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A statistical test of independence in choice data with small samples

Michael H. Birnbaum∗

Abstract

This paper develops tests of independence and stationarity in choice data collected with small samples. The method
builds on the approach of Smith and Batchelder (2008). The technique is intended to distinguish cases where a person
is systematically changing “true” preferences (from one group of trials to another) from cases in which a person is
following a random preference mixture model with independently and identically distributed sampling in each trial.
Preference reversals are counted between all pairs of repetitions. The variance of these preference reversals between
all pairs of repetitions is then calculated. The distribution of this statistic is simulated by a Monte Carlo procedure in
which the data are randomly permuted and the statistic is recalculated in each simulated sample. A second test computes
the correlation between the mean number of preference reversals and the difference between replicates, which is also
simulated by Monte Carlo. Data of Regenwetter, Dana, and Davis-Stober (2011) are reanalyzed by this method. Eight
of 18 subjects showed significant deviations from the independence assumptions by one or both of these tests, which is
significantly more than expected by chance.
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1 Introduction
Regenwetter, Dana, and Davis-Stober (2010, 2011) pro-
posed a solution to the problem of testing whether choice
data satisfy or violate transitivity of preference. Their
probabilistic choice model assumes that on a given trial, a
response can be represented as if it were a random sample
from a mixture of transitive preferences. The model was
used to analyze a replication of Tversky’s (1969) study
that had reported systematic violations of transitivity of
preference (Regenwetter, et al., 2010, 2011). Reanaly-
sis via this iid mixture model of new data concluded that
transitivity can be retained.

Birnbaum (2011) agreed with much of their paper, in-
cluding their conclusions that evidence against transitiv-
ity is weak, but criticized the method in part because it
assumes that responses by the same person to repeated
choices are independent and identically distributed (iid).
If this assumption is violated, the method of Regenwetter
et al. (2011) might lead to wrong conclusions regarding
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the tests of structural properties. Further, the violations
of these assumptions can be analyzed by a more detailed
analysis of individual responses to choice problems rather
than by focusing on (averaged) binary choice proportions.

In the true and error model, a rival probabilistic rep-
resentation that can also be used to test structural prop-
erties such as transitivity in mixture models, iid will be
violated when a person has a mixture of true preferences
and changes true preferences during the course of the
study. Birnbaum (2011) showed how the Regenwetter
et al. method might lead to wrong conclusions when iid
is violated in hypothetical data, and described methods
for testing between these two rival stochastic models of
choice. These methods allow tests of assumptions of
the Regenwetter, et al. (2011) approach against violations
that would occur if a person were to change preferences
during a study. He described conventional statistical tests
that require conventional sized samples. Hypothetical ex-
amples illustrated cases in which the method of Regen-
wetter, et al. (2011) might lead to the conclusion that tran-
sitivity was satisfied, even when a more detailed analysis
showed that the data contained systematic violations of
both iid and transitivity.

The methods described by Birnbaum (2011) to test in-
dependence would require large numbers of trials, how-
ever, and might be difficult or impractical to implement.
The experiment of Tversky (1969), which Regenwetter et
al. (2011) replicated, does not have sufficient data to al-
low the full analyses proposed by Birnbaum (2011). Re-
genwetter, Dana, Davis-Stober, and Guo (2011) argued
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that it would be difficult to collect enough data to pro-
vide a complete test of all iid assumptions, as proposed
by Birnbaum (2011).

Nevertheless, this note shows that by building on the
approach of Smith and Batchelder (2008), it is possible
to test iid assumptions even in small studies such as that
of Regenwetter, et al. (2011).

2 Testing IID assumptions in small
studies of choice

Suppose a person is presented with m choice problems,
and each problem is presented n times. For example, each
of these m choice problems might be intermixed with
filler trials and presented in a restricted random sequence
such that each choice problem from the experimental de-
sign is separated by several fillers. These choices might
also be blocked such that all m choices are presented in
each of n trial blocks, but blocking is not necessary to this
test. Let x(i, j) represent the response to choice j on the
ith presentation of that choice.

Define matrix z with entries as follows:

z(i, k) =
∑

j

[x(i, j)− x(k, j)]2 (1)

where z is an n by n matrix showing the squared distance
between each pair of rows of the original data matrix, and
the summation is from j = 1 to m. If responses are coded
with successive integers, 0 and 1, for example, represent-
ing the choice of first or second stimulus, then z(i, k) is a
simply a count of the number of preference reversals be-
tween repetitions i and k, that is, between two rows of x.
In this case, the entries of z(i, k) would have a minimum
of 0, when a person made exactly the same responses on
all m choices in two repetitions, and a maximum of m,
when a person made exactly opposite choices on all m
trials.

Smith and Batchelder (2008) show that random permu-
tations of the original data matrix allow one to simulate
the distribution of data that might have been observed un-
der the null hypothesis. According to iid, it should not
matter how the data of x are permuted within each col-
umn. That is, it should not matter if we switch two values
in the same column of x; they are two responses to the
same choice on different repetitions by the same person.
For example, it should not matter whether we assign one
response to the first repetition and the other to the last, or
vice versa.

Assuming iid, the off-diagonal entries of matrix z
should be homogeneous, apart from random variation.

However, if a person has systematically changed “true”
preferences during the study, then there can be some en-
tries of z that are small and others that are much larger.
That is, there can be a relatively larger variance of the
entries in z when iid is violated.

Therefore, one can compute the variance of the en-
tries in z of the original data matrix, x, and then com-
pare this observed variance with the distribution of sim-
ulated variances generated from random permutations of
the data matrix. If iid holds, then random permutations
of the columns will lead to variances that are compara-
ble to that of the original data, but if the data violate iid,
then the original data might have a larger variance than
those of most random permutations. The proportion of
random permutations leading to a simulated variance that
is greater than or equal to that observed in the original
data, taken from a large number of Monte Carlo simula-
tions, is the pv value for this test of iid. When pv < α,
the deviations from iid are said to be “significant” at the
α level, and the null hypothesis of iid can be rejected.
When pv ≥ α, one should retain both the null and alter-
native hypotheses.

A second statistic that can be calculated from the ma-
trix of z is the correlation between the mean number of
preference reversals and the absolute difference in repli-
cations. If a person changes gradually but systematically
from one set of “true” preferences to another, behavior
will be more similar between replicates that are closer to-
gether in time than between those that are farther apart
(Birnbaum, 2011). This statistic can also be simulated
via Monte Carlo methods, and the proportion of cases for
which the absolute value of the simulated correlation is
greater than or equal to the absolute value of the original
correlation is the estimate of the pr value for the correla-
tion coefficient. (The use of absolute values makes this a
two-tailed test).

A computer program in R (R Development Core Team,
2011) that implements these calculations via computer
generated pseudo-random permutations is presented in
Listing 1.

Appendix A defines independence and identical distri-
bution (stationarity) for those who need a refresher, and
it presents analyses of hypothetical data showing how the
simulated variance method yields virtually the same con-
clusions as the two-tailed, Fisher exact test of indepen-
dence in a variety of 2-variable cases with n = 20. It is
noted that standard tests of “independence” usually as-
sume stationarity, and it is shown that a violation of sta-
tionarity can appear as a violation of “independence” in
these standard tests. For that reason, the variance test of
this paper is best described as a joint test of iid.
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Table 1: Analyses of actual data of Regenwetter (2011)
replicating Tversky (1969). The mean of z is the mean
number of disagreements (preference reversals) out of
10 choices between two rows, averaged over all possi-
ble pairs of rows. The variance of z is the variance of
these entries for the original data. The pv -values are
the proportion of simulated permutations of the data for
which the calculated variance of z in the permuted sam-
ple is greater than or equal that of the original data (each
is based on 100,000 computer generated, pseudo-random
permutations of the data). Correlations between mean
rate of preference reversals and difference between repe-
titions are shown in the column labeled, r. Corresponding
pr -values are shown in the last column.

Subject Mean of z Variance of z pv r pr

1 3.59 2.89 0.272 0.61 0.086
2 2.72 4.29 0.000 0.91 0.000
3 0.19 0.16 1.000 0.61 0.510
4 2.72 2.61 0.077 0.01 0.985
5 0.65 1.06 0.011 –0.82 0.104
6 2.67 2.18 0.114 0.67 0.048
7 1.70 1.75 0.238 0.88 0.005
8 0.35 0.26 1.000 0.12 0.905
9 4.33 3.12 0.782 –0.53 0.107

10 1.23 1.51 0.047 0.45 0.539
11 0.53 0.48 0.464 0.11 0.883
12 3.79 2.68 0.788 0.44 0.246
13 4.27 3.47 0.181 0.71 0.011
14 0.19 0.16 1.000 0.71 0.390
15 3.48 4.25 0.000 0.82 0.003
16 1.29 0.67 0.998 0.77 0.024
17 4.32 3.11 0.752 0.34 0.336
18 4.09 2.76 0.952 –0.38 0.316

3 Reanalysis of Regenwetter, et al.
(2011)

Applying this approach to the data of Regenwetter, et al.
(2011), the estimated pv and pr values based on 100,000
simulations are shown in Table 1. Four of the pv values
are “significant” at the α = 0.05 level. Fifteen of the 18
correlation coefficients are positive, and 6 of the correla-
tions are significantly different from 0 by this two-tailed
test (α = 0.05). Eight of the 18 subjects have significant
deviations by one or both of these tests.

Since 18 tests were performed for each of two proper-
ties, we expect 5% to be significant with α = .05; i.e., we

expect about 1 case to be significant for each property.
Can these data be represented as a random sample from
a population of people who satisfy the iid assumptions?
The binomial probability to find four or more people out
of 18 with pv significant at the .05 level by chance is 0.01.
The binomial probability to find 6 or more cases with pr

significant at this level is 0.005. The binomial probability
to observe 15 or more correlations positive out of 18, as-
suming half should be positive by chance, is .003. There-
fore, using either criterion, variance or correlation, we
can reject the hypothesis that iid is satisfied. Considering
how small the sample size is for each person, compared
to what would be ideal for a full test of iid such as pro-
posed by Birnbaum (2011), it is surprising that these tests
show so many significant effects.

Appendix B notes that the Regenwetter, et al. (2011)
experiment has low power for testing iid, so these signif-
icant violations are probably an indication that the vio-
lations are substantial. Also discussed in Appendix B is
the connection between finding significant violations of a
property such as iid for some individuals and what infer-
ences might be drawn for general conclusions concern-
ing iid, based on summaries of individual significance
tests. A philosophical dispute is reviewed there between
those who “accept” the null hypothesis and those who
“retain” both null and alternatives when significance is
not achieved.

Table 2 shows data for Subject #2, whose data violated
iid on both tests. These data show relatively more re-
sponses of “0” at the beginning of the study than at the
end. Therefore, the first three or four repetitions resem-
ble each other more than they do the next dozen repeti-
tions, which in turn resemble each other more than they
do the first repetitions. Random permutations of the data
distribute the “0” values more evenly among rows, which
resulted none (zero) of 100,000 random permutations of
the data having larger variance than that in the original
data. Figure 1 shows the estimated distribution of the
variance statistic under the null hypothesis for this per-
son.

4 Discussion

These tests show that the data of Regenwetter, et al.
(2011) do not satisfy the iid assumptions required by their
method of analysis. The assumption of iid in their paper
is crucial for two reasons: first, iid is required for the sta-
tistical tests of transitivity; second, iid justifies analyzing
the data at the level of choice proportions instead of at the
level of individual responses. When iid is satisfied, the
binary choice proportions contain all of the “real” infor-
mation in the data. However, when iid is violated, it could
be misleading to aggregate data across repetitions to com-
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Table 2: Raw data for Subject #2 of Regenwetter, et al.
(2011), who showed violations of iid on both indices.
Each row shows results for one repetition of the study.

V: 12 13 14 15 23 24 25 34 35 45

1 1 0 0 0 1 1 1 0 1 1
2 0 0 0 0 1 0 1 0 0 1
3 0 1 0 0 0 0 1 1 0 1
4 0 0 1 1 1 1 1 0 1 0
5 1 1 1 0 1 0 1 1 1 1
6 1 1 1 1 1 1 1 1 0 1
7 1 1 1 1 1 1 1 1 1 1
8 0 1 1 1 1 1 1 1 1 1
9 0 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 0 1 1
11 1 1 0 1 1 1 1 0 1 1
12 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1
14 0 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1
18 0 1 1 1 1 1 1 1 1 0
19 1 1 1 1 1 1 1 1 1 0
20 0 1 1 1 1 0 1 0 1 1

pute marginal choice probabilities (Smith & Batchelder,
2008; Birnbaum, 2011).

Appendix C describes three hypothetical cases that
would be treated as identical in the Regenwetter, et al.
(2011) approach but which are very different. These ex-
amples illustrate how cases with exactly the same choice
proportions (column marginal means) could arise from
very different processes, and how these different pro-
cesses can be detected by examination of the individual
response patterns. Appendix D presents further simula-
tions of hypothetical data to compare the simulated vari-
ance method in three-variable cases with the results of
standard Chi-Square and G2 tests of independence.

These tests of iid are not guaranteed to find all cases
where a person might change true preferences. For exam-
ple, if a person had exactly two true preference patterns
in the mixture that differed in only one choice, it would
not produce violations of iid.

Each of these methods (variance or correlation) sim-
plifies the z matrix into a single statistic that can be used
to test a particular idea of non-independence. The vari-
ance method would detect cases in which a person ran-

Figure 1: Estimated distribution of variance of the en-
tries in z matrices generated from random permutations
of the original data matrix for case #2 (Table 2), based
on 100,000 pseudo-random permutations of the data in
Table 2. None of the simulations exceeded the value ob-
served in the original data, 4.29. Case #2 was selected
as showing the most systematic evidence against the iid
assumptions.
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domly sampled from a mixture of true preference patterns
in each block of trials, as in one type of true and error
model.

The correlation method detects violations of iid in the
z matrix that follow a sequential pattern; for example, a
positive correlation would be expected if a person sticks
with one true preference pattern until something causes
a shift to another true pattern, which then persists for
a number of trials. Violations of either type would be
consistent with the hypothesis that there are systematic
changes in “true” preference during the course of the
study (Birnbaum, 2011; Birnbaum & Schmidt, 2008).

Furthermore, there may be more information in the
data (and the z matrix) beyond what one or two indices
could represent; for example, one might explore the z
matrix via nonmetric multidimensional scaling (Carroll
& Arabie, 1998) in order to gain additional insight into
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the pattern of violation of iid. Note that each entry of z
can be regarded as a squared Euclidean distance between
two repetitions.

In summary, it is possible to test assumptions of iid
in studies with small samples, and when these tests are
applied, it appears that these assumptions are not consis-
tent with data of Regenwetter et al. (2011). A larger study
such as described in Birnbaum (2011) would have greater
power and would certainly be a better way to identify and
study violations of iid, but this note shows how these as-
sumptions can also be tested with small samples. The fact
that a number of cases are significant based on only 20
repetitions suggests that these violations are likely sub-
stantial in magnitude.
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Appendix A: Independence and sta-
tionarity in a repeated trials task

Consider an experiment that yields two dependent vari-
ables, X and Y. The experiment is repeated n times, and
the data are labeled, Xi and Y i for the observed responses
on the ith repetition. For simplicity, assume that the val-
ues of the variables are binary, either 0 or 1. A hypothet-
ical example of such a matrix is shown in Table A.1.

Table A.1. A hypothetical set of data with two choices
and 20 repetitions.

Rep X Y

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 1 0
10 1 0
11 0 1
12 0 1
13 1 1
14 1 1
15 1 1
16 1 1
17 1 1
18 1 1
19 1 1
20 1 1

Let pi and qi represent probabilities that Xi = 1 and Y i

= 1, respectively. Independence is the assumption that the
probability of the conjunction of X and Y is the product
of the individual probabilities; i.e., p(Xi = 1 and Y i = 1)
= pi qi. Stationarity is the assumption that pi = p and qi

= q, for all i. The term iid (independent and identically
distributed) is the assumption that both of these properties
are satisfied; i.e., i.e., p(Xi = 1 and Y i = 1) = pq for all i.

The conditional probability of X given Y is the joint
probability of X and Y divided by the probability of Y;
i.e., p(Xi = 1 | Y i = 1) = p(Xi = 1 and Y i = 1)/p(Y i = 1). If
independence holds, p(Xi = 1 and Y i = 1) = p(Xi = 1)p(Y i

= 1); that means that p(Xi = 1 | Y i = 1) = p(Xi = 1) =
pi. Therefore, independence of X and Y can also be ex-
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pressed in terms of conditional probabilities, as follows:
p(Xi = 1 | Y i = 1) = p(Xi = 1 | Y i = 0) = p(Xi = 1) = pi;
similarly, independence also means that p(Y i = 1 | Xi = 1)
= p(Y i = 1 | Xi = 0) = p(Y i = 1) = qi.

If the rows of Table A.1 represented different subjects
who were tested separately and in random order, we could
assume that rows are a “random effect” and we would test
independence by studying the crosstabulation of X and Y,
as shown in Table A.2. Counting the number of rows with
(X, Y) = (0, 0), (0, 1), (1, 0), and (1, 1) we find that there
are 8, 2, 2, and 8 cases, respectively.

Table A.2. Crosstabulation of the hypothetical data from
Table A.1

Y = 0 Y = 1 Row Sum/Total

X = 0 8 2 .5
X = 1 2 8 .5

Row Sum/Total .5 .5 20

A Chi-Square test is often used to test if data in a
crosstabulation satisfy independence. This test estimates
the probabilities of X and Y from the marginal propor-
tions (column marginal means in Table A.1 or the col-
umn and row marginal sums divided by n in Table A.2).
The “expected” value (predicted value) in the crosstab-
ulation table is then constructed using products of these
estimates; for example, the predicted entry correspond-
ing to the (1, 1) cell of Table A.2: E(Xi = 1 and Y i = 1) =
(.5)(.5)20 = 5. That is, we multiply column marginal pro-
portions of Table A.1 with each other and multiply this
product by the total number of observations, in order to
construct an “expected” value, based on independence. If
X and Y were indeed independent, we would expect to
observe frequencies of 5, 5, 5, and 5 in the crosstabula-
tion. Thus, the frequencies in Table A.2 (8, 2, 2, and 8)
indicate that the hypothetical data in Table A.1 are not
perfectly independent. If these were sampled data, we
might ask if the violations are “significant,” which means
we ask, “are such deviations unlikely to have arisen by
random sampling from a population in which indepen-
dence holds?”

The Chi-Square test compares expected (based on
independence) frequencies with obtained frequencies.
However, the Chi-Square test is a poor approximation
when the sample size, n, is small, or when expected fre-
quencies are small. For this reason, we need a more accu-
rate way to compute the probability of observing a sample
of data given the null hypothesis.

The Fisher test is called an “exact” test because it di-
rectly calculates the probabilities of any crosstabulation
frequencies (as in Table A.2) given the assumption of in-
dependence, and it is therefore more accurate than the

Chi-Square test as a test of independence, especially with
small n. Let a, b, c, and d represent the frequencies of
(0, 0), (0, 1), (1, 0), and (1, 1), respectively. Then the
exact probability, pF, assuming independence of X and Y,
of any such array with the same marginal totals is given
by the hypergeometric distribution:1

pF =

[ (a+c)!
a!c!

][ (b+d)!
b!d!

]
[

n!
(a+b)!(c+d)!

]

As noted above, independence can be expressed in
terms of conditional probabilities. We can estimate con-
ditional probabilities in Table A.2 as follows: p(Y i = 1 | Xi

= 0) and p(Y i = 1 | Xi = 1) from conditional proportions
b/(a + b) and d/(c + d), respectively. If independence
holds, these two conditional proportions should be equal
to each other; when they are unequal, we can measure the
degree of disproportion (violation of independence) from
the following:

D =
∣∣∣∣

b

(a + b)
− d

(c + d)

∣∣∣∣
In Table A.2, D = |.2 - .8| = 0.6. The Fisher two-tailed

test computes the sum of probabilities of all arrays with
the same n and marginal sums, such that the degree of
disproportion as measured by D is greater than or equal
to that of the observed array.

In this case, the Fisher test yields the following two-
tailed “p-value” for Table A.1: 0.023. From the Fisher
test, if the hypothetical values in Table A.1 were consid-
ered a random sample of data, the hypothesis of indepen-
dence of X and Y in Table A.1 would be rejected at the α
= 0.05 level of significance.

It is important to keep in mind that in order to interpret
either the Fisher or Chi-Square test, that we had (implic-
itly) assumed another type of independence; namely, we
assumed that each row in Table A.1 was obtained from
a different person, and that the people were tested sepa-
rately. We assumed that these people did not communi-
cate with each other by talking, cheating, or via ESP. That
is, we assumed that the rows in Table A.1 are a random
factor; i.e., that “rows do not matter.”

Statistics teachers often describe physical situations
in which scientists believe, based on theoretical argu-
ments supported by empirical evidence, in independence
of replicated measures. For example, X in table 1 might
represent whether or not a tossed “fair” coin comes up
heads (X = 1) or tails (X = 0), and Y might represent
whether a card drawn from a standard deck is red (Y =

1In this expression for the hypogeometric distribution, the denom-
inator represents the number of ways of dividing n to achieve the row
sums, a + b, and c + d; the numerator is the product of the number of
ways of dividing the first and second column sums to arrive at entries
of a and b with column sums of a + c and b + d. The product in the
numerator imposes the assumption of independence.
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1) or black (Y = 0). We assume that coins and cards do
not communicate with each other, and in recent years, we
assume that no gods intervene in both physical situations
to advise us of future events. Ample evidence has been
obtained to check these hypotheses, and physical objects
such as coins and cards do seem to conform to indepen-
dence; at least they do when magicians do not handle the
props.

The assumption that rows in Table A.1 do not matter
implies “stationarity” with respect to Table A.1, there-
fore: pi = p and qi = q, for all i. However, notice that for
both X and Y, the likelihood of 1 in Table A.1 increases
as the row number increases. We can test stationarity by
asking if the Xi and Y i are independent of i. In Table A.1,
stationarity is violated (as well as independence).

In the physical example, stationarity is the assump-
tion that the probability of heads does not change over
time. Similarly, the probability of drawing a red card is
assumed to be stationary, as long as we replace each card
and reshuffle the deck. But if we don’t return red cards to
the deck, then stationarity would be violated.

Now consider the situation in which the “data” in Ta-
ble A.1 arose instead from repeated trials performed by
the same person over time. Suppose X and Y are scores
on two learning tasks, for example, and rows represent
repeated trials with feedback to the same person. That
means that rows do matter. The first trial is not the same
as the last trial of a learning experiment. If X = 0 is an
error and X = 1 is correct, hypothetical data as in Table
A.1 would indicate that there has been learning during the
study, because there are more 1s at the end compared to
the beginning.

When data arise from a single person, therefore, our
standard tests of independence are confounded with the
assumption of stationarity. We cannot justify the assump-
tions upon which the standard Chi-Square or Fisher test
of independence are built. We can test the two assump-
tions of iid together by means of these tests, but it is less
clear which of these was the culprit, when the (combined)
test is rejected.

For the Fisher test of independence, we assumed sta-
tionarity of the probabilities when we created Table A.2,
which collapsed across rows. We assumed stationarity
when we simplified the statement of independence from
testing p(Xi = 1 and Y i = 1) = pi qi to p(Xi = 1 and Y i

= 1) = p q. That means that the standard Fisher or Chi-
Square test, when performed on repeated measures from
the same person is a confounded test of independence and
stationarity, and if the Fisher or Chi-Square test is sig-
nificant, we cannot clearly blame one or the other with-
out further information or assumption. So even though
these tests are typically called “tests of independence”,
they also assume stationarity, so they would be better de-
scribed as joint tests of iid.

Now, where does the Smith and Batchelder (2008)
method using a computer to create pseudo-random per-
mutations fit into this picture? Their method randomly
permutes the entries in the columns in Table A.1. So
the number of 0 and 1 in each column stay the same
and therefore the column marginal means (column pro-
portions) stay the same, but the pairings of X and Y will
change because the columns are randomly and indepen-
dently permuted. That means that the joint frequencies
Table A.2 can (and usually will) change with each ran-
dom permutation. It also means that the distribution of
X and Y with respect to rows will change. Columnwise
random permutations of the data therefore would remove
two effects in Table A.1: First, it will break up the pat-
tern of nonindependence between X and Y. Second, it will
also break up the correlations between row number and X
and between row number and Y.

Although Smith and Batchelder (2008) refer to test-
ing stationarity while assuming independence, their pro-
cedure also tests independence, assuming stationarity. To
illustrate this point, Monte Carlo simulations of 19 hypo-
thetical cases in Table A.3 were conducted, using the R-
program to implement pseudo-random permutations and
the variance method to estimate pv. Each hypothetical
case was constructed (as in Table A.1) as a 20 by 2 array
in which X and Y take on values of 0 and 1. The four en-
tries in Table A.3, a, b, c, and d, represent the frequencies
in the four cells (as in Table A.2): (0, 0), (0, 1), (1, 0), and
(1, 1). respectively. The same data were also analyzed by
the two-tailed Fisher exact test of independence. The last
row of Table A.3 represents the example analyzed in Ta-
bles A.1 and A.2.

These simulations allow us to compare the variance
method with the Fisher exact test. As shown in Table A.3,
the simulated pv values, based on 10,000 pseudo-random
permutations, are very close to the p-values calculated
by the two-tailed, Fisher exact test. The two procedures
yield virtually the same conclusions.

The use of random permutations within columns with
the variance method can therefore be considered a test of
independence, since it yields the same conclusions as the
Fisher “test of independence”. But keep in mind that the
Fisher test also implicitly assumes stationarity. When the
results of the Fisher test are significant, it means that iid
can be rejected, but we cannot say if one, the other, or
both assumptions are violated. When we can safely as-
sume “rows don’t matter,” as we would when each row of
Table A.1 represented data from a different person tested
separately, the Fisher test is indeed a “pure” test of in-
dependence because we assumed that people do not have
ESP (based on considerable evidence); but when this test
is applied to repeated data from a single person, it is a
joint test of iid.
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Table A.3. Results of Monte Carlo simulation of hypo-
thetical data with 20 reps. Cells a, b, c, and d represent
the frequencies of (0, 0), (0, 1), (1, 0), and (1, 1), respec-
tively. The column labeled “Fisher” shows the calculated
probability for the Fisher exact test of independence; The
last column shows the simulated pv, based on 10,000 ran-
dom permutations.

a b c d Fisher Simulated pv

10 0 0 10 0.0000 0.0000
7 3 0 10 0.0031 0.0027
4 6 0 10 0.0867 0.0875
1 9 0 10 1.0000 1.0000

10 0 2 8 0.0007 0.0007
7 3 2 8 0.0698 0.0685
4 6 2 8 0.6285 0.6326
1 9 2 8 1.0000 1.0000

10 0 4 6 0.0108 0.0112
7 3 4 6 0.3698 0.3678
4 6 4 6 1.0000 1.0000
1 9 4 6 0.3034 0.3115

10 0 5 5 0.0325 0.0314
7 3 5 5 0.6499 0.6522
4 6 5 5 1.0000 1.0000
1 9 5 5 0.1409 0.1430
6 4 4 6 0.6563 0.6557
5 5 5 5 1.0000 1.0000
8 2 2 8 0.0230 0.0227

To understand how a violation of stationarity might ap-
pear as a violation of independence, consider the follow-
ing case. A person samples randomly (with replacement)
from two urns, X and Y, that each contain 20% Red and
80% white marbles. Code Red as “1” and White as “0.”
The two urns are independent and stationary (because we
replace the sampled marbles and remix the urns after each
draw), so in 100 trials, we expect the frequencies of (0,
0), (0, 1), (1, 0), and (1, 1) to be 64, 16, 16, and 4, respec-
tively. Now consider a new pair of urns, each of which
now contains 80% Red and 20% White, respectively. In
100 trials with these two urns, we expect 4, 16, 16, and
64, respectively. Each pair of urns satisfies independence.
Now suppose we switched from the first pair of urns to
the second pair of urns after 50 trials (which violates sta-
tionarity but not independence): we would expect to ob-
serve 34, 16, 16, and 34, when data are combined over
the 100 total trials. These values violate “independence,”
which in this case implies 25, 25, 25, and 25. Even if one
were to flip a coin on each trial to determine which pair of
urns to use, we expect to observe a violation of indepen-

dence despite the fact that the coin and urns are indepen-
dent. Therefore, violations of stationarity could lead to an
apparent violation of “independence,” even though true
(physical) independence was satisfied within each part of
the experiment, and the culprit was actually a violation of
stationarity.

The results of the variance method or of the Fisher test
would not be affected by a random permutation method
in which entire rows of data are permuted, because that
would not change the connections between X and Y. From
Expression 1, for the dissimilarity between two rows of
data, note that the row number plays no role in the calcu-
lations except to index the cases. Further, the variance of
dissimilarity is a computation that also is independent of
the row numbering, except as an index. For example, ran-
domly switching entire rows in Table A.1 would not alter
the crosstabulation frequencies in Table A.2, nor would
it affect the variance of dissimilarity of rows. However,
the correlation method described here, which correlates
the dissimilarity between rows with the gaps in trial order
would indeed be affected by such a permutation method
in which intact rows were exchanged. Therefore, the cor-
relation test is clearly a test of stationarity, but it is best
described as a test of stationarity that assumes indepen-
dence. Furthermore, it tests only one type of violation
that is related to the trial separation.

In conclusion, the random permutation method with
the variance statistic is a joint test of iid and the permu-
tation method with correlations between similarity and
trial gap is one test of stationarity. However, it should
be again noted that these two methods—variance and
correlation—are not “pure” nor do they exhaust all of the
information in the data that might reveal violations of iid.
Aside from analyses described in Birnbaum (2011), these
are the only two tests I have so far investigated with the
Regenwetter, et al. (2011) data.

Appendix B: Comment on statistical
power and multiple tests
Regenwetter, et al. (2010, 2011) studied designs in which
there were ten choices comparing five stimuli. In the case
of binary choices, there are two possible results for each
choice. Therefore, there are 210 = 1024 possible response
patterns, or cells, in the design. If we plan to look at
a complete crosstabulation table to investigate indepen-
dence, and if we plan to use a Chi-Square test, we should
follow the rule of thumb that we should obtain an ex-
pected frequency of five responses per cell, so the experi-
ment would require at least 5120 replicates, and even this
large number might be considered just a bare minimum.

Regenwetter, et al. (2011) pointed out that such an ex-
periment to properly test their iid assumptions in a ten



Judgment and Decision Making, Vol. 7, No. 1, January 2012 Testing iid assumptions in choice 105

choice design would therefore be difficult, and in conse-
quence, they concluded that one can assume iid for rea-
sons of parsimony. They noted that their study had only
20 presentations per choice, so it would have very low
power to test iid compared to a design with 5120 presen-
tations per choice.

Despite the lack of power of the 20 repetition design,
their data when analyzed by the simulation methods pV

and pr reveal significant deviations from iid for 4 and 6
people, respectively. The fact that a study with so few
repetitions detects significant deviations of iid suggests
that the violations of iid are likely substantial.

How should one draw conclusions regarding theory
from individual analyses? There are two philosophies of
how to interpret individual subject analysis. To contrast
them, I describe the views of Doctor 1 and Doctor 2, who
wish to understand the safety of a new, hypothetical anes-
thetic called Propafool2.

The two doctors tested 18 subjects, using a triple blind,
drug versus placebo study (the subjects, the doctor who
administered the drugs, and the scientists who monitored
the dependent variables were all blind with respect to the
drug/placebo independent variable). The study measured
both heart beat irregularities and breathing abnormalities
within person comparing drug and placebo conditions.
Both doctors agree that either irregularity causes an in-
crease in the probability that a patient would die under
the anesthetic, if not monitored. They performed a sig-
nificance test on each subject on each dependent variable
and found that 4 of 18 patients had significant heart ab-
normalities; 15 of 18 had reduced oxygen levels, of which
6 of 18 had significantly reduced oxygen under the drug
compared to placebo; 8 of the 18 had “significant” abnor-
malities in at least one of the two measures.

The two doctors disagree on the implications of these
results. Doctor 1 says that because we would expect ap-
proximately 1 person out of 20 to show significant irreg-
ularities in each test by chance (one of 20 at the 5% level
would be 1), and because 4 and 6 of 18 are each signif-
icantly improbable, we would reject the null hypothesis
(that drug is safe and the error rate accounts for the sig-
nificant results) in favor of the alternative hypothesis (that
the drug is dangerous to people in general); therefore, if
it is to be used as an anesthetic, both heart rate and res-
piration should be monitored for every patient in every
case.

Doctor 2 argues instead that those patients who did not
show significant effects in the test have been “proven”
to be immune to the drug. A doctor should be therefore
be allowed to administer this drug as a sleeping agent at
home to those 10 patients (for whom both effects were
not statistically significant), without any requirement that
heart rate or respiration be measured.

The first doctor, however, replies that nonsignificance

does not prove there was no effect (retaining the null hy-
pothesis is not the same as accepting it), so that the drug
might be dangerous in a second administration to those
people whose test scores were not significant. She ar-
gues that even if a person survived the drug on n previous
tests, it is still possible that the next presentation might
be lethal to that same person, and it would be a “recipe
for disaster” to assume that the drug is safe, even for a
person who showed no ill effects during previous admin-
istrations of the drug. If 18 men walk through a minefield
and 8 are killed, the other 10 have not been shown to be
invulnerable to mines.

The two doctors cannot agree on the applicability of
individual subject analyses to predicting results for the
same individuals, to predicting results with other individ-
uals, nor do they agree whether nonsignificance proves a
drug is safe. My own views are closer to those of Doctor
1, but I acknowledge that there is disagreement on these
issues. I hold that failure to reject the null hypothesis does
not prove the null hypothesis nor does it lead to refutation
of the alternatives.

Appendix C: Three cases with choice
proportions satisfying transitivity
Suppose we conducted a test of transitivity with 10 binary
choices among five alternatives, and suppose we found
that all binary choice proportions were 0.6. Such propor-
tions are perfectly consistent with both weak stochastic
transitivity and with the triangle inequality, and they are
perfectly consistent with transitivity, according to the Re-
genwetter, et al. (2010, 2011) approach.

Table A.4 shows a hypothetical set of data that would
yield such binary choice proportions. So do Tables 5 and
6. Note that in all three hypothetical arrays, the column
marginal means are all 0.6. The person chose A over B
60% of the time, chose B over C 60% of the time, and
chose A over C 60% of the time. According to the ap-
proach of Regenwetter, et al. (2010, 2011), which uses
only the column marginal means, all three cases are per-
fectly consistent with transitivity, because all have the
same column means.

However, Tables A.5 and A.6 are not consistent with
the theory of Regenwetter, et al. (2010, 2011), because
these data violate the assumptions of iid. In Table A.5, the
data were constructed from the assumption that the sub-
ject started out with the transitive order, ABCDE, and then
switched to the opposite transitive order, EDCBA. At least
these data agree with the main conclusion in Regenwetter,
et al., which is that behavior is consistent with a mixture
of transitive orders. But their approach assumes that be-
havior can be modeled as iid samples from the mixture
on each trial. That assumption is violated in Table A.5.
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Table A.4. Hypothetical data consistent with transitivity
and with the iid assumptions of Regenwetter, et al. (2010,
2011). These data are coded such that 1 = preference for
the first stimulus in each choice and 0 = preference for
the second stimulus in each choice.
Rep AB AC AD AE BC BD BE CD CE DE

1 1 0 1 1 1 1 0 1 1 1
2 0 0 0 0 1 0 1 0 0 1
3 0 1 1 1 1 1 1 0 1 1
4 1 1 0 0 1 1 1 0 1 0
5 0 0 1 1 0 1 0 1 0 0
6 1 1 1 1 0 1 0 0 1 0
7 1 1 1 0 0 1 1 1 1 1
8 1 1 0 1 1 0 1 1 0 1
9 1 0 0 0 1 0 0 1 1 0

10 0 1 1 1 0 0 1 1 0 1

Table A.5. Hypothetical data consistent with transitivity,
but not with iid assumptions of Regenwetter, et al. (2010).
In this case, the subject started with the transitive order,
ABCDE for six blocks of trials, then switched to the op-
posite order for the last four blocks of trials.

Rep AB AC AD AE BC BD BE CD CE DE

1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

Table A.6. Hypothetical data that violate both transitiv-
ity and the iid assumptions of Regenwetter, et al. (2010,
2011). In this case, the person used an intransitive lexico-
graphic semiorder for four blocks, followed by two tran-
sitive blocks of trials, followed by an opposite intransitive
pattern for four blocks.

Rep AB AC AD AE BC BD BE CD CE DE

1 0 0 1 1 0 0 1 0 0 0
2 0 0 1 1 0 0 1 0 0 0
3 0 0 1 1 0 0 1 0 0 0
4 0 0 1 1 0 0 1 0 0 0
5 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
7 1 1 0 0 1 1 0 1 1 1
8 1 1 0 0 1 1 0 1 1 1
9 1 1 0 0 1 1 0 1 1 1

10 1 1 0 0 1 1 0 1 1 1

The hypothetical example in Table A.6 is more prob-
lematic for the Regenwetter, et al. approach. This case
violates both transitivity and the assumptions of iid, but
such data would be considered to be perfectly consistent
with transitivity, according to the method of Regenwetter,
et al. (2010, 2011).

Table A.6 was constructed from the assumption that
the person used an intransitive lexicographic semiorder
for 4 replicates, was then transitive for two replicates, and
then used another intransitive lexicographic semiorder for
the last four replicates. This hypothetical person was per-
fectly intransitive in 8 out of 10 blocks of trials. In one
block of trials, this person chose A over B, B over C, C
over D, D over E, and yet chose E over A. In other trials,
the person had the opposite pattern of intransitive prefer-
ences. Thus, these data were constructed from assump-
tions that the Regenwetter, et al. model is false, and yet
the procedures of Regenwetter, et al. would conclude that
these data are perfectly consistent with their model.

In the approach of Regenwetter, et al. (2010), all three
cases (Tables 4, 5, and 6) are treated as the same because
the column marginal means are the same. If we assume
that iid is satisfied, the column marginal choice propor-
tions contain all of the information in the data, so we need
not examine the actual data. But in this case, that would
be wrong.

When we analyze these three cases using the variance
method suggested here, however, we find that the simu-
lated pv -values for the test of iid are .0000 and .0000 for
Tables 5 and 6, based on 10,000 pseudo-random permu-
tations. The values of r and pr are 0.943 and 0.0003 for
Table A.5, and 0.943 and 0.0002 for Table A.6. Table A.4
is compatible with the assumptions of iid, according to
the same methods (pv = 0.8125, r = -0.105, pr = 0.8159).
Thus, this method correctly diagnoses these three hypo-
thetical cases that are treated as if they are the same in the
approach of Regenwetter, et al. (2010).

Do people actually show evidence of perfectly revers-
ing their preferences between two blocks of trials? The
answer is yes. Such cases of complete reversal have been
observed in real data by Birnbaum and Bahra (2007).
They separated blocks of trials by more than 50 interven-
ing trials, and found that some people had 20 responses
out of 20 choice problems exactly the opposite between
two blocks of trials. Such extreme cases of perfect re-
versal mean that iid is not tenable because they are so
improbable given the assumption of iid.

But how do we detect cases where a person switches
between two or more different “true” patterns that are not
perfect opposites? The methods in this paper are intended
to do that.

The assumption of iid accomplishes two purposes:
First, it justifies the decision not to examine the raw
data as in Tables A.4, A.5, and A.6, but only to study
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the marginal binary choice proportions (column marginal
means of the tables). Second, it justifies the statisti-
cal tests in the approach of Regenwetter, et al. (2010,
2011). But if the iid assumptions are wrong, it means
that not only are the statistical tests inappropriate, but that
marginal choice proportions can be misleading as repre-
sentative of the behavior to be explained.

Appendix D: Simulations in three
variable case
Table A.7 shows results of 25 simulations in the three-
variable case, in which the variance method is compared
with two standard statistical tests of independence, χ2

and G2. The hypothetical data were constructed, as in
Table A.1, except there were three variables, X, Y, and Z.
Case 1 was constructed with 40 rows that perfectly satisfy
independence in the crosstabulations.

In Table A.7, the response pattern, (X, Y, Z) = (0, 0, 0) is
denoted “000”, (0, 0, 1) is denoted “001”, and so on. In-
dependence is the assumption that the probability of any
combination of (X, Y, Z) is the product of the marginal
probabilities. That is, the p(000) = p(X = 0)p(Y = 0)p(Z =
0), p(001) = p(X = 0)p(Y = 0)p(Z = 1), . . . , p(111) = p(X
= 1)p(Y = 1)p(Z = 1). Case 1 is perfectly consistent with
independence because the “observed” frequencies of all
response combinations are 5, which is exactly equal to
the predicted values according to independence:

E(j, k, l) = n p(X = j) p(Y = k) p(Z = l)

where E(j, k, l) are the expected frequencies in the
crosstabulation (j = 0, 1; k = 0, 1; l = 0, 1), assuming
iid; n is the total number of cases (number of rows in the
hypothetical data matrix). In Case 1, there are exactly 40
rows; the column marginal means are estimates of p(X =
1), p(Y = 1), and p(Z = 1), which are all 0.5, so each pre-
dicted frequency is 40(.5)(.5)(.5) = 5. The values in the
first row of Table A.7 are the (hypothetical) “observed”
values, which are counted from the crosstabulation of the
hypothetical data.

The Chi-Squared test of independence in this case is
defined as follows:

χ2 =
∑

j

∑

k

∑

l

[F (j, k, l)− E(j, k, l)]2

E(j, k, l)

where F(j, k, l) are the observed frequencies, E(j, k, l) are
the expected frequencies assuming independence, and the
summations are over j, k, and l. There are 8 “observed”
frequencies in each row of Table A.7, which sum to n,
so there are 8 — 1 = 7 degrees of freedom in the data.
From these, 3 parameters are estimated from the marginal
means (binary choice proportions), representing p(X = j),

p(Y = k), and p(Z = l), leaving 7 — 3 = 4 degrees of free-
dom. From the calculated value of χ2, one can compute
the probability of obtaining an equal or higher value of
χ2, according to the Chi-Square distribution with 4 df.

A statistic that is similar to χ2 is G2, which is defined
as follows:

G2 = 2
∑

j

∑

k

∑

l

F (j, k, l) ln

(
F (j, k, l)
E(j, k, l)

)

where ln(x) is the natural logrithm, and the summations
are over j, k, and l. This test has the same number of de-
grees of freedom, and is also assumed to be Chi-Squared
distributed. This formula is a special case of a likelihood
ratio test, and it is regarded as a better approximation to
the Chi-Square distribution.

The approximation of either computed statistic, χ2, or
G2 to the theoretical Chi-Square distribution is not good
when n is small and when expected frequencies are small.
There is a rule of thumb that expected cell frequencies
should exceed 5 and n should exceed 35 for this approxi-
mation to be considered acceptable. Many of the cases in
Table A.7 are near or even below this rule of thumb for
considering either χ2 or G2 to be an accurate approxima-
tion. But these are the situations for which a simulation
method is required.

Three methods are compared in Table A.7, where the
p-value is calculated from χ2 and G2 assuming the Chi-
Square distribution, or it is simulated using the R pro-
gram and the variance method to estimate pV with 10,000
pseudo-random permutations. Case 1 satisfies indepen-
dence perfectly, and all three methods yield p = 1. Cases
labeled “a” or “b” have larger values of n but the same
relative frequencies as cases with the same number. So
Case 1a is also perfectly consistent with independence,
and it is also correctly diagnosed by all three methods.

Cases 2, 3, and 4 in Table A.7 are very close to satis-
fying independence (all frequencies are within rounding
error of perfect independence). All three methods agree
that independence is acceptable for these cases.

The other cases in Table A.7 have varying degrees of
violation of independence, with more extreme departures
in the lower rows of the table. Comparing the three meth-
ods, we find that the estimated pV values by the simu-
lation method show “regression” compared to the calcu-
lated values; that is, the simulated pV -values are often
lower for large p and higher for small p. The simulated
pV-values are more “conservative” in certain cases where
one would consider rejecting the null hypothesis, as in
Cases 6a and 10. An interesting exception is in Case
5a, where the χ2 method would declare statistical sig-
nificance but G2 would not; in that case, pV was smallest
of the three methods. Summarizing the cases studied, the
correlation between the p-levels calculated by χ2 and G2



Judgment and Decision Making, Vol. 7, No. 1, January 2012 Testing iid assumptions in choice 108

Table A.7. Results of Monte Carlo simulations for Hypothetical Data with Three Variables. The hypothetical frequen-
cies of response combinations, total n, and p-values given three methods. The last column shows Monte Carlo results
based on 10,000 simulations.

Case 000 001 010 011 100 101 110 111 n χ2 G2 pV

1 5 5 5 5 5 5 5 5 40 1.000 1.000 1.000
1a 10 10 10 10 10 10 10 10 80 1.000 1.000 1.000
2 12 6 6 3 6 3 3 1 40 0.998 0.998 0.876
2a 24 12 12 6 12 6 6 2 80 0.992 0.990 0.830
3 3 1 3 1 11 5 11 5 40 0.998 0.998 0.880
3a 6 2 6 2 22 10 22 10 80 0.994 0.993 0.850
4 6 1 13 4 4 1 9 2 40 0.989 0.988 0.811
4a 12 2 26 8 8 2 18 4 80 0.960 0.957 0.803
5 8 4 4 4 4 4 4 8 40 0.308 0.363 0.197
5a 16 8 8 8 8 8 8 16 80 0.048 0.070 0.024
5b 24 12 12 12 12 12 12 24 120 0.006 0.011 0.002
6 8 2 2 8 5 5 5 5 40 0.126 0.103 0.383
6a 16 4 4 16 10 10 10 10 80 0.006 0.004 0.067
6b 24 6 6 24 15 15 15 15 120 0.000 0.000 0.016
7 8 2 2 8 6 4 4 6 40 0.092 0.074 0.111
7a 16 4 4 16 12 8 8 12 80 0.003 0.002 0.005
8 9 1 1 9 5 5 5 5 40 0.012 0.005 0.109
8a 18 2 2 18 10 10 10 10 80 0.000 0.000 0.006
9 8 2 2 8 8 2 2 8 40 0.006 0.004 0.003
9a 16 4 4 16 16 4 4 16 80 0.000 0.000 0.000
10 2 10 10 2 10 2 2 2 40 0.002 0.001 0.200
10a 4 20 20 4 20 4 4 4 80 0.000 0.000 0.033
10b 6 30 30 6 30 6 6 6 120 0.000 0.000 0.005
11 26 2 2 2 2 2 2 2 40 0.002 0.008 0.001
12 14 2 2 2 2 2 2 14 40 0.000 0.000 0.000

have a correlation exceeding 0.999; the correlation be-
tween the p-value calculated from χ2 and pV is 0.980.
Apparently, all three methods give fairly similar results.

Listing 1. Listing of the program in
R.
# This is R code to analyze independence in choice data for each

subject
nchoices<-10 # nchoices is the number of choices (columns)
nreps<-20 # nreps is the number of repetitions of the study (rows)
nsubs<-18 # nsubs is the number of subjects.
nruns<-10000 # nruns is the number of random permutations

(e.g., 10000)
outfile="results2.txt” # outfile is where the results will be printed
files1<-c("reg_01.txt","reg_02.txt","reg_03.txt",

"reg_04.txt","reg_05.txt","reg_06.txt","Reg_700a.txt",
"Reg_800a.txt","reg_09.txt","reg_10.txt","Reg_1100a.txt",
"reg_12.txt","reg_13.txt","reg_14.txt","reg_15.txt",
"reg_16.txt","reg_17.txt","reg_18.txt")

for (iii in 1:nsubs) {
file1<-files1[iii]
mm=read.table(file1) # read in the data for one subject
x <- mm # x (same as mm) is a matrix of the original data
z=array(0,c(nreps,nreps)) # Here arrays are initialized

zz=array(0,c(nreps*nreps))
xperm=array(0,c(nreps,nchoices))
zperm=array(0,c(nreps,nreps))
zzperm=array(0,c(nreps*nreps))
vardist=array(0,c(nruns))
cordist=array(0,c(nruns))
repdif=array(0,c(nreps,nreps))
rrdif = array(0,c(nreps*nreps))
zzap=array(0,c(nreps-1))
sum=array(0,c(nreps-1))
# These are calculations on the original data
# z is the matrix of disagreements between reps in original data
for (i in 1:nreps) { for (j in 1:nreps)
{ for (k in 1:nchoices) { z[i,j] = z[i,j]+ (x[i,k]-x[j,k])ˆ2 }
repdif[i,j]<-abs(i-j)
}}
zz<-c(z)
a <- mean(zz)
b <- var(zz)
# here we calculate the correlation between rep difference and

distance
nn<-nreps-1
for (id in 1:nn) {
sum[id]<-0
ni<-nreps – id
for (i in 1:ni) {
j<-(i+id)
sum[id]<- sum[id]+ z[i,j] }
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zzap[id]<-sum[id]/(nreps-id) }
repdif2<-c(1:nn)
c<-cor(zzap,repdif2)
# Here begin calculations on permuted data. Note that data are

permuted across rows within columns. This leads to tests of iid
independence.

# xperm is a permutation of the data
# zperm is the matrix of disagreements between reps in the per-

muted data
# totvar is the number of cases where the variance of permuted

data exceeds the variance in the original data.
totvar=0.0
totcor=0.0
for (kk in 1:nruns) {
for (ii in 1:nreps){
for (jj in 1:nchoices) {xperm[,jj]<-x[sample(nreps,nreps),jj]} }
for (it in 1:nreps) {
for(jt in 1:nreps) {zperm[it,jt]=0} }
for (i in 1:nreps) {
for (j in 1:nreps) {
for (k in 1:nchoices) {zperm[i,j] = zperm[i,j]+ (xperm[i,k]-

xperm[j,k])ˆ2 } }}
zzperm<-c(zperm)
a1<-mean(zzperm)
b1<-var(zzperm)
vardist[kk]=b1 # vardist a vector of variances of zperm
if (b1 >= b) {totvar=totvar+1}
# calculate correlation btn. rep difference and distance in per-

muted data
nn<-nreps-1
for (id in 1:nn) {
sum[id]<-0
ni<-nreps – id
for (i in 1:ni) {
j<-(i+id)
sum[id]<- sum[id]+ zperm[i,j] }
zzap[id]<-sum[id]/(nreps-id) }
repdif2<-c(1:nn)
c1<-cor(zzap,repdif2)
cordist[kk]<-c1
if (abs(c1) >= abs(c)) {totcor=totcor+1}
}
p=totvar/nruns # p is the p-value of the variance test of iid
p2=totcor/nruns # p2 is the p-value of the correlation test
o1=c(file1,a,b,p,c,p2,nruns) # This is the list for printout
sink(outfile,append=TRUE)
print(o1) # Here the results are printed to the output file
sink()
# hist(vardist) this would display histogram sampling distb. under

H0
# plot(density(vardist)) this would display the density of above his-

togram
}


