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Abstract

Schelling (1969, 1971a,b, 1978) observed that macro-levelpatterns do not necessarily reflect micro-level intentions,
desires or goals. In his classic model on neighborhood segregation which initiated a large and influential literature,
individuals with no desire to be segregated from those who belong to other social groups nevertheless wind up clustering
with their own type. Most extensions of Schelling’s model have replicated this result. There is an important mismatch,
however, between theory and observation, which has received relatively little attention. Whereas Schelling-inspired
models typically predict large degrees of segregation starting from virtually any initial condition, the empirical literature
documents considerable heterogeneity in measured levels of segregation. This paper introduces a mechanism that can
produce significantly higher levels of integration and, therefore, brings predicted distributions of segregation more in
line with real-world observation. As in the classic Schelling model, agents in a simulated world want to stay or move
to a new location depending on the proportion of neighbors they judge to be acceptable. In contrast to the classic
model, agents’ classifications of their neighbors as acceptable or not depend lexicographically on recognition first and
group type (e.g., ethnic stereotyping) second. The FACE-recognition model nests classic Schelling: When agents have
no recognition memory, judgments about the acceptability of a prospective neighbor rely solely on his or her group
type (as in the Schelling model). A very small amount of recognition memory, however, eventually leads to different
classifications that, in turn, produce dramatic macro-level effects resulting in significantly higher levels of integration.
A novel implication of the FACE-recognition model concernsthe large potential impact of policy interventions that
generate modest numbers of face-to-face encounters with members of other social groups.
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1 Introduction

Based on his counterintuitive observation concern-
ing neighborhood segregation, Nobel Laureate Thomas
Schelling (1969, 1971a,b, 1978) established what would
become a large and influential literature connecting var-
ious subfields of the social sciences. Schelling’s obser-
vations was this: even in the absence of intrinsic aver-
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sion to those who belong to other groups, and without
anyone explicitly aiming to locate themselves in a segre-
gated community, high levels of segregation could nev-
ertheless result from a modest desire to avoid being too
much of a relative minority. When one observes the
sharp ethnic segregation that exists in a regrettably large
number of US cities, Schelling argued we ought not con-
clude that this is necessarily the result of anti-ethnic sen-
timent among either majority or minority group mem-
bers. Schelling’s classic segregation model shows, for
example, that when people are happy with any location at
which up to half their neighbors belong to a different eth-
nic group, one should nevertheless predict dramatic seg-
regation into nearly homogeneous ethnic blocs that no in-
dividual explicitly sought or wished for. The incongruity
of macro consequences that do not reflect individual ob-
jectives is the overarching theme referred to in the title of
Schelling’s (1978)Micromotives and Macrobehavior.
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Of particular relevance to judgment and decision mak-
ing researchers, we hope, is this link — or lack of
link as was Schelling’s argument — between individual-
level decision-making process and macro spatial dynam-
ics. One might dismiss the relevance of Schelling’s very
simple model to the complexity of real-world neighbor-
hoods and other social communities, such as academic
departments, where methodological splits into subgroups
sometimes lead to conflict and segregation (e.g., empiri-
cal versus theoretical divides which are common in eco-
nomics departments, or social psychologists interacting
quite separately from other sub-disciplines within psy-
chology departments). Yet Schelling’s modelis widely
used to inform analyses of policies (at virtually all levels
of local, state and federal government, as well as among
private firms and non-profits such as universities) dealing
with segregation of many kinds.

Although Schelling’s neighborhood segregation model
gave rise to a substantial new literature that remains ac-
tive to this day, there is an important mismatch between
theory and empirical observation that has received rela-
tively little attention. Schelling’s model predicts high lev-
els of segregation starting from virtually anywhere within
a very large set of initial conditions and parameter val-
ues. Yet empirical studies documenting various forms of
segregation (e.g., ethnic types among cities, gender types
among work places, or methodological types among aca-
demic institutions) reveal considerable variation in the
extent to which social groups are observed to engage
in inter-group mixing. Whereas the world presents ob-
servers with a rich variety of heterogeneous segregation
outcomes, Schelling’s theory does not easily account for
this variation as a systematic function of variables or pa-
rameters within the model, which raises interesting ques-
tions. Can the Schelling model be squared with real world
data? Are there extensions of the Schelling model that
come closer to reality by predicting heterogeneous seg-
regation levels that vary systematically with observable
factors in the environment?

This paper presents such an extension. We augment
Schelling’s classic model by endowing agents with recog-
nition memory. This capacity enables simulated agents
to apply the FACE-recognition heuristic. FACE refers to
an evolved capacity that is key for our model, namely
recording faces into recognition memory. At the same
time, the acronym FACE (forFast Acceptance by Com-
mon Experience)refers to the insight that shared local
experience can facilitate rapid formation of relationships
and, thus, transform assessments of others’ underlying
quality in a process by which a recognized face, and the
quality of its associated memory (i.e., positive or nega-
tive), absolutely over-rules the inference that would have
been made by stereotyping based on group identity.

According to this definition, Fast Acceptance by Com-

mon Experience refers to rapidly formed recognition-
based classifications of others’ quality (e.g., an “accept-
able” versus “unacceptable” neighbor) without regard to
group identity, when classifying those with whom face-
to-face experience has taken place in the past. When
classifying those whose faces are unrecognized, classifi-
cation continues strictly according to group identity (i.e.,
ethnic stereotyping). When an unrecognized other per-
son is to be classified, the FACE-recognition heuristic re-
duces to stereotyping based solely on group identity, ex-
actly the same as in the classic Schelling model. How-
ever, when there is even a small amount of shared ex-
perience, the quality of that shared experience from the
past determines how other people are classified. Classi-
fications based on recognition memory lexicographically
over-rule group identity, which is the basis for classifi-
cation of unrecognized agents in both FACE and classic
Schelling models. Given the plausibility of the assump-
tion that context-specific experience from the past can in-
fluence the classification of others, it came as a surprise to
us that we could not find any previous attempts to extend
the Schelling model in this direction.

The model shows that when agents possess face-
recognition that lasts as short as a single period (encod-
ing a maximum of only 8 individual faces out of a sub-
stantially larger population), this alone is enough to pro-
duce significantly higher levels of integration. The key
comparison investigated in this paper concerns this vari-
able degree of recognition memory (e.g., no recognition
memory as in the classic Schelling model versus any
positive number of periods for which the faces of those
one encounters remains coded in memory). By introduc-
ing variable recognition memory as a representation of
heterogeneity in real-world environments (which some-
times have few, sometimes many, opportunities for ran-
dom face-to-face encounters with other-type agents), the
model investigates a novel source of systematic variation
into the otherwise classic model of segregation.

The motivation for studying the effect of recognition
classification on segregation is to better understand why
some real-world environments succeed at achieving sus-
tained levels of cross-group interaction (i.e., high levels
of integration) while others seem to be locked into a stub-
bornly unchanging pattern of segregation. The model
is intended to contribute substantively and constructively
to policy analysis with a simple message, namely, that
we can, relatively cheaply, design institutions that pro-
duce modest opportunities for face-to-face encounters
with members of other groups. Then, to the extent that
people use an acceptance rule based partially on recogni-
tion, random face-to-face inter-group mixing could po-
tentially generate large and stable levels of integration
that are too pessimistically ruled out by the vast major-
ity of studies based on Schelling’s model.
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The paper is structured as follows. We outline the
classic Schelling model of neighborhood segregation,
review previous research related to our extension of
this paradigm, and present the limitations of the clas-
sic Schelling model (mismatch between its predictions
and real world segregation data) that motivate our exten-
sion. We then introduce the FACE-recognition heuristic
and specify the recognition-augmented Schelling model,
an encompassing model that nests the classic Schelling
model as a special case. Subsequently, we present a se-
ries of agent-based simulations demonstrating the effect
of agents’ recognition memory and decision rules (the
micro-level) on their spatial distribution in the environ-
ment (the macro-level).

2 Neighborhood segregation:
Schelling’s classic model

Neighborhood segregation continues to be a relevant pub-
lic policy issue (Alesina et al., 1999; Baughman, 2004;
Brender, 2005; Musterd et al., 1999; Nechyba, 2003), and
recent work in economics, sociology and related social
sciences (Fossett 2006; Pancs & Vriend, 2007; Vinković
& Kirman, 2006; Zhang 2004a, 2004b, in press) indi-
cates that Schelling’s ingenious model continues to play
an influential role today.1 Schelling’s neighborhood seg-
regation model consisted of a thought experiment show-
ing that, even when no individual has a preference for
segregation (i.e., an aversion to living near members of
a different ethnic group), high levels of unintended seg-
regation are very likely to occur. This basic result has
been confirmed by many researchers working with the-
oretical extensions that add new features to Schelling’s
model. Before turning to these extensions, however, we
describe the classic model.

Consider aG-x-G square lattice with a total number
of G2 locations that can be inhabited by up to that many
agents. If there are only two groups, a majority and a
minority, and if each agent belongs to only one group,
then the total number of agents,N, is the sum of the num-
ber of majority agents,NMAJ, and the number of minority
agents,NMIN (with N = NMAJ + NMIN andNMAJ≥ NMIN).
In each period, each agent has to make a binary decision:
to stay at the current location or try to move somewhere
else. To make this decision meaningful, there must be
unoccupied locations available for agents who want to
move, which implies strictly more locations than total

1In addition to the nonlinear dynamics that lead to counterintuitive
mappings from individual behavioral rules into macro structure, which
is the focus of Schelling’s work and of this paper, multiple factors have
been identified as jointly causing persistent segregation (Fossett, 2006),
which include differences in income (Bayer et al., 2004), housing dis-
crimination (Nyden et al., 1998), and related forms of social disorder
(Musterd et al., 1999).

number of agents (G2 >N). Whether an agent considers
his or her current location acceptable (i.e., wants to stay
or move) is assumed to depend on the proportion of same-
type agents in the immediate neighborhood. Schelling
defined an agent’s neighborhood as the locations directly
proximal, or surrounding, an agent’s location. Thus, for
an agent on the interior of the lattice representing city or
society, the neighborhood consists of the eight locations
that form a small box around his or her location.2 Agents
located along edges have smaller neighborhoods.3 An
agent considers his current location acceptable as long as
the proportion of same-type agents in the neighborhood
is above theacceptability thresholdτ , which is a prefer-
ence parameter of sorts indicating the minimum accept-
able fraction of neighbors who belong to the same group
type as the agent. Larger values of this threshold im-
pose more stringent homogeneity requirements in order
to classify locations as acceptable, implying thatτ can be
interpreted as a measure of intolerance.

A sequential process then unfolds by which unhappy
agents move from unacceptable to acceptable locations,
with movers picked at random from the list of all unhappy
agents and then moving to the nearest acceptable loca-
tion. Whenever an agent moves, it changes the spatial dis-
tribution of types in other agents’ neighborhoods. This,
in turn, causes other agents to transition from happy to
unhappy, or the reverse. This feedback loop — in which
individual decisions (to stay or change locations) and the
spatial geography of the environment are jointly causal —
is a primary reason why this simple model has generated
such enduring interest. Changes in the spatial distribu-
tion of types affect individuals’ decisions about whether
to move, and individual decisions about whether to move
affect the spatial distribution of types. The distributionof
types reaches a terminal state, which completes a single
run of the Schelling model, when one of the following
three conditions is met: (1) All agents are happy and thus
nobody wants to move; (2) Some agents are unhappy, but
no improving moves are possible because none of the un-

2Alternative definitions of neighborhoods have appeared in this lit-
erature and are not generally thought to strongly influence the basic
results of the Schelling model. The square-shaped neighborhood defi-
nition given above is sometimes referred to as a Moore neighborhood,
following Edward F. Moore’s work in cellular automata theory, which
is distinct from so-called von Neumann neighborhoods, which consist
only of adjacent locations that share an edge and therefore resemble a
diamond shape.

3Some researchers eliminate the effect of edges by defining neigh-
borhoods and distance in a way that measures opposite edges as adja-
cent. This is something like walking on a globe, where one cannever
bump into an edge (or walk off the face of the earth). For cities and
other physical spaces where integration is a real concern, edges seem to
be an important real-world feature that we intentionally preserve in all
models presented in this paper. In light of Fossett and Warren’s (2005)
finding of no boundary effects in the classic Schelling model, it is un-
clear whether this feature plays much of a role in the FACE-recognition
model.
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Figure 1: A single run of the classic Schelling model: Integrated checkerboard (left), random shock in which 20
agents disappear and 5 reappear (center), and end-state environment whose integration has unraveled to a high degree
of segregation (right).
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occupied locations are acceptable from the points of view
of the unhappy agents; or (3) The maximum number of
iterations is reached, indicating either very slow conver-
gence or the presence of a cycle that will never converge
to a terminal state, which we refer to as an indeterminate
ending.4

For a population with two group types and equal num-
bers of each type, one can intuitively see that maximal
integration is achieved by a perfect checkerboard pattern
like the one depicted in the left panel of Figure 1.5 In
that panel, the neighborhood grid is 8x8 (with corner lo-
cations unoccupied), implying a total of 60 possible lo-
cations, occupied by 30 X-type and 30 O-type agents.
Each agent not located on an edge has an equal number
of neighbors of each type. Now imagine this perfectly in-
tegrated grid undergoes a random spatial shock.6 In the
simulation, this shock is implemented by selecting 20 of
the 60 agents at random, chosen uniformly from all occu-
pied locations without regard to type, and removing them
from the board. Then five new agents of random type

4Imagine agent A moves, which makes happy agent B transition to
unhappy; B in turn moves, which makes the newly happy A transition
back to unhappy; but when A moves to make himself happy again,it
makes happy B transition back to unhappy, etc.

5Schelling (1971b, 1978) begins with a perfectly integratedchecker-
board as the initial state, whereas Schelling (1971a) begins with a ran-
dom spatial distribution as the initial state.

6Real-world equivalences of such shocks are any events that effect
ethnic composition of cities and neighborhoods. Examples include: (1)
a meat packing company opens in a small Kansas town and hires 200
Latino workers; (2) housing prices in the south fall relative to the north,
attracting a disproportionate influx of non-white (i.e., lower income)
Americans; (3) affirmative action policy is changed at a university or
department, and the ethnic composition of the group begins to change;
(4) Hurricane Katrina displaces mostly black residents from New Or-
leans because of the random locational strike of the hurricane.

appear at randomly chosen locations, drawn uniformly
from among the 24 unoccupied locations (4 unoccupied
corners plus 20 newly unoccupied locations after the dis-
appearance of 20 agents). This run of the Schelling model
continues by forming a list of agents who want to move.
A single unhappy agent is selected at random from this
list and then moves to the nearest location that he or she
considers acceptable. If there are two or more acceptable
locations with the same minimum distance, then one is
chosen at random, and the list of unhappy agents is then
updated. The number of unhappy agents, although gener-
ally decreasing, is not monotonically decreasing, because
one agent’s move can make one or more other agents un-
happy. This process of picking unhappy agents one at
a time continues until a terminal state is reached as de-
scribed above.

Figure 1 displays three (nonconsecutive) periods from
a typical run of the classic Schelling model: initial
checkerboard, subsequent spatial shock in which 11 X-
types and 9 O-types disappeared and 1 X-type and 4 O-
types appeared, and end-state spatial distribution. Fol-
lowing the initial shock, the first period in a single round
begins with decisions made by each agent about whether
he wants to move. The middle panel of Figure 1 indicates
with brackets the agents who are unhappy and want to
move. With both types’ acceptability thresholds set to ½,
not all agents were happy in the initial state, although the
post-shock spatial distribution has a much larger number
of those who want to move: 22 (marked with brackets
in the middle panel of Figure 1) of the 45 agents. The
right panel of Figure 1 shows the classic result of segrega-
tion, with X-types and O-types clustered in distinct areas
and each having few or no other-type agents as neighbors.
Note that this segregated end-state distribution occurred
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despite the willingness of all agents to live in a neigh-
borhood that is 50 percent different from themselves, and
despite of the fact that the initial state was near-perfect
integration.

The mathematical social sciences are rich with stud-
ies that build on and modify Schelling’s spatial proximity
model.7 Before discussing some of them in more detail,
we give an overview of parameters that have been inves-
tigated in previous studies:

Size and shape of the spatial environment (measured
by edge lengthG in the case of a square lattice, or by the
number of possible locationsG2):

• Distribution of types (either given in frequencies,
NMAJ and NMIN, or, equivalently, as total popula-
tion size,N = NMAJ + NMIN, plus a minority rate,
NMIN/N);

• Density, or fullness, of the environment (sometimes
referred to as occupancy rate)N/G2;

• Acceptability, or intolerance, thresholds (i.e., the
minimum fraction of same-type agents required to
classify a location as acceptable)τMIN andτMAJ, for
minority and majority agents, respectively;

• Procedure for generating the initial distribution;

• Definition of a neighborhood;

• Other parameters needed to implement agent-based
simulation, e.g., number of runs, and maximum
number of moves allowed before a single run of the
model terminates.

One surprising finding is that the Schelling model’s basic
prediction — high levels of segregation starting from vir-
tually any initial condition — is incredibly robust over a
very large set of parameter configurations and modifica-
tions to the model (see, for example Epstein & Axtell,
1996). This robustness is noteworthy, given that most
agent-based simulations dealing with problems other than
segregation typically report numerous sensitivities be-
tween parameters and the resulting phenomena of inter-
est.

7See Aydinonat (2007), pages 440–445, for a detailed review of
Schelling segregation models and the many generalizationsand ex-
tensions, sometimes integrating real world data, that mostly (but not
always) confirm the prediction of stark segregation. Interestingly,
psychologists appear rather less influenced by Schelling’ssegregation
model than sociologists, economists, geographers and physicists (who
are cited extensively in Aydinonat, 2007). For example, Colman’s
(2006) introduction to a special issue ofJournal of Economic Psychol-
ogy titled “Thomas C. Schelling’s psychological decision theory” in
which “segregation” appears as a keyword contains no contributed arti-
cle on segregation. Colman (2006, p. 606) acknowledges thisfact with
the (psychology-specific) assertion: “relatively few researchers have de-
veloped Schelling’s approach to the study of segregation”,which means
that relatively fewpsychologistshave chosen to work in this area.

Previous studies also introduced new elements that at-
tempt to bring the model closer to real cities. Modifica-
tions include alternate definitions of the spatial environ-
ment, neighborhoods, rules for moving (e.g., simultane-
ous versus sequential), numbers of and overlap among
group types, noise, and vacancy rates. For example,
Flache and Hegselmann (2001) studied different shapes
and definitions of neighborhoods. Fossett (2006) and
Gilbert (2002) added information about the cost of re-
siding at a particular location and reproduced the predic-
tion of large degrees of segregation. Gilbert also con-
sidered models where neighborhood characteristics de-
pend on recent histories, allowing agents to switch group
membership (e.g., switch ethnic identity), leading again
to high levels of segregation. Omer (2005) analyzed what
happens when group divisions are organized hierarchi-
cally, re-producing the qualitative Schelling predictionof
segregation. Scope of vision (i.e., how agents view the
boundaries of their own neighborhoods) was analyzed in
Fossett and Waren (2005) and Laurie and Jaggi (2003),
leading again to segregation. A rather large literature has
investigated different utility functions (Bøg 2005, 2006;
Bruch & Mare, 2003; Pancs & Vriend, 2007), almost al-
ways reinforcing Schelling’s prediction of high levels of
segregation. Other notable extensions include Vinković
and Kirman (2006) who draw on techniques borrowed
from physics; attempts at analytic rather than agent-based
simulation characterizations of the Schelling model’s dy-
namics using the equilibrium concept of stochastic stabil-
ity (Bøg 2005, 2006; Young, 1998, 2001; Zhang, 2004a,
2004b, 2008); and the continuum models of Yizhaq et al.
(2004). The vast majority of these extensions generalizes
or reinforces the original prediction of highly segregated
end-state geographies that are unintended and produced
by individuals who have no intrinsic preference for seg-
regation.

Parallel to these studies, a growing body of literature
relates Schelling’s model to real-world data (Bruch &
Mare, 2003; Clark, 1991; Fossett, 2006; Portugali et al.,
1994), revealing an interesting clash between models and
reality. In contrast to overwhelming agreement in the the-
oretical literature concerning the prediction of high levels
of segregation from virtually any starting condition, em-
pirical measures of segregation in cross-sectional studies
of cities, countries and other social groupings show con-
siderable heterogeneity (Huttman et al., 1991). For in-
stance, Ellen (1998) examined data from the 1970, 1980,
and 1990 decennial censuses and showed that racial in-
tegration in the US is not only possible but can also be
stable. She defined integrated neighborhoods as those
whose black residents constituted between 10 and 50%
of the total population and found that in 1990 almost
20% of neighborhoods included in her study fell into this
category. Half of these integrated neighborhoods were
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also classified as stable, since their non-Hispanic white
population did not change by more than 10% between
1980 and 1990. Glaeser and Vigdor (2001) analyzed U.S.
2000 Census data focusing on black/non-black segrega-
tion. They reported that segregation is currently at its
lowest point since 1920, primarily due to formerly homo-
geneous white neighborhoods attracting non-white resi-
dents. The authors noted considerable geographical vari-
ation in this process, with the Western and Southern US
achieving greatest levels of integration while the North-
east and Midwest remained segregated. Sethi and So-
manathan, (2004) modeled preferences with both neigh-
borhood affluence and ethnic composition in the utility
function, showing that segregation may increase even as
income levels converge, due to the nonmonotonic rela-
tionship between income gaps and geographic segrega-
tion. It should be acknowledged that, although relatively
rare in the segregation literature, a handful of studies
present conditions under which higher rates of integration
are indeed possible, although still not likely or predicted
in any strong sense (Sethi & Somanathan, 2004).

This disparity between the Schelling model’s predic-
tions and wide variation in real world integration is fre-
quently overlooked. Instead, based on considerable ev-
idence that discriminatory forces in contemporary soci-
eties, including Obama-era US society, continue to play a
regrettable role in many cities with entrenched ethnic seg-
regation, the literature tends to focus on social problems
stemming from segregation — and with good justifica-
tion, given the seriousness of these problems. Examples
include long-term joblessness, single parenthood, school
drop-outs (Cutler & Glaeser, 1997; Nechyba, 2003),
problems in tax collection (Brender, 2005), and reduced
chances of positive economic outcomes among the poor
together with alienation among the well-off (Atkinson &
Flint, 2004). Given the practical importance of atten-
uating segregation’s detrimental effects on social cohe-
siveness, it is understandable that the Schelling model,
which predicts the segregation that these policies aim to
assuage, plays a prominent role in this literature. From a
theoretical point of view, however, it is nevertheless un-
satisfying that the model cannot provide convincing ex-
planations for why some places are relatively integrated
while others remain starkly segregated. We now propose
our extension of the classic Schelling model that aims to
make a step in exactly this direction.

3 Extending the classic Schelling
model by FACE-recognition

If there were no constraints in terms of time and avail-
able information, we could form our attitudes towards
others by collecting all possible information about them

and their past behavior. But time and information-
processing constraints typically allow us to use only a
very limited set of information, categorizing others at
least in part using stereotypes (Dovidio, Glick, & Rud-
man, 2005). Some suggest that cognitive mechanisms
underlying stereotyping also produce beneficial results in
certain contexts (e.g., Schneider, 2004).

The fundamental distinction between “us” and “them”
(i.e., between in-group and out-group members) is doc-
umented in rich and often disturbing detail (Esses et
al., 2005; Sherif et al., 1961; Tajfel et al., 1971; Tajfel
& Turner, 1979; Turner et al., 1987). There is, how-
ever, abundant evidence demonstrating that people are
not locked into their prejudices and stereotypical think-
ing.8 Berg, Abramczuk and Hoffrage (in press) provide
examples from history and literature illustrating that peo-
ple frequently make exceptions, in the form of positive
assessments of some out-group members, without chang-
ing or modifying their negative stereotypes about the out-
group as a whole. The large literature on acceptance (e.g.,
Brewer & Miller, 1988; Hewstone, 1996, Miller, 2002;
Rothbart & John, 1985) provides relevant background for
our extension of the Schelling model. On the one hand,
people can be deeply prejudiced and show blanket disdain
of other groups, ranging from avoidance to full-blown ha-
tred (e.g., of blacks, whites, Jews, Muslims, poor people,
homosexuals, etc.). On the other hand, the same people
can be willing, and even enthusiastic, to build friendships
across these very same group boundaries.

Drawing on previous work documenting the important
role of recognition in a variety of inferential and deci-
sion contexts (Berg & Faria, 2008; Bruce & Young, 1986;
Semenza & Sgaramella, 1993; Semenza & Zettin, 1989;
Schweinberger et al., 2002), we conducted a series of
computer simulations aimed at demonstrating how the
FACE-recognition heuristic can produce a much wider
variety of spatial patterns of integration and segregation
that are systematically linked to parameters in the model.

8One of the predecessors of the FACE-recognition heuristic is con-
tact theory (Allport, 1954), describing how face-to-face interactions
between members of different groups holding negative stereotypes of
each other can limit prejudice. A key difference between contact theory
and the FACE-heuristic is that the contact theory literature generally
seeks institutions that categorically shift beliefs aboutthe other group
(i.e., reduce the general level of prejudice) well beyond particular situ-
ations or person-specific relationships. Critics of the goal of designing
integration-promoting institutions questioned whether the requirements
of Allport’s contact theory could possibly be implemented as real-world
institutions (Dixon et al., 2005), and considerable work has been de-
voted to this institutional analysis within the contact theory paradigm
(see Pettigrew, 1998; Pettigrew & Tropp, 2006, and references therein).
There is fairly widespread agreement that moderate contactcan increase
tolerance, measured variously in the related literatures.One interesting
finding is that repetitive exposure to people (and abstract symbols, too!)
appears to increase favorable sentiment (e.g., Homans, 1950; Zajonc,
1968).
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To simplify notation, we use friend as a short-form
synonym for desirable neighbor. Thus, in the classic
Schelling model, friends of agenti consist of all co-
ethnics (i.e., other agents who belong to the same group
as agenti.) A location is acceptable if and only if the pro-
portion of friends in the neighborhood,Nfriends/Nneighbors,
weakly exceeds that agent’s acceptability thresholdτ ,
and unacceptable otherwise.

In the FACE-recognition extension of the model, the
same threshold rule for determining whether a location
is acceptable provides the crucial behavioral element, but
with one important modification concerning how agents
classify friends and nonfriends, which is depicted in
the flow-chart in Figure 2. The recognition-augmented
Schelling model assumes that agents are endowed with a
small amount of memory about other agents they recently
encountered. Each agent’s memory stores information
about these agents who are recognized from theK most
recent neighborhoods and also records whether a particu-
lar agent is most recently recognized from an acceptable
or unacceptable neighborhood. Agents who are recog-
nized from an acceptable neighborhood in the past are
counted as friends, no matter whether they are same-type
or other-type. Agents who are recognized from an un-
acceptable neighborhood in the past are counted as non-
friends, no matter whether they are same-type or other-
type.

Note that the strict ordering of the FACE-recognition
variant of the model, in which previous experience with
an individual agent trumps this other agent’s group mem-
bership, is akin to simple heuristics that implement one-
reason decision making (Gigerenzer, Todd, & the ABC
Research Group, 1999) and consistent with the theoret-
ical finding that ignoring information can be beneficial
(Berg & Hoffrage, 2008). Further note that the FACE-
recognition model can lead to states of happiness that dif-
fer from those in the classic Schelling model. Consider
an agent who is surrounded by a majority of other-type
agents whom he knows from a neighborhood in which
he was happy. This agent would be unhappy in the clas-
sic model but happy in the recognition-augmented exten-
sion. Similarly, an agent who is surrounded by a ma-
jority of same-type agents is always happy in the classic
Schelling model, but may very well want to move away in
the recognition-augmented extension if those co-ethnics
are remembered from a neighborhood in which he was
previously unhappy.9 It is important to note that this new
way for agents to be happy about a particular location
does not trivially lead to more happiness and therefore
more integration — simply because there is also a new
way to be unhappy. A priori, the recognition step in the
classification of locations could just as well lead to more

9For detailed illustrations of both these cases from an actual simu-
lated run depicted in a variant of Figure 1, see Berg et al. (inpress).

Figure 2: Recognition heuristic for classifying neighbors
as friends or nonfriends (upper panel), and classifying
locations as acceptable or unacceptable (lower panel).
How a potential or actual neighbor is classified depends
critically on recognition; if recognized, classification as
friend or nonfriend depends on acceptability of the neigh-
borhood from which that agent is most recently recog-
nized; if not recognized, classification depends on group
identity just as in classic Schelling. To determine whether
a potential or actual neighborhood is acceptable, the pro-
portion of friends among all neighbors is compared to the
acceptability thresholdτ .
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unhappiness and segregation.
When encountering unrecognized agents, the FACE-

recognition model reduces to the classic Schelling model.
Cases of remembering another agent from two previous
neighborhoods in the pastK periods are extremely rare,
but in the event that an agent is recognized from both
good and bad neighborhoods, only the quality of the most
recent memory matters for classification. This nested
structure of the two models can be formalized using a
memory span parameter, which specifies how many pre-
vious periods are stored into each agent’s memory. The
classic Schelling model is then recovered from the FACE-
recognition model if this memory span parameter is set to
zero, which implies that each agent recognizes no other
agents and, consequently, all friend/nonfriend classifica-
tions are based solely on group identity.

When evaluating the acceptability of neighborhoods
with one or more recognized agents, the changes that
take place are few in number and mostly very local.
The results below, however, show that these small, local
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changes lead to surprisingly large macro-level changes in
the spatial geography of the environment. The micro and
macro levels are connected by a jointly causal loop (Cole-
man, 1994) that generates co-evolution of individual be-
havior and the external environment. In other words, the
macro pattern in the neighborhood influences the level
of happiness experienced at the micro level. In turn, the
happiness experienced at the micro level influences deci-
sions to move, which completes the co-evolutionary loop
by reformulating the composition of neighborhoods that
constitute the macro level.

4 Pitting the FACE-recognition
model against the classic Schel-
ling model: Simulation results

4.1 Measures of end-state integration

The three periods of a single run depicted in Figure 1
show a stark contrast between initial and end-state spatial
distributions. To make sure that such contrasts are sys-
tematic and not the result of mere chance occurrences,
we repeat these simulations and report empirical distri-
butions for two different measures of end-state integra-
tion across many runs. Each run includes (as a control
condition) the classic Schelling model with no recogni-
tion memory and (as a treatment condition) the FACE-
recognition model with at least one period of memory.
In every run, the two conditions begin with the same
integrated checkerboard and are then subjected to the
same random spatial shock. In other words, exactly the
same spatial shock is used to initiate both control and all
treatment conditions for each run, enabling comparison
of macro-level consequences of the FACE-recognition
heuristic starting from exactly the same initial world.

To describe such end-state spatial distributions, Pancs
and Vriend (2007) use six segregation measures, recog-
nizing that they are highly correlated while emphasizing
different aspects of inter-group mixing in the lattice en-
vironment. We turned their segregation measures into in-
tegration measures, that is, our coding is such that high
values indicate high integration rather than high segrega-
tion. We focus on two of these measures: Other-Type
Exposure and Contact with at least One Other.10

Other-Type exposure(OT) is the mean fraction of
other-type agents as neighbors, averaged over agents. To

10In Berg et al. (in press), we also report another end-state integration
measure referred to as theswitch rate, defined as the average number of
switches of type encountered in a 360-degree panoramic scanof each
agent’s adjacent locations, normalized to a range between 0and 1 and
averaged across agents. We omit this variable here owing to space con-
siderations. The conclusions based on switch rate are basically the same
as for theOT andCOO.

computeOT on a spatial distribution, one computes for
each agenti the number of other-type agents in the neigh-
borhood,NOT,i, and the total number of neighbors,Ni .
Agent i’s fraction of other-type agents in his neighbor-
hood is simplyNOT,i/Ni , andOT is computed as the aver-
age across agents:Σi(NOT,i/Ni)/N.

Contact with at least One Other(COO) measures the
fraction of agents whose neighborhood includes at least
one other-type agent. To calculateCOO, let COOi = 1
if NOT,i > 0, andCOOi = 0 otherwise. Thus,COOi is an
indicator variable coded as 1 if agenti has one or more
other-type neighbors and zero otherwise. ThenCOO =
ΣiCOOi /N. The complement, 1-COO, is the fraction of
agents who are absolutely segregated, that is, live entirely
isolated from other-type agents.

For a given parameterization of the model, there is con-
siderable variability in these integration measures, due
to two sources of random variation: spatial shocks that
generate the initial condition for each run, and random
selection of agents from the list of those who want to
move. Once the terminal state is reached in control and
treatment runs, a single observation of the two integra-
tion measures is recorded for the control and each treat-
ment run. Thus, after 100 runs, two sets of histograms
are available, one displaying histograms of end-stateOT
for control and treatment conditions, and one displaying
COO for control and treatment conditions.

4.2 End-state integration as a function of
memory size

We start our investigations with the question of how dif-
ferent quantities of recognition memory affect end-state
integration. We implemented six memory treatments,
starting with zero memory (which corresponds to the
classic Schelling model), followed by the first treatment
condition (FACE-recognition with a memory span of one
period), ranging upward through a memory span of 30 pe-
riods. A memory span is the number of periods an agent
is able to look back to determine whether or not a current
neighbor was already a neighbor in the past, and if so,
whether this memory occurred in an acceptable or unac-
ceptable neighborhood.

Figure 3 shows histograms of end-state integration for
the six memory conditions. Large differences between
control (classic Schelling, when the memory span is set to
0) and treatment runs (FACE-recognition, when the mem-
ory span parameter≥ 1) are visible, indicating a large ef-
fect that is both statistically and substantially significant.
Another striking feature of Figure 3 is that a little memory
(e.g., the capacity to remember one or two periods into
the past) has almost the same effect as lots of memory.
Thus, introducing a small amount of recognition memory
leads immediately to a discontinuously large, or “quan-
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Figure 3: Histograms of end-state integration as cap-
tured by two dependent variables (Other-type exposure
and Contact with at least one other) in six memory treat-
ments. When the memory span is set to zero, the FACE-
recognition model reduces to the special case of the clas-
sic Schelling model. Memory spans of the previous 1, 2,
5, 10, or 30 rounds are variants of the FACE-recognition
model. Unless otherwise stated, the parameter values
here and in the following figures are: 8x8 grid, 30 of each
type in the initial checkerboard, 20 randomly disappear-
ing, 5 re-appearing, and acceptability thresholds for both
types ofτ = 1/2.
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tum”, change in the end-state spatial distribution’s level
of integration. Additional amounts of memory have very
limited effects on integration. When interpreting Figure
3, it is useful to be clear about the benchmarks. The ver-
tical lines in the first row of histograms, at 0.53 and 1.00,
respectively, show the levels of integration in the “per-
fectly integrated” checkerboard neighborhood before the
random shock (the same applies to Figures 4, 5, and 7).
In the post-shock neighborhood, these upper bounds are
not always attainable because the number of agents has
typically changed. Better benchmark therefore are the
starting levels of integration directly following the ini-
tial shocks — these had ranges of 40 to 55% (with mean
of 48%) for Other-Type exposure, and 82 to 100% (with
mean of 94%) for Contact with at least One Other. For
each of the two dependent variables, other-type expo-
sure and contact with at least one other, the median of
the FACE-recognition extension falls about in the mid-
dle between the median of the classic Schelling and the
respective benchmark.

Figure 4: Histograms of end-state integration when
agents have a lower acceptability thresholdτ . Parame-
ter values are the same as in Figure 3, except forτ which
is set here to 2/5.
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4.3 End-state integration as a function of
the acceptability threshold

We now turn to the question whether small, local changes
in the classification of locations (as acceptable or not)
generate sizable changes in end-state integration relative
to the control runs. As Figure 4 shows, a slight relax-
ation of all agents’ acceptability thresholds from 0.5 to
0.4 has enormous effects. With this slightly more tol-
erant threshold, the classic Schelling model’s end-state
integration shifts very slightly upward (compared to Fig-
ure 3), continuing to reflect the “unraveling” from per-
fect integration to unintended segregation. In contrast,
the FACE-recognition model shows much greater sen-
sitivity to reductions in intolerance, which shift the in-
tegration distributions shown in the histograms to near
maximal levels, with large clusters concentrating around
(and sometimes scattering above!) the initial-state levels
of integration. As in Figure 3, these initial-state levels
of integration, which can be regarded as benchmarks for
maximal post-shock integration, are indicated by vertical
bars in the first row of the histograms. They are never
achieved as levels of end-state integration in the classic
Schelling model, but are regularly achieved, and some-
times even surpassed (for Other-type-exposure), by the
FACE-recognition model.

Next, we introduce differences between majority and
minority agents’ acceptability thresholds. Because we
have already established that any increase in memory
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Figure 5: Histograms of end-state integration measures
as a function of acceptability thresholds (memory span =
5).
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size beyond 1 has little effect, we explore the effect of
such differences between majority and minority agents
only for memory sizes of zero (the classic model) and
five (for the FACE-recognition model). Figure 5 presents
four configurations of acceptability thresholds. In the first
configuration (τMIN = τMAJ=2/5), both minority and ma-
jority agents are more tolerant (than theτ = ½ benchmark
case), which produces a large difference between control
and recognition treatments. In the second configuration
(τMIN = 3/8 andτMAJ = 5/8), minority types are more tol-
erant and majority types less tolerant, which produces an-
other large treatment effect (even larger than the first con-
figuration in many runs), but with slightly lower levels of
end-state integration in both cases. In the third configu-
ration (τMIN = 5/8 andτMAJ = 3/8), minority agents are
less tolerant and majority types are more tolerant. Be-
cause, by definition, most agents are majority types, and
because they are more tolerant in this third configuration,
the control runs have much higher levels of end-state in-
tegration and therefore produce smaller treatment effects
(measured as the horizontal difference between distribu-
tions, or end-state integration in recognition runs minus
end-state integration in control runs). In the fourth con-
figuration (τMIN = τMAJ = 5/8), both types are less toler-
ant, which produces lower levels of end-state integration
in all cases, but a still noticeable treatment effect.

We measured treatment effects in a variety of other
configurations of acceptability thresholds, which rein-
forced two key findings visible in Figure 5. As soon as

there is enough intolerance to produce unraveling of in-
tegration to segregation in the classic Schelling model,
the effect of memory on end-state integration is large, de-
creasing steadily as all agents become less tolerant (i.e.,
holding both types’τ thresholds equal and increasing
them toward 1). The second interesting result is the asym-
metric effect of heterogeneous intolerance or acceptabil-
ity thresholds. When minority agents are more toler-
ant and majority agents are less tolerant,11 the treatment-
control difference is much larger than if the acceptability
parameters are switched between types (so that minori-
ties are less tolerant and majorities are more tolerant).
One reason why the treatment-control difference is small
when only majorities are more tolerant is that tolerant ma-
jorities push the control-treatment levels of integration
higher, thereby reducing the difference due to floor ef-
fects. Another reason is that most available locations tend
to be majority-type heavy, by definition of there being
more majority types. Therefore, when minority agents
are less tolerant, more moves are required to find accept-
able neighborhoods for all agents, and greater spatial con-
centrations of minorities are produced than would be the
case for the same sized decrease in tolerance among ma-
jority types.

4.4 Dispersion and time to reach conver-
gence as a function of memory size

Another interesting feature visible in Figures 3, 4, and 5
is that, in every single treatment-control comparison and
for each of our integration measures, the runs with recog-
nition memory produce dramatically less dispersed dis-
tributions. In many cases, the classic Schelling model’s
end-state integration distributions are more than twice as
dispersed as the treatment distributions. This reduction
in dispersion in the FACE-recognition model is impor-
tant because it tightens the link between model param-
eters and the dependent variables. In other words, the
FACE-recognition model provides a much higher signal-
to-noise ratio, where “signal” is interpreted as a change
in the model’s parameters and “noise” is the dispersion
in end-state integration due to random effects such as the
random spatial shock, random ordering of when unhappy
agents get to move, and random choice of locations when
a mover has more than one minimum-distance acceptable
location.

Related to the reduction of dispersion in the vari-
ables measuring end-state integration, the introduction of
recognition memory in the model also leads to a dramatic
reduction of the dispersion of the number of iterations
needed to reach convergence. Fewer moves are needed to

11It is interesting to note that the first of these two schemes (i.e., ma-
jority type being less tolerant than minority types) is whatClark (1991),
for example, suggests is found in real-world settings.
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Figure 6: Histograms of number of moves to reach
convergence, by memory and acceptability thresholdτ

(memory span = 1).
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reach convergence in the FACE-recognition model, and
the distribution of number of moves to convergence is far
less dispersed than in the classic Schelling model. As
can be seen in the first column in Figure 6, the range
of number-of-moves-to-reach-convergence shrinks from
roughly the interval [0, 30] to [10, 20]. That 2/3 re-
duction in range coincides with a clear reduction in the
modal number of moves — from more than 20 in the clas-
sic Schelling model to somewhere around 15 or 16 once
recognition memory is introduced.

Comparing the two histograms within the first row of
Figure 6, one sees that reducing the acceptability thresh-
old reduces the number of moves needed to reach conver-
gence in the classic Schelling model by roughly 5. How-
ever, this reduction in moves needed to reach convergence
is modest when compared to the dramatic decrease when
the memory span parameter moves from 0 to 1 (or any
positive integer, which produces a nearly identical reduc-
tion in moves). Thus, recognition memory increases end-
state integration, reduces dispersion of integration, and
dramatically reduces the number of moves to reach con-
vergence.

Recall that the dynamics come to a terminal state in
one of three ways: (1) happy convergence; (2) unhappy
convergence; and (3) the maximum number of iterations
allowed by the program reached without achieving con-
vergence. An important difference between control and
treatment runs is the relative frequency of happy versus
unhappy convergent outcomes.12 In the classic Schelling
model 10 to 90 percent of runs end in unhappy conver-
gences depending on acceptability thresholds and neigh-
borhood density, typically where minorities cannot find
any available locations with enough minority neighbors.
In the recognition treatments (i.e., memory span param-

12Nonconvergent cycles are a theoretical possibility for some param-
eterizations of the Schelling model, but we never observed any in the
parameterizations reported here. Using 40 as the maximum number
of iterations allowable for the 8x8 neighborhood (and higher limits for
larger neighborhoods discussed later), not a single indeterminate case
was observed in any of the runs reported in this paper. This isreflected
in the fact that the entire histogram of “number of moves to reach con-
vergence” lies to the left of 40.

Figure 7: Histograms of end-state integration showing
that the effect of recognition memory on end-state inte-
gration increases with neighborhood size (memory span
= 5).
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eter > 0), unhappy convergence occurred 1 to 3 out of a
total of 100 runs across all parameterizations reported in
these tables.

4.5 Integration as a function of the number
of locations

Skeptics might worry that face-recognition is more im-
portant in small places because the fraction of all resi-
dents that are recognized is higher. As the number of lo-
cations (i.e., city size) increases, the fraction of all agents
that any one particular agent can recognize approaches
zero. One might therefore question whether recognition
effects could withstand the test of scaling up to larger
and larger sized environments. Figure 7, however, shows
counterintuitively that recognition has a more dramatic
effect, the larger the grid is. This figure was constructed
as follows. Grid-size took on the values 4, 8, 10 and
16, resulting in numbers of locations of 16, 64, 100 and
256. The numbers of agents who randomly disappear and
reappear in creating initial spatial shocks are, in all cases,
proportional to the benchmark of Schelling’s 8x8 setup
with 20 of 60 (33%) disappearing, 5 of 60 (8%) reap-
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pearing, and finally arriving at a total number of agents
equal to 45 of the original 60 (or 75%) of the cornerless
checkerboard population. Thus, as the grid size ranges
over 4, 8, 10 and 16, the parameter indicating the post-
shock number of agents takes on the values 9 [= 0.75(42-
4)], 45 [= 0.75(82-4)], 72 [= 0.75(102-4)], and 189 [=
0.75(162-4)].

The resulting histograms show large, persistent, and
ever-more precise (i.e., less dispersed) differences in end-
state integration. Less dispersion implies that horizon-
tal differences between histograms become less and less
the result of noise from randomization steps in the sim-
ulation. Thus, large recognition effects reported earlier
should not be dismissed as mere small-world phenom-
ena and, instead, can be viewed as broadly applicable to
groups of varying sizes — quite possibly including large
metropolitan cities.

4.6 End-state/initial-state preservation of
integration as a function of shock size

The results presented so far share one important fea-
ture, which is the magnitude of the spatial shock (1/3
of the agents randomly moved at the initial stage). In
this section, we examine the sensitivity of our reported
treatment-control differences with respect to shock size.
Schelling emphasized that even very small shock sizes
could produce dramatic unraveling from the integrated
checkerboard to stark segregation. At the other extreme,
as the shock size approaches 100 percent, the post-shock
spatial distribution becomes increasingly close to a uni-
form distribution in which agents are placed in random
locations without regard to group type.

Figure 8 shows the fraction of post-shock integration
that is preserved in end-state integration as a function
of shock size. The x-axis shows shock sizes of 10, 20,
33, 50, 66, 80 and 90 percent, ranging from near per-
fect integration to near random initial conditions. The
y-axis shows end-state integration divided by post-shock
integration, which measures the percentage of integration
preserved in the process of moving to a convergent end-
state spatial distribution. The median value of the per-
centage of integration preserved is indicated by “F” for
the FACE-recognition treatment and “C” for the classic
Schelling, or control, treatment. In addition, Figure 8
shows 80 percent confidence bands representing the 10th

and 90th percentiles for each set of 100 runs. In each set
of 100 runs, the C and F treatments begin with the same
spatial shocks but evolve according to classic-Schelling
or recognition-augmented rules for classifying locations
as acceptable or not. For the 10 percent shock, the dis-
tributions of preserved integration are far apart, with en-
tirely non-overlapping 80-percent confidence bands in all
three integration measures.

Figure 8: Median fraction of post-shock integration pre-
served in the end-state, indicated by "F” for FACE recog-
nition treatment and "C” for Classic Schelling Model,
with 80 percent sample-distribution intervals (memory
span = 5). Shock size on the x-axis represents the fraction
of the population perturbed away from their respective
beginning positions in the perfectly integrated checker-
board.
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As shock size increases, two countervailing effects are
noteworthy. First, because the post-shock (initial) distri-
bution gets further away from perfect integration, end-
state integration must be further away from perfect inte-
gration as well. All else equal, this would reduce the level
of end-state integration. But because post-shock integra-
tion (directly following the shock and not at the end-state)
is the denominator of the ratio depicted on the y-axis of
Figure 8 and is negatively affected by shock size as well,
this would increase the values plotted on the y-axis, all
else equal. As shock size approaches 100 percent and the
initial post-shock distribution becomes completely ran-
dom, the treatment effect disappears, as intuition would
suggest, indicated by increasing overlap between con-
trol and treatment distributions. It is rather remarkable,
however, that large treatment-control differences persist
for very large magnitude shocks, affecting 50 percent or
more of the population with an involuntary move.
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Figure 9: Median number of agents who are unhappy and
thus want to move as a function of time (memory span =
5).
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4.7 Effects of FACE recognition on the mi-
cro level

Until this point, we have adopted a macro-perspective and
analyzed spatial distributions in the environment summa-
rized by integration measures. In this section, we adopt
the micro-perspective of an individual agent to see what
the effects of recognition memory are on acceptance by
individuals of their locations. Grid-size is once again 8,
with 45 post-shock and acceptability thresholds set to 1/2.

Figure 9 shows the time path of the number of agents
who want to move, averaged period by period over 100
control and treatment runs, respectively. The 80-percent
confidence bands appear only until the period at which
the very earliest run among the 100 runs converged. At
that point, the sample size (of runs at a particular period
on the way toward convergence) changes because fewer
and fewer of the 100 runs produce observations as the
period number increases. The median number of agents
who want to move is plotted for every number of periods
at which there was at least one observation. The median
reported at each period is computed among only those
runs that reached that number of periods. Were we to
continue counting converged runs at their end-state val-
ues (e.g., continuing to count the number who want to
move as zero where happy convergences have already oc-
curred), then the median number would approach zero
more quickly than depicted in Figure 9.

Figure 9 shows an interesting asymmetry between mi-

Figure 10: Median other-type exposure as a function of
time (memory span = 5).
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nority and majority movers. When counted together in
the upper time series, there is little within-period dif-
ference in the numbers of movers between control and
treatment, except that the number of periods to reach
convergence is smaller in FACE-recognition treatments.
The middle and lower time paths in Figure 9, however,
reveal significant within-period control-treatment differ-
ences with respect to the numbers of minority and ma-
jority agents, respectively, who want to move. Once
recognition memory is introduced, there are significantly
more unhappy majority agents in early rounds (because
there are more negative shifts from friend to nonfriend
among same-type neighbors) and significantly fewer un-
happy minority agents (because there are more ways to
be a happy minority agent as the result of nonfriend-to-
friend shifts among other-type agents, thanks to recogni-
tion memory). The number of unhappy majority agents
decreases rapidly in treatment runs, however, resulting in
faster convergences and an increased rate of happy con-
vergences. This period-by-period view along the path
toward end-state convergence reveals, once again, that
a small amount of memory which generates very few
changes in terms of individual-level classifications nev-
ertheless produces large effects on individuals’ happiness
with their locations.

Figure 10 shows similar period-by-period distributions
in control and treatment runs for integration as measured
by OT. The upper-most time series shows how integration
changes along the time path. The second and third panels
of Figure 10 break out integration by majority and minor-
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ity, computing integration strictly among majorities and
minorities, respectively. One observation from Figure
10 is that treatment-control differences in integration are
nonlinear with respect to time, diverging sharply in the fi-
nal few periods before convergence, especially for major-
ity types. These time-path data indicate that later movers
— especially unhappy majority types — make late-period
moves that are responsible for a disproportionately large
share of the increase in integration along that variable’s
time path. Meanwhile, minority types’ level of integra-
tion reduces at a slower rate, steadily making larger and
larger contributions to aggregate integration. The picture
that emerges is one of gradual mixing by minorities but
with rather more chaotic reductions followed by subse-
quent increases in majority types’ level of integration.

Figure 11 provides one final piece of evidence regard-
ing the effect of adding the first unit of memory con-
trasted with null effects of subsequent additions to mem-
ory. Figure 11 shows the number of agents who, in their
end-state locations, would have wanted to move in the
classic Schelling model but are made happy thanks to
recognition memory. Across the five memory span pa-
rameters that we implemented, the number of such agents
is about 9 out of 45 (i.e., about 20%). As the memory
span increases from 1 to 30, there is a slight reduction
in the distribution’s dispersion, but no apparent change in
its position, indicating that this number is largely inde-
pendent of the amount of memory with which agents are
endowed.

5 Discussion

In this paper, we introduced the FACE-recognition model
(Fast-Acceptance-by-Common-Experience), which ex-
tends the classic Schelling model of neighborhood seg-
regation by giving agents a small amount of FACE-
recognition memory. In this extension, agents classify
neighborhoods the same way as in the classic Schelling
model, by computing the fraction of all acceptable neigh-
bors and comparing this with an acceptability thresh-
old. Moreover, like in the Schelling model, unrec-
ognized neighbors are classified as acceptable if they
are same-type agents, and as unacceptable if they are
other-type agents. Unlike in the Schelling model, how-
ever, recognition-augmented agents are able to recognize
agents who were neighbors in previous periods and clas-
sify them as acceptable if they were neighbors in ac-
ceptable neighborhoods and as unacceptable if they were
neighbors in unacceptable neighborhoods. This classifi-
cation of recognized agents lexicographically overrules
classification based on their group identity. Even though
this extension of the classic Schelling model leads to
only a small number of reclassifications of nearby agents

Figure 11: Made happy by memory: Histograms of
end-state number of agents who would have wanted to
move in the classic Schelling model but, by using the
FACE-recognition heuristic, consider their current neigh-
borhood acceptable.
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in which group identity is overruled, it nevertheless re-
sults in large-scale shifts in end-state spatial distributions.
These end-state distributions feature much higher levels
of inter-group mixing as measured by two quantitative
measures of integration that are standard in the segre-
gation literature, faster convergence to stable states, and
higher signal-to-noise ratio in terms of the influence of
changes in model parameters versus noise from random-
ization steps in the sequence of moves. The effects persist
across various acceptability thresholds, grid sizes, and
shock sizes.

The FACE-recognition heuristic is similar but not iden-
tical to the recognition heuristic studied in Goldstein and
Gigerenzer (1999, 2002). Goldstein and Gigerenzer pro-
posed that recognition is an evolved capacity that can be
used to make accurate rankings among pairs of objects
whenever there is correlation between recognition and a
criterion with respect to which objects are to be ranked.
Reasoning according to the recognition heuristic is a one
step process: if one of the two objects is recognized and
the other is not, the one that is recognized is judged to
have larger value. An important feature of the recognition
heuristic is the fact that it is non-compensatory. The mo-
ment one object is recognized and the other not, the deci-
sion, or choice, or classification is determined. No other
information enters the decision process and therefore no
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further information needs to be weighted, or has the po-
tential for overruling the recognition-based decision. We
use the same non-compensatory, or lexicographic, mech-
anism in the FACE-recognition model, which can be rep-
resented with a non-compensatory decision tree as in Fig-
ure 2. The difference is that for the FACE-recognition
heuristic, mere recognition does not necessarily lead to a
positive classification; instead, the attitude toward others
is modified according to whether shared common experi-
ence had a positive or a negative flavor.

The FACE-heuristic also relates to important work on
the forefront of game theory called inductive game the-
ory, which models agents playing games that they do not
fully know or understand (Hanaki, Ishikawa, & Akiyama,
2009; Kaneko & Kline, 2008). In our model, agents are
endowed with a uniform ethnic preference parameter and
identical recognition-based decision process, and yet dif-
ferent play-path histories among agents lead them to have
different views of their location and the surrounding en-
vironment.

The FACE-recognition heuristic relates significantly to
Aktipis’ (2006) evolutionary game theory model in which
agents repeatedly play Prisoner’s Dilemma while using
different decision rules for choosing with whom to play
in each round. Numerous strategies in such population
games have been studied in an attempt to explain the real-
world observation that people, even in anonymous one-
shot games, often play non-Nash strategies to achieve
greater cooperation than is predicted by standard game
theory (see, for example, Bowles & Gintis, 2004; Naka-
maru & Kawata, 2002; Sudgen, 1986). Aktipis considers
two simple strategies, D-mem and C-mem, that rely on
recognition to choose with whom to play the game. The
D-mem strategy for accepting partners is to always accept
an unrecognized individual as a playing partner and then
cooperate. Whenever a partner defects, D-mem records
that individual’s name on the defector list, thereby ex-
cluding this individual as a partner in the future. Once
the agent’s memory limit is reached, D-mem removes the
oldest defector from the list to record new ones. The sec-
ond strategy in Aktipis (2006) is C-mem, which remem-
bers only the names of recent cooperators, and once its
memory capacity is full, it accepts playing partners only
from the names of cooperators on that list. A key sim-
ilarity between our model and Aktipis’ is that attitudes
towards others are determined by simple memories based
only on recognition and outcome of previous encounters.
Moreover, for both models it can be shown that their very
modest memory requirements and very simple decision
rules lead to large-magnitude population-level effects.

Finally, the FACE-recognition heuristic shares some
commonalities with decision processes studied by Yam-
agishi et al. (1999) and Yamagishi and Kiyonari (2000)
in the context of in-group boasting. In a series of ex-

periments (without face-to-face interaction, though), they
show that in-group favoritism occurs only when sub-
jects expect favorable treatment from in-group members.
When other reliable information about partners’ benevo-
lence is available, group membership is ignored, as it is in
the FACE-recognition model. In both empirical and the-
oretical forms, the decision processes are lexicographic
heuristics.

A key result of our simulations is that a very small
amount of recognition memory can produce surprisingly
durable levels of integration. Thus, when comparing en-
vironments of agents who have opportunities to recog-
nize even a handful of other-type neighbors with envi-
ronments whose agents do not have this opportunity, our
model identifies a new variable capable of explaining ob-
served differences in levels of segregation. Beyond this
more realistic range of predictions that offer a new ex-
planation for low versus high degrees of integration, the
FACE-recognition model implies that institutions which
promote face-to-face mixing can have large effects on
long-run integration. This stands in marked contrast to
the classic Schelling model’s rather pessimistic and un-
conditional prediction that all, or most, groups will un-
ravel to unintended and high levels of segregation.

Regarding the literature concerning policy tools aimed
at fostering integration, the extended Schelling model
studied in this paper suggests a new theoretical account
for explaining why cities and other social spheres of
interaction differ in terms of inter-group mixing. The
model generates the hypothesis that locations whose his-
tories created above-average levels of inter-group face-
to-face interaction in the past — by historical accident or
by intentional institutional design — should have above-
average levels of integration in the present.

A large fraction of any achieved level of integration
can be maintained in the FACE-recognition model by
fostering very modest quantities of face-to-face recog-
nition across social groups. Small amounts of recogni-
tion robustly maintain integration in the face of signifi-
cant spatial shocks. This finding lends theoretical sup-
port also to designed institutions in smaller-scale settings
whose aim is to maintain integration in the face of con-
tinual shocks to group membership. One example is the
prosaic-sounding coffee-and-cake institution discussedin
Gigerenzer (2006), which is one part of a designed in-
stitution that attempts to generate a high frequency of
chance face-to-face encounters within large and interdis-
ciplinary research teams. Parks, bars, restaurants and
road systems with an unavoidable central meeting loca-
tion that generate unusually high levels of inter-group
face-to-face experience doing normal, mundane things
provide other examples of environments designed to fa-
cilitate the meeting of different group members on a reg-
ular basis. Nyden et al. (1998) note that the existence of
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such places is a regular characteristic of integrated neigh-
borhoods. Recent evidence on social networks using GSS
data document that Americans are not as segregated as
some of the gloomiest estimates have suggested, although
these results motivate the study’s authors to call for insti-
tutions (perhaps those that promote opportunities for face
recognition to develop would function well in this regard)
and new attitudes that assuage the documented tendency
to separate from those who differ on race, politics and re-
ligion (DiPrete, Gelman, McCormick, Teitler & Zheng,
2010).

There are several ideas that are natural to consider
for modifying or extending the FACE-recognition model.
We mention a few of them here without further analy-
sis. In the real world, intergroup dynamics are affected
not by a single shock, but by a sequence of occasional
shocks. These occur when institutions change or other
large-magnitude shifts in the environment take place. For
example, the moves people make are sometimes caused
by changing family structure, changes in school quality,
or job changes. It would therefore seem worthwhile to
investigate whether the large-magnitude effects of recog-
nition memory on end-state integration are attenuated or
accentuated by repeated shocks after specifying a reason-
able stochastic process to model repeated but occasional
shocks.

Another simplification in the FACE-recognition model
that might be relaxed to better map onto real-world group
dynamics is the friend-making process. In fact, the spatial
channels through which the friend-making process un-
folds could be entirely separate from the location choice
decision and subject to its own set of institutional vari-
ables, while preserving the fundamental dependence of
classification of locations on personal lists of friends and
nonfriends. One might replace the binary friend-making
process with a probabilistic spatial structure in which
close-by agents are more likely to become friends. Such
stochastic variants would extend the geographic range of
effects of friend and nonfriend lists beyond immediately
surrounding locations, although the large macro effects
of small local shifts in lists of friends and nonfriends are
already impressive.

A third extension of the FACE-recognition model con-
cerns the question of designing institutions that promote
integration and their often unintended consequences. One
thinks of school busing programs in post-Civil-Rights
America, and the prospects of embedding more specific
geographic and institutional structure in the model to an-
alyze the consequences of introducing new institutions
aimed at modulating levels of inter-group. One might in-
vestigate the degree to which institutions introduced in
the real world, after being introduced in the model, could
produce simulated differences in integration that match
observed differences, say, among regions in the US or

within cities in the American South (e.g., the very dif-
ferent urban geographies of Dallas and Atlanta compared
with that of Memphis and Jacksonville). Deeper differ-
ences in spatial mixing can be observed in countries like
Israel, where cosmopolitan cities such as Haifa and Hadar
have modest amounts of Arab-Jewish mixing in contrast
to nearly all-Jewish cities, such as Lod and Ramle, and
all-Arab cities, such as Nazareth and Shfa Amer.

Finally, FACE-recognition’s positive effects on inte-
gration are likely also to be observable in other macro-
systems, such as markets. The economic relevance of
face-to-face encounters in cultivating near-instantaneous
sympathy and its connections to the functioning of mar-
kets was already discussed by Adam Smith (1759/2008).
Smith can be interpreted as hypothesizing that mar-
kets may fail to function well as they become global-
ized or administered in a way such that transactions be-
come detached from ongoing face-to-face relationships
(Harpham, 2004; Berg & Maital, 2007). Interestingly,
online auction platforms such as eBay seem to function
well only because they institutionalized a procedure to
build reputation of agents, allowing participants to share
personal categorizations of their trade partners as trust-
worthy versus non-trustworthy (Bolton, Katok, & Ock-
enfels, 2004).

6 Interpretation and implications
for institutional design

Social scientists from numerous disciplines too often treat
the Schelling model as an argument that unintended divi-
sions between groups occur almost inevitably (i.e., with-
out animosity between groups as a pre-condition). Ellen
(1998), for example, writes against this pessimistic in-
terpretation of inevitability, describing her finding that
well integrated communities exist and thrive as “running
counter to the popular, and often self-fulfilling, view that
integration is unviable.” For examples of the Schelling
model’s role in the rhetoric of authors espousing this view
of inevitability (which, it is important to note, does not in-
clude Schelling himself), see, for example, the empirical
studies and policy advice contained in those studies cited
in Aydinonat (2007, p. 441).

In light of the inspiring mixes of institutions found
in places with high levels of integration and our model
that demonstrates a simple mechanism (of course, not
the only one) by which this can occur, we believe that
this is premature. As a proof-of-concept demonstration
of what is possible, we can look in environments with
desirable levels of integration to discover social institu-
tions that play a beneficial role in supporting interactions
among heterogeneous types that might be applied else-
where. Based on the FACE-recognition model, we think
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that institutional interventions that promote a moderate
amount of random inter-group mixing can, by the very
simple mechanism of recognition, help facilitate surpris-
ingly large and durable levels of integration. In fact,
the simplicity of the recognition mechanism and what
turns out to be its surprising power to cement durably
integrated communities starting from chance face-to-face
meetings gives us optimism that even modest institutional
and policy changes can provide surprisingly salutary ef-
fects in terms of reducing ethnic segregation.

Private enterprise invests a tremendous amount on
business travel and face-to-face meetings in situations
where standard contract theory would surely suggest
that firms should save money by sending the contracts
straight-away to in-house lawyers rather than cement-
ing relationships with face-to-face contact between the
members of two firms, which provides little if any ac-
tionable legal protection in the event that the other party
fails to perform on a contractual obligation. While this
intense investment in face-to-face contact finds very lit-
tle explanation in the social science literature, the fact
that it is common-practice in business seems to reflect
the belief and the experience of firms that such invest-
ment pays — comparable to the observation that extend-
ing the Schelling model with FACE-recognition makes
agents more happy and the neighborhoods they create
more integrated.

We observe the mismatch between the original
Schelling model’s prediction of absolute segregation and
the reality of many different levels of integration and seg-
regation as an important motivation for new models of
segregation that better accord with heterogeneous seg-
regation empirics. This raises the question of how the
model could be changed to account for social outcomes
observed in the world. The cognitive architecture that
uses recognition to accomplish so many important infer-
ential tasks also solves important tasks of social coor-
dination across group-type. That is our claim, and we
think the FACE-recognition model clearly demonstrates
a mechanism by which this can occur.

There is a point of view that concerns the more gen-
eral methodological issue of models and their relation-
ship with the complexity of the real world. One might
say that Schelling’s concern was so much to model reality
as to illustrate the possibility of surprising divergence be-
tween (micro-) intentions and (macro-) outcomes. Even
as a pure thought experiment, we believe that the FACE-
recognition model says something interesting and rele-
vant to multiple literatures in which the Schelling model
continues to loom large. Whereas most modifications of
the classic Schelling model proposed in this literature re-
produce the apparent robustness of Schelling’s conclu-
sions (i.e., from virtually all starting conditions and with
almost all parameter settings, dramatically large levels of

segregation result), the introduction of FACE-recognition
shows that chance inter-group mixing can be durable and
resilient in the face of exogenous shocks. If individual
agents are endowed with just enough memory to encode
face recognition for one period, then the divergence be-
tween intentions and outcomes is dramatically attenuated.
This result intrigues us especially in terms of institutional
design. It suggests that institutions not explicitly de-
signed to facilitate cross-group face-to-face contacts can
nevertheless have large effects on observed levels of inte-
grations. For example, the soccer stadium hosting the eth-
nically integrated team of Marseille, France, is regarded
as a model of successful inter-ethnic and religious comity.
Similarly, educational institutions that provide a space
for cross-ethnic face-to-face contacts appear to influence
the urban geography of US college towns with dramati-
cally higher-than-average levels of integration over mul-
tiple decades. Such institutions coordinate patterns of
movement through physical space in a way that provides
a modest increase in one’s chances of randomly bumping
into other-type agents, coded in memory as happy, safe,
or satisfying experiences. The mechanism that we have
identified provides theoretical justification for attributing
to these institutions some portion of the salutary effects
of ordinary human contact that helps bring us together
rather than drive us apart.
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