr{u|r1}·E[(r3i−r3j )|u]

Pr{c(x1,x2)=xi|r1}
(7)
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where the denominator is given by Pr{c(x1, x2) =
xi|r1} =

∑

u∈U Pr{c(x1, x2) = xi|u, r1}Pr{u|r1}.

Hence, we can obtain the conditional expectations by

methodically computing the quantities Pr{c(x1, x2) =
xi|u, r1}, Pr{u|r1}, and E[(r3i − r3j )|u] for each u ∈ U .

The last quantity is trivial to obtain since E[(r3i −
r3j )|u] = ui − uj by (1). Further, since choices

are stochastically independent of ratings given the utili-

ties, independently of r1, we have that Pr{c(x1, x2) =
x1|u = (3, 2), r1} = 1 − ε, Pr{c(x1, x2) = x1|u =
(2, 2), r1} = Pr{c(x1, x2) = x1|u = (3, 3), r1} = 1/2,

and Pr{c(x1, x2) = x1|u, r1} = ε for every u ∈ U , u 6=
(3, 2), (2, 2), (3, 3); the probabilities for c(x1, x2) = x2

are complementary.

We now distinguish four cases according to whether

r1 = (0, 2), (1, 3), (2, 4), or (3, 5).

Case 1: r1 = (0, 2).

In this case, note that Pr{u|r1 = (0, 2)} = 0 for all

u ∈ U except (1, 2) and (1, 3). We have that Pr{u =
(1, 2)|r1 = (0, 2)} = 1−2β

1−β
and Pr{u = (1, 3)|r1 =

(0, 2)} = β
1−β

. Given the choice probabilities computed

above, we obtain Pr{c(x1, x2) = x1|r1 = (0, 2)} = ε
and Pr{c(x1, x2) = x2|r1 = (0, 2)} = 1− ε, and adding

terms together yields

E[r31 − r32|r1 = (0, 2), c(x1, x2) = x1] = − 1

1− β

E[r32 − r31|r1 = (0, 2), c(x1, x2) = x2] =
1

1− β

Hence, substituting in (6),

E[∆|r1 = (0, 2)] = Pr{c(x1, x2) = x1|r1 = (0, 2)}·
E[(r31 − r32) +D|r1 = (0, 2), c(x1, x2) = x1]

+ Pr{c(x1, x2) = x2|r1 = (0, 2)}·
E[(r32 − r31)−D|r1 = (0, 2), c(x1, x2) = x2] =

ε

(

− 1

1− β
+ 2

)

+ (1− ε)

(

1

1− β
− 2

)

= −(1− 2ε)

(

2− 1

1− β

)

,

which is smaller than 0 for any 0 < ε < 1/2 and 0 < β <
1/4.

Case 2: r1 = (1, 3).

In this case, Pr{u1 = 3|r1 = (1, 3)} = 0, Pr{u =
(1, 2)|r1 = (1, 3)} = Pr{u = (1, 4)|r1 = (1, 3)} =

Pr{u = (2, 3)|r1 = (1, 3)} =
(1− 2β)β

1− β
, Pr{u =

(2, 2)|r1 = (1, 3)} = Pr{u = (2, 4)|r1 = (1, 3)} =
β2

1− β
, Pr{u = (1, 3)|r1 = (1, 3)} =

(1− 2β)2

1− β
. Given

the choice probabilities, we have

Pr{c(x1, x2) = x1|r1 = (1, 3)} =

1

1− β

[

(1− β − β2)ε+
1

2
β2

]

≡ d(ε, β),

Pr{c(x1, x2) = x2|r1 = (1, 3)} = 1− d(ε, β).

Then, using (7), we have

E[r31 − r32|r1 = (1, 3), c(x1, x2) = x1] =

1

d(ε, β)

ε

1− β
(3β − 2),

E[r32 − r31|r1 = (1, 3), c(x1, x2) = x2] =

1

1− d(ε, β)

1− ε

1− β
(2− 3β).

Substituting in (6) yields

E[∆|r1 = (1, 3)] = Pr{c(x1, x2) = x1|r1 = (1, 3)}·
(E[r31 − r32|r1 = (1, 3), c(x1, x2) = x1] +D)

+ Pr{c(x1, x2) = x2|r1 = (1, 3)}·
(E[r32 − r31|r1 = (1, 3), c(x1, x2) = x2]−D)

= − β

1− β
(1− 2ε)(1− 2β),

which is always strictly smaller than 0 for any 0 < β <
1/4 and 0 < ε < 1/2.

Case 3: r1 = (2, 4).
This case is symmetric to the case r1 = (1, 3); all com-

putations are identical and hence

E[∆|r1 = (2, 4)] = E[∆|r1 = (1, 3)] < 0

for any 0 < ε < 1/2 and 0 < β < 1/4.

Case 4: r1 = (3, 5).
This case is symmetric to the case r1 = (0, 2); all com-

putations are identical and hence

E[∆|r1 = (3, 5)] = E[∆|r1 = (0, 2)] < 0

for any 0 < ε < 1/2 and 0 < β < 1/4.

Finally, combining the four cases above, equation (5)

implies that

E[∆|D = 2] < 0,

which completes the counterexample.

4.3 Simulations

A different way to illustrate the main point is to conduct

simulated experiments using our model to describe hypo-

thetical participants with immutable preferences. Izuma

and Murayama (2013) followed precisely this path to show
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Figure 1: Simulation with two options, µ1 = 2, µ2 = 3,

m = 1, one million draws for each (β, ε) combination.

that the FCP will generate positive spreading for a partic-

ular model (different from ours) and the particular value

D = 0. Here we use the same approach to illustrate our

results.

Figure 1 presents simulations for the options used in the

counterexample above, i.e. µ1 = 2, µ2 = 3, and m = 1,

with different values of β and ε. In each of one million

draws, the actual utilities u1, u2 are drawn from uniform

distributions on {µi−1, µi, µi+1}. The ratings in Phases

1 and 3 and the choices in Phase 2 follow the model de-

scribed above. Accordingly, in the simulations we obtain

spreads for all possible values of D. Figure 1 shows that

positive spread is observed for very small values of D, and

negative spread is observed for larger values. Our previous

counterexample corresponds to the values for D = 2.

Figure 2 presents the results of simulations for a sym-

metric example where µ1 = µ2 = 2 and m = 1. These

are the options used in the counterexample reported in Ap-

pendix A. Again, both positive and negative spread can be

observed.

Finally, Figure 3 presents the average results of 60,000

simulated experiments with 80 possible options and 40

participants each. The preferences of the participants (i.e.

the values uk) are generated randomly by first obtaining

random values for µk according to a uniform distribution

on the set {7, . . . , 13}, then obtaining uk from a uniform

distribution on {µk−5, . . . , µk+5}. Hence, realized utili-

ties range from 2 to 18 and realized ratings in Phases 1 and

3 range from 1 to 19. In Phase 2, each participant is pre-

sented with 14 choices. A computer algorithm attempts

to select two pairs each with distances D = 0, 1, . . . 6
according to the initial ratings (depending on the partic-

ipant’s ratings, it might not always be possible to obtain
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Figure 2: Simulation with two options, µ1 = µ2 = 2,

m = 1, one million draws for each (β, ε) combination.

14 such pairs), in such a way that no option is used for

two different choice pairs. The spread conditional on D
is computed for each simulated experiment, and the figure

presents average results over 10,000 experiments for each

of six possible combinations of β and ε (the simulation

took around 8 hours of computing time). As illustrated in

the figure, the realized value of the spread ∆ can be both

positive (for small values of D) and negative (in this exam-

ple, for D ≥ 2). Note that the case D = 0 replicates the

results of Izuma and Murayama (2013) (who considered

only D = 0) for a different model.

It needs to be noted that FCP experiments inspired by

cognitive dissonance theory typically rely on small values

of D, since dissonance is generated by closeness to indif-

ference (this would not necessarily be true if the motiva-

tion for an experiment arose from self-perception theory).

In the simulations presented here, a value of D = 0 al-

ways result in positive spreading. In any case, we remind

the reader that whether a value of D indicates closeness

to indifference or not depends on how fine the actual scale

used in an experiment is. For a set of options as those in

Figure 3, realized ratings vary from 1 to 19, and a distance

of 2 (for which negative spreading is already observed) is

rather “close”.

5 The mistake(s) in Chen and

Risen’s proof

This section explains the mistake made in the proof in

Chen and Risen (2010), which leads to the incorrect pre-

diction of positive rating spread in the post-choice rating.

Remember that one considers two fixed alternatives xi and
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Figure 3: Average of 60,000 simulated experiments with

80 options, 40 participants, µk ∈ {7, . . . , 13}, and m = 5.

10,000 experiments for each (β, ε) combination.

xj such that r1i = r1j +D with D > 0. The claim is that,

using exclusively Assumptions 1, 2, and 3, it is possible to

deduce that E[∆|D] > 0. In view of our counterexample

and simulations above, this claim is incorrect.

The key mistake appears on p. 578 of Chen and Risen

(2010), when the authors argue that because of (1), E[r3i −
r3j |r1i − r1j = D] = D. In words, this says that, given

the realized, possibly biased first rating difference, the ex-

pected second rating difference is equal to the first, biased

one. This claim is incorrect in general.6

Consider the example detailed above, i.e., µ1 = 2, µ2 =
3, m = 3, and D = 2, exactly as in our counterexample

in the previous section. We proceed to compute E[r3i −
r3j |D = 2].

E[r3i − r3j |D = 2] =

Pr{r1j = 0, r1i = 2|D = 2}E[r3i − r3j |r1j = 0, r1i = 2]

+ Pr{r1j = 1, r1i = 3|D = 2}E[r3i − r3j |r1j = 1, r1i = 3]

+ Pr{r1j = 2, r1i = 4|D = 2}E[r3i − r3j |r1j = 2, r1i = 4]

+ Pr{r1j = 3, r1i = 5|D = 2}E[r3i − r3j |r1j = 3, r1i = 5]

=
β

2(1 + β)

(

2− β

1− β
− 1

)

+
1

2(1 + β)

(

3− 1

1− β

)

+
1

2(1 + β)

(

4− 5β

1− β
− 2

)

+
β

2(1 + β)

(

4− 3− 4β

1− β

)

=
2

1 + β
,

6Chen and Risen (2010) write “ASMP 1 ⇒ E[(r3i − r3j )] = D,” i.e.

they simplify notation by dropping the conditioning event r1i − r1j = D.

This is, however, their equation (1) on page 577, on which the whole

analysis is conditional.

which is not equal to 2 for any 0 < β < 1/4, showing that

the claim E[r3i − r3j |r1i − r1j = D] = D is incorrect.

To clarify matters further, consider an extreme case

where µ1 = 2, µ2 = 3, and m = 3 as above, but D = 5.

If the argument of Chen and Risen (2010) were to hold,

we would have that E[r3i − r3j |r1i − r1j = 5] = 5. This is

not true. Indeed, there is only one possibility for D = 5 to

be realized in our model, corresponding to ratings r1j = 0

and r1i = 5. This implies that uj = 1 and ui = 4 for sure.

Hence,

E[r3i − r3j |D = 5] = E[r3i − rjj |uj = 1, ui = 4]

= E[r3i |ui = 4]− E[r3j |uj = 1] = 4− 1 = 3.

Remark 2. Chen and Risen (2010, footnote 6) argue that

it is equivalent to state Assumption 3 in terms of Pr{rtk >
rtℓ|uk > uℓ} or in terms of Pr{uk > uℓ|rtk > rtℓ}. This is

incorrect, but inconsequential for our analysis. Appendix

B discusses this point and shows that our model also ful-

fills the additional assumption that 1
2 < Pr{uk > uℓ|rtk >

rtℓ} < 1.

6 Regression to the mean

The Appendix of Chen and Risen (2010) generalizes the

approach considering a possible “regression to the mean”

effect. In order to account for this possible effect, it is ar-

gued that instead of comparing the expected rating spread

E[∆|D] with 0, one should compare it with the quantity

−R defined by −R = E[r3i − r3j |D] − D, which mea-

sures the expected increase of the rating difference in a

hypothetical control group where participants rate twice

without choice tasks in between. Chen and Risen (2010)

claim that, with this adjustment, the FCP will exhibit rat-

ing spread strictly larger than the control group’s −R, even

if the preferences are stable.

Of course, since this generalization includes the case

R = 0 as a particular case, it follows from our analysis

above that the generalization is also incorrect. However,

in this section we provide a more direct illustration.

Consider again our numerical example where u1 fol-

lows a uniform distribution on {1, 2, 3} and u2 follows a

uniform distribution on {2, 3, 4} again. We compute the

rating spread E[∆|D] and compare it with E[r3i −r3j |D]−
D for D = 0.

Straightforward but cumbersome computations, analo-

gous to the ones illustrated above, allow us to obtain the

rating spread for D = 0.

E[∆|D = 0] =
4β − 6β2

1− β2
(1− 2ε).
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Similarly, we can compute E[r32−r31|D = 0], which yields

E[r32 − r31|D = 0] =
2β

1 + β
.

According to Chen and Risen (2010), we should obtain

that E[∆|D = 0] − E[r32 − r31|D = 0] > 0. Straightfor-

ward computations show that

E[∆|D = 0]− E[r32 − r31|D = 0] =

2β

1− β2
[(2− 3β)(1− 2ε)− (1− β)]

which is smaller than zero for ε > 1−2β
4−6β . Note that 1−2β

4−6β

is smaller than 1/2 for any β < 1/4. That is, when ε fulfills

the condition above, the rating spread adjusted for the “re-

gression to the mean” effect for D = 0 in this numerical

example is negative. Hence, the claim of Chen and Risen

(2010) is still incorrect after adjusting for a “regression to

the mean” effect.

7 A proof of positive spreading for

D = 0

Our simulations and those of Izuma and Murayama (2013)

suggest that in the extreme case with D = 0, positive

spreading might occur in the absence of choice-induced

preference change, i.e. the result stated by Chen and Risen

(2010) might be correct in this particular case. This would

be intuitive, because when D = 0, if actual preferences

are close to indifference, we would expect the rating dif-

ference in Phase 3 to be also close to zero, but if actual

preferences are not close to indifference, the fact that an

option is chosen is a signal on the actual preference and

we would expect positive spreading. Intuitions, however,

can be misleading, and hence we set out to provide a for-

mal proof of this fact. Since the case D = 0 is especially

prominent in the literature, this proof is of independent in-

terest.

The result we prove is not limited to our model. Rather,

it applies generally to any model satisfying a few elemen-

tary assumptions. Those include Assumptions 1-2 from

Chen and Risen (2010) (Assumption 3, interestingly, is

not needed) and a new, minimal assumption dealing with

knife-edge cases of exact indifference.

Formally, we consider any model where, given the true

utilities, the random variables capturing ratings (in Phases

1 and 3) and choices are all independent. that is, although

of course ratings and choices are derived from preferences,

the corresponding error terms are independent. Further,

Assumptions 1 and 2 are fulfilled, and the following as-

sumption also holds.

Assumption 4: For each two alternatives xk, xℓ,

Pr{uk = uℓ|r1k = r1ℓ} < 1. (8)

This assumption, which is fulfilled in our model, means

that even if the observed ratings in the first phase are iden-

tical (D = 0), it is not necessarily true that the options are

actually indifferent. This does not follow from Assump-

tions 1-3, because those refer to strict preference only. It

is, however, a natural consequence of the idea that ratings

are noisy versions of preferences, and it is immediately

fulfilled in our model.

Consider now the case D = 0. That is, we consider

only pairs such that r1i − r1j = 0. We want to show that

E[∆|D = 0] > 0 using only Assumptions 1,2, and 4,

rather than relying on a particular model.

To simplify the following equations, let pi = Pr{ui >
uj |D = 0}, pj = Pr{ui < uj |D = 0}, and p0 =
Pr{ui = uj |D = 0} denote the probabilities that xi is ac-

tually strictly preferred to xj , that xj is strictly preferred

to xi, and that the two options are truly indifferent, respec-

tively, all conditional on having observed equal ratings in

Phase 1.

First we decompose E[∆|D = 0] with respect to the

realizations of utilities as follows.

E[∆|D = 0] = pi · E[∆|D = 0, ui > uj ]

+p0 · E[∆|D = 0, ui = uj ]

+pj · E[∆|D = 0, uj > ui]

By Assumption 1, E[∆|D = 0, ui = uj ] = 0. That is,

if the participant is truly indifferent, the expected differ-

ence in ratings is zero). Hence, the second term above is

zero. Note that, if Assumption 4 did not hold, we would

have p0 = 1 and hence E[∆|D = 0] = 0. The remainder

of the analysis hinges on Assumption 4, i.e. p0 < 1.

We now decompose the expression depending on the ac-

tual choices in Phase 2. Since D = 0, we further simplify

the spread by noting that ∆ = r3i − r3j if xi is chosen and

∆ = r3j − r3i if xj is chosen.

E[∆|D = 0] =

pi

(

Pr{c(xi, xj) = xi|D = 0, ui > uj}·

E[r3i − r3j |D = 0, ui > uj , c(xi, xj) = xi]

+ Pr{c(xi, xj) = xj |D = 0, ui > uj}·

E[r3j − r3i |D = 0, ui > uj , c(xi, xj) = xj ]
)

+ pj

(

Pr{c(xi, xj) = xi|D = 0, ui < uj}·

E[r3i − r3j |D = 0, ui < uj , c(xi, xj) = xi]

+ Pr{c(xi, xj) = xj |D = 0, ui < uj}·

E[r3j − r3i |D = 0, ui < uj , c(xi, xj) = xj ]
)

That is, the first of the two major terms (starting with pi)
represents the case where xi is actually strictly preferred to

xj , subdivided into the cases where xi is chosen and xj is
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chosen. Analogously, the second major term (starting with

pj) corresponds to the case where xj is strictly preferred

to xi, subdivided into the same cases.

Since, given the utilities, ratings are independent of

the choices, we have that E[r3i − r3j |D = 0, ui >

uj , c(xi, xj) = xi] = E[r3i − r3j |D = 0, ui >
uj , c(xi, xj) = xj ], because which option has been ac-

tually chosen in Phase 2 does not change the expectation

of the ratings in Phase 3. Further, conditional on a given

event, E[r3j −r3i ] = −E[r3i −r3j ]. Factoring out terms, we

can simplify the expression as follows.

E[∆|D = 0] =

pi · E[r3i − r3j |D = 0, ui > uj ]·
(

Pr{c(xi, xj) = xi|D = 0, ui > uj}

− Pr{c(xi, xj) = xj |D = 0, ui > uj}
)

+ pj · E[r3j − r3i |D = 0, ui < uj ]·
(

Pr{c(xi, xj) = xj |D = 0, ui < uj}

− Pr{c(xi, xj) = xi|D = 0, ui < uj}
)

Let us consider the terms in this expression separately.

By Assumption 1, Ei = E[r3i − r3j |D = 0, ui > uj ] =

ui − uj > 0 and Ej = E[r3j − r3i |D = 0, ui < uj ] =
uj − ui > 0. By Assumption 2, Qi = Pr{c(xi, xj) =
xi|D = 0, ui > uj} − Pr{c(xi, xj) = xj |D = 0, ui >
uj} > 0 (the probability of choosing an option is larger

than the complementary if that option is actually the pre-

ferred one); analogously, Qj = Pr{c(xi, xj) = xj |D =
0, ui < uj} − Pr{c(xi, xj) = xi|D = 0, ui < uj} > 0.

We have that

E[∆|D = 0] = pi · Ei ·Qi + pj · Ej ·Qj

Since by (8) either pi or pj are strictly positive (and of

course both are weakly positive) and we have just argued

that Ei, Ej , Qi, and Qj are all strictly positive, it follows

that E[∆|D = 0] > 0. In conclusion, we have proven the

following.

Theorem: For any model of random utilities, ratings, and

choices (where ratings in phases 1 and 3 and choices are

independent given the utilities) fulfilling Assumptions 1,

2, and 4, the value of E[∆|D = 0] is strictly positive.

We conclude that positive spreading always obtains in

the FCP for D = 0, for a broad family of models. This

result explains the simulation results of Izuma and Mu-

rayama (2013) and also our own simulations for the case

D = 0. Beyond that, it means that in any FCP study, if

only pairs with D = 0 are considered, one will obtain pos-

itive spreading even in the absence of preference change.

However, as our previous counterexample shows, this re-

sult cannot be extended to the case D > 0. If a model

incorporates reasonable continuity assumptions, the result

can obviously be extended to small values of D. However,

whether a particular value of D > 0 is small or large de-

pends on the scale (recall, e.g., our simulation in Figure

3). Hence, the result above has limited bearing on stud-

ies with D > 0 or on those using rankings (where exact

indifference is excluded).

8 Conclusion

Analytical models and empirical/experimental studies are

complementary. An analytical model of behavior should

be based on a set of minimal, reasonable, uncontroversial

assumptions. The formal implications of such a model

should then be tested empirically. If experimental ev-

idence systematically points towards an effect not pre-

dicted by the model, one has strong reason to believe that

a feature of actual behavior has been uncovered.

We have presented a reasonable model built on very

weak assumptions, which also fulfills the assumptions em-

ployed in Chen and Risen (2010). We have shown that this

model does not predict a systematically positive spreading

in the free-choice paradigm (especially when D is larger

than zero). This conclusion, of course, implies that the

main claim of Chen and Risen (2010) is false, and we

have pointed out one purely mathematical mistake in their

proof. However, we have also shown that a small set of

reasonable assumptions suffices to imply positive spread-

ing (in the absence of preference change) for the particular

case D = 0.

What do we conclude from our analysis? Clearly,

the free-choice paradigm is flawed, and Chen and Risen

(2010) are to be credited with making this point explicit.

The empirical observation of positive spreading using this

paradigm in a specific study does not allow us to conclude

that preference change has occurred. Our analysis, how-

ever, has further implications. We have shown that, al-

though it is not true that the expected rating spread with

immutable preferences is zero, it is not true either that it

must be positive. Actually, even negative spreading might

occur. As a consequence, failure to find positive spread-

ing does not imply the absence of preference change. At

a more abstract level, however, we observe that a reason-

able model of behavior does not predict consistent positive

spreading but positive spreading has been consistently ob-

served for decades. We conclude that, taken in its entirety,

experimental evidence from the free-choice paradigm (as

long as data with D > 0 was obtained) is indeed valu-

able and points towards an effect which still needs to be

clarified, understood, and explained.
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In other words, what our example shows is that not ev-

ery reasonable model of immutable but noisy preferences

will predict positive spreading. If previous studies just

measured artificial spreading, originating on the biases in

the FCP and not on actual attitude change, one would have

expected frequent instances of negative spreading (unless,

of course, all of them have been victims of publication

bias). The most likely interpretation of the large body

of evidence available at this point is that actual choice-

induced attitude change exists, but has often been overesti-

mated (and occasionally underestimated) due to the flaws

in the FCP. Hence, in our opinion, empirically observed

positive spreading remains informative, even if the basic

effects in the literature need to be reestablished using im-

proved paradigms.

We have kept our model, and especially our counterex-

ample, as simple as possible. We see that the rating spread

with immutable preferences hinges on the configuration

of the behavioral model, for instance on the distributions

of utilities and ratings, the description of the choice rule,

and particularly, the predetermined rating difference D in

Phase 1. Given specific assumptions on the choice heuris-

tics, the distributions of utilities and ratings, and the scale

of ratings, we see that when D is relatively large, the ex-

pected rating spread conditional on D is negative, and

when D is relatively small, this spread is positive. A host

of extensions and variants is of course possible. One could

for example consider specific distributional assumptions

on uk, or consider cases where the set of utility values is

not restricted a priori, or the ratings are constrained to a

strict subset of the actual utilities, or the ratings can dif-

fer from the utilities more than slightly. In view of our

analysis, any such model will lead to positive spreading

for D = 0. Some particular models might lead to posi-

tive spreading for larger values of D. However, each of

those alternatives and variants will contain specific addi-

tional assumptions which could and should be discussed

on empirical and formal grounds. The point of a model

developed around an experimental paradigm should be to

help interpret and organize the data. There is an important

difference between using a highly specified model to prove

that a behavioral phenomenon is to be expected and using

a particular case of a family of models as a counterexam-

ple to show that a claimed result is false in general.

We hope that this article has contributed to clarifying

what we know and what we do not know on the biases built

within the free-choice paradigm. In conclusion, the fact

that expected spreading for specific rating distances and

model specifications might be nonzero (positive or nega-

tive) makes improved experimental designs highly desir-

able. Examples include Chen and Risen (2010), Risen

and Chen (2010), the blind-choice studies of Egan et al.

(2010) and Sharot et al. (2010), and the implicit-choice

paradigm of Alós-Ferrer et al. (2012). This is the true

value of the discussion started by Chen and Risen (2010).

However, the fact remains that experimental data point at

positive spreading and models based on a minimal set of

reasonable assumptions do not fully explain such spread-

ing. Hence, taken as a whole, the trove of evidence deliv-

ered by dozens of previous experiments remains informa-

tive and should not be discarded lightly.
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Appendix A: A symmetric counterex-

ample

Of course, one counterexample suffices to establish the

falsehood of a result. Here, however, we present a sec-

ond counterexample within the framework of the general

model in the main text in order to further clarify matters.

Specifically, we strengthen the requirements on the coun-

terexample by asking for a symmetric one where the in-

volved alternatives are identically distributed, i.e., µk =
µℓ = µ. That is, uk and uℓ follow the same (uniform)

distribution with support V = {µ − m, . . . , µ, . . . , µ +
m}(µ,m ∈ N).

Specifically, let µ = 2 and m = 1; hence V = {1, 2, 3}.

Further, suppose that r12 − r11 ≡ D = 2. There are

only three possibilities for r1 to yield D = 2: r1 =
(0, 2), (1, 3), or (2, 4). The choice probabilities are identi-

cal to the ones in the example in the main text.

Case 1: r1 = (0, 2). In this case, Pr{u = (1, 1)|r1 =
(0, 2)} = Pr{u = (1, 3)|r1 = (0, 2)} = β, Pr{u =
(1, 2)|r1 = (0, 2)} = 1− 2β. Given the choice probabili-

ties, we have

Pr{c(x1, x2) = x1|r1 = (0, 2)} =

1

2
β + ε(1− β) ≡ f(ε, β),

Pr{c(x1, x2) = x2|r1 = (0, 2)} = 1− f(ε, β)

Using the terms above, we obtain

E[r31 − r32|r1 = (0, 2), c(x1, x2) = x1] = − ε

f(ε, β)

E[r32 − r31|r1 = (0, 2), c(x1, x2) = x2] =
1− ε

1− f(ε, β)

Using these two results, we have

E[∆|r1 = (0, 2)] = −(1− 2ε)(1− 2β),

which is smaller than 0 for any 0 < ε < 1/2 and 0 < β <
1/4.

Case 2: r1 = (1, 3). In this case, Pr{u = (1, 2)|r1 =

(1, 3)} = Pr{u = (2, 3)|r1 = (1, 3)} =
β(1− 2β)

(1− β)2
,

Pr{u = (1, 3)|r1 = (1, 3)} =
(1− 2β)2

(1− β)2
, and Pr{u =

(2, 2)|r1 = (1, 3)} =
β2

(1− β)2
. Given the choice proba-

bilities, we can obtain

Pr{c(x1, x2) = x1|r1 = (1, 3)} =

1

(1− β)2

[

1

2
β2 + ε(1− 2β)

]

≡ g(ε, β)

Pr{c(x1, x2) = x2|r1 = (1, 3)} = 1− g(ε, β).

http://journal.sjdm.org/vol10.1.html
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Using the terms above, we can derive

E[r31 − r32|r1 = (1, 3), c(x1, x2) = x1] =

− 2ε
1

g(ε, β)

1− 2β

1− β
,

E[r31 − r32|r1 = (1, 3), c(x1, x2) = x2] =

2(1− ε)
1

1− g(ε, β)

1− 2β

1− β
.

These imply

E[∆|r1 = (1, 3)] = − 2

(1− β)2
β(1− 2β)(1− 2ε)

which is smaller than 0 for any ε < 1/2 and β < 1/4.

Case 3: r1 = (2, 4). This case is symmetric to the case

r1 = (0, 2), and we find that

E[∆|r1 = (2, 4)] = E[∆|r1 = (0, 2)] < 0.

Combining the three cases above, we have

E[∆|D = 2] < 0,

which contradicts positive spreading.

Appendix B: On Assumption 3

The mathematical analysis in Chen and Risen (2010) con-

tains an additional mistake. The authors argue that it is

equivalent to state Assumption 3 in terms of Pr{rtk >
rtℓ|uk > uℓ} or in terms of Pr{uk > uℓ|rtk > rtℓ} (see

Chen and Risen, 2010, footnote 6). This claim is actu-

ally incorrect without additional assumptions. This is, in

any case, inconsequential for our purposes, because, as ob-

served in the main text, the main problem is an incorrect

application of Assumption 1.

Even if one adopted this alternative version of Assump-

tion 3, however, our counterexample would hold. This is

because our model can also be shown to satisfy the addi-

tional assumption that 1
2 < Pr{uk > uℓ|rtk > rtℓ} < 1.

The argument that this conditional probability is smaller

than 1 is identical to the one on Pr{rtk > rtℓ|uk > uℓ} in

the main text, because we argued on the joint probability.

Showing that the probability is larger than 1/2 involves

a more involved mathematical argument which we detail

below. Essentially, it can be shown that this additional

assumption is also fulfilled for arbitrary distributions of

uk, uℓ if β is small enough. If specific distributions are as-

sumed, sharper bounds on β can be obtained. Specifically,

we show below that if every uk is uniformly distributed on

Vk, then the assumption that Pr{uk > uℓ|rtk > rtℓ} > 1/2
is fulfilled for any β < 0.21; alternatively, it is fulfilled for

any β < 1/4 under the slightly sharpened constraint that

|µk − µℓ| < 2m− 1 for any two alternatives xk, xℓ.

First we establish that, for arbitrary utility distributions,

the additional assumption Pr{uk > uℓ|rtk > rtℓ} > 1/2
will be fulfilled for β small enough. Since β is a noise

parameter thought to be small, this is actually enough to

establish the argument. However, we will also show below

that specific bounds can be found for specific distributions.

Since ratings are generated as perturbations of the real-

ized utilities, in our model it is easy to compute

Pr{uk > uℓ, r
t
k > rtℓ} =

Pr{uk = uℓ + 1}
(

(1− β)2 + 2β2
)

+

Pr{uk = uℓ + 2}(1− β2) + Pr{uk ≥ uℓ + 3} (9)

and

Pr{uk ≤ uℓ, r
t
k > rtℓ} =

Pr{uk = uℓ}
(

2β − 3β2
)

+ Pr{uk = uℓ − 1}β2. (10)

Note than the latter probability converges to zero as β → 0
while the former converges to Pr{uk ≥ uℓ + 1}, which is

not zero because |µk − µℓ| ≤ 2m − 1. Consequently, by

choosing the noise parameter β small enough, we obtain

that

Pr{uk > uℓ, r
t
k > rtℓ} > Pr{uk ≤ uℓ, r

t
k > rtℓ}, (11)

which in turn implies Pr{uk > uℓ|rtk > rtℓ} > 1
2 .

Suppose now that uk, uℓ follow uniform distributions

on Vk, Vℓ. We aim to establish when equation (11) above

holds, using expressions (9) and (10). Regrettably, the ar-

gument is mathematically cumbersome.

We distinguish three cases, µk = µℓ, µk > µℓ, and

µk < µℓ. If µk = µℓ, the assumption of uniform distribu-

tions yields

Pr{uk = uℓ + 1} =

Pr{uk = uℓ − 1} =
2m

(2m+ 1)2

Pr{uk = uℓ} =
2m+ 1

(2m+ 1)2

Pr{uk = uℓ + 2} =
2m− 1

(2m+ 1)2

Pr{uk ≥ uℓ + 3} =
(m− 1)(2m− 1)

(2m+ 1)2

and substituting in (11) we obtain that the assumption

holds if and only if

P1(β) = (8m+ 4)β2 − (8m+ 2)β + 2m2 +m > 0.

This polynomial reaches its minimum at β = (4m +
1)/4(2m + 1) > (1/4), hence it is strictly decreasing

http://journal.sjdm.org/vol10.1.html
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for 0 ≤ β ≤ 1/4. It follows that (11) holds for all

0 < β < 1/4 if and only if P1(1/4) ≥ 0. A compu-

tation shows that P1(1/4) = 2m2 − 1
2m − 1

4 , which is

strictly positive for all m ≥ 1. The conclusion follows.

Consider now the case µk > µℓ; let µk = µℓ + n with

n ∈ {1, 2, ..., 2m − 1}. Slightly more involved computa-

tions show that, for uniform distributions,

Pr{uk = uℓ + 1} =
2m+ 2− n

(2m+ 1)2

Pr{uk = uℓ} =
2m+ 1− n

(2m+ 1)2

Pr{uk = uℓ − 1} =
2m− n

(2m+ 1)2

Pr{uk = uℓ + 2} =
2m+ 1− |n− 2|

(2m+ 1)2

Pr{uk ≥ uℓ + 3} =
1

(2m+ 1)2

(

(n− 1)(2m+ 1)

− (2m+ 1− |n− 2|)

+
1

2
(2m− 1 + n)(2m+ 2− n)

)

and substituting in (11) we obtain that, for n = 1, the

assumption holds if and only if

(8m+ 4)β2 − (8m+ 2)β + (m+ 1)(2m+ 1) > 0.

This polynomial has a minimum at β = 4m+1
8m+4 > (1/4)

and, by the same argument as in the previous case, the

conclusion will follow if and only if P2(1/4) ≥ 0. A

computation shows that P2(1/4) = 2m2+ 3
2m+ 3

4 , which

is larger than zero for any m ≥ 1. Similarly, for n ≥ 2,

the assumption holds if and only if

P3(β) = (8m+ 6− 4n)β2 − (8m+ 6− 4n)β+

1

2
(2m+ 2− n)(2m− 1 + n) + (n− 1)(2m+ 1) > 0.

Again this polynomial has a minimum at β = 1/2 > 1/4
and, by the same argument as in the previous case, the

conclusion will follow if and only if P3(1/4) > 0. A

computation shows that P3(1/4) = − 1
2n

2+( 94 +2m)n+
(2m2 − 1

2m − 9
8 ) and this expression is larger than zero

provided 9
4 + 2m − Q

2 < n < 9
4 + 2m + Q

2 with Q =
√

32m(m+ 1) + 45/4; this condition is fulfilled because

1 ≤ n ≤ 2m− 1, and the conclusion follows.

Last, consider the case µk < µℓ; let µk = µℓ − n with

n ∈ {1, 2, ..., 2m− 1}. For uniform distributions,

Pr{uk = uℓ + 1} =
2m− n

(2m+ 1)2

Pr{uk = uℓ} =
2m+ 1− n

(2m+ 1)2

Pr{uk = uℓ − 1} =
2m+ 2− n

(2m+ 1)2

Pr{uk = uℓ + 2} =
2m− 1− n

(2m+ 1)2

Pr{uk ≥ uℓ + 3} =
(2m− 1− n)(2m− 2− n)

2(2m+ 1)2

and substituting in (11) we obtain that the assumption

holds if and only if

P4(β) = 2(4m− 2n+ 1)β2 − 2(4m− 2n+ 1)β+

1

2
(2m− n)(2m+ 1− n) > 0,

where 4m− 2n+1 > 0 and (2m−n)(2m+1−n) > 0.

Again this polynomial has a minimum at β = 1/2 > 1/4
and, by the same argument as in the previous cases, the

conclusion will follow if and only if P4(1/4) ≥ 0. A

computation shows that P4(1/4) =
1
2n

2 − (2m − 1
4 )n +

2m2− 1
2m− 3

8 . This expression is strictly larger than zero

if n < 2m − 1+
√
13

4 or n > 2m +
√
13−1
4 . The former

holds whenever n ≤ 2m− 2, and hence we conclude that

the assumption holds for any 0 < β < 1/4 under the

sharpened condition that |µk − µℓ| < 2m − 1 for any

two alternatives xk, xℓ. If this is not assumed, we need to

determine when the condition holds for the extreme case

n = 2m − 1. In this case, the condition P4(1/4) ≥ 0
reduces to 6β2 − 6β + 1 ≥ 0, which holds if β ≤ 1/2 −
(1/6)

√
3 ∼ 0.211. Hence, the assumption always holds

(without sharpening the original condition |µk − µℓ| ≤
2m− 1) for β ≤ 0.21.
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