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Abstract

The gambler’s fallacy and the hot hand belief have been classified as two exemplars of human misperceptions of
random sequential events. This article examines the times of pattern occurrences where a fair or biased coin is tossed
repeatedly. We demonstrate that, due to different pattern composition, two different statistics (mean time and waiting
time) can arise from the same independent Bernoulli trials. When the coin is fair, the mean time is equal for all patterns
of the same length but the waiting time is the longest for streak patterns. When the coin is biased, both mean time
and waiting time change more rapidly with the probability of heads for a streak pattern than for a non-streak pattern.
These facts might provide a new insight for understanding why people view streak patterns as rare and remarkable. The
statistics of waiting time may not justify the prediction by the gambler’s fallacy, but paying attention to streaks in the
hot hand belief appears to be meaningful in detecting the changes in the underlying process.
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1 Introduction

The gambler’s fallacy and the hot hand belief have been
classified as two exemplars of human misperceptions of
random sequential events and widely studied in multi-
ple disciplines such as psychology, sports, behavioral
economics and neuroeconomics (e.g., Camerer, Loewen-
stein, & Prelec, 2005; Gilovich, Griffin, & Kahneman,
2002; Gilovich, Vallone, & Tversky, 1985; Kahneman,
2002; Malkiel, 2003; Rabin, 2002; Rabin & Vayanos,
2010). Often manifested in more intricate forms, these
two phenomena can be demonstrated by independent and
identically distributed Bernoulli trials. Suppose that a fair
coin with equal probabilities of coming up a head (h)
and a tail (t) is tossed repeatedly and the first three out-
comes produce three heads (h, h, h). In predicting the
next outcome, one with the gambler’s fallacy would pre-
dict (h, h, h, t) — a reversal of the streak. In contrast,
one with the hot hand belief would predict (h, h, h, h) —
a continuation of the streak.

The fact that people exhibit two opposing expectations
upon the same past information — negative recency in
the gambler’s fallacy and positive recency in the hot hand
belief — has been the center of attention in the research
on perception of randomness, pattern detection and judg-
ment of uncertainty (for reviews, see, Ayton & Fischer,
2004; Oskarsson, Van Boven, McClelland, & Hastie,
2009). Among existing theories, a prevailing account
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is the representativeness heuristic, which attributes both
the gambler’s fallacy and the hot hand belief to a false
belief of the “law of small numbers” (Gilovich, et al.,
1985; Tversky & Kahneman, 1971). By this account,
people tend to believe that a local sample should resem-
ble the underlying population and chance is perceived as
“a self-correcting process in which a deviation in one di-
rection induces a deviation in the opposite direction to
restore the equilibrium” (Tversky & Kahneman, 1974, p.
1125). Thus, in the gambler’s fallacy, a tail is due to re-
verse a streak of heads. In the hot hand belief, a streak
of successes may indicate the existence of a hot hand by
which the streak tends to be prolonged (see also Tversky
& Gilovich, 1989).

However, the representativeness account has been criti-
cized for its incompleteness and testability (e.g., Ayton &
Fischer, 2004; Falk & Konold, 1997; Gigerenzer, 1996;
Kubovy & Gilden, 1991). Ayton and Fischer (2004) sug-
gest that the gambler’s fallacy arises from the experience
of negative recency in sequences of natural events such
as roulette games, but the hot hand belief arises from the
experience of positive recency in serial fluctuations in hu-
man performance. Similarly, it has been proposed that the
hot hand belief can arise when people evaluate the perfor-
mance of a mutual fund manager rather than the fluctua-
tions of the portfolio (Rabin, 2002; Rabin & Vayanos,
2010), or, the gambler’s luck rather than the outcomes
of a roulette game (Croson & Sundali, 2005; Sundali
& Croson, 2006). Moreover, Burns and Corpus (2004)
show that subjects assume positive recency for forecast-
ing scenarios they rated as “nonrandom” and negative re-
cency for scenarios they rated as “random”. Burns (2004)
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further argues that the hot hand belief is a fast and fru-
gal heuristic to detect changes in the shooting accuracy
of basketball players. This argument is consistent with
the finding of “residual nonstationarity” in Sun (2004), in
which it is suggested that the fluctuations in players’ per-
formance can be obscured by real-time adjustments based
on the detection of a hot hand. For example, after making
several shots in a row, a player might try a more difficult
shot or the opponent players may increase the defense ef-
fort. (For a review on the hot hand study, see Bar-Eli,
Avugos, & Raab, 2006.)

Compared to the representativeness account, the alter-
native interpretations distinguish the hot hand belief from
the gambler’s fallacy by deviations from a random pro-
cess. When the underlying process is truly random (or
statistically impossible to tell apart from independent and
stationary Bernoulli trials), both beliefs are considered
as biases or misperceptions of randomness. In particu-
lar, both beliefs appear to share a common intuition that
streak patterns are “rare” and “remarkable” — a streak
of heads is unlikely to occur if the coin is fair, or, a bas-
ketball player is unlikely to make shots in streaks unless
he or she has a hot hand. However, the independence
assumption of Bernoulli trials states that, for a fair coin,
a streak will occur as often as any other patterns of the
same length in its exact order (i.e., the equiprobability of
“n-grams”, Falk & Konold, 1997, p. 306). Then, what
is so special about streak patterns that people normally
tend to avoid them and only expect them when they feel
“hot”? In the present paper, we show that streak patterns
do possess a set of properties that set them apart from
other patterns, and these properties may provide an alter-
native explanation for the particular role of streak patterns
in people’s perception and judgment of randomness.

We exemplify by comparing two patterns (h, h, h, t)
and (h, h, h, h). When a fair coin is tossed repeat-
edly, both patterns have the same probability of occur-
rence in any four successive trials. However, it takes
on average 16 tosses to encounter the first occurrence of
(h, h, h, t) but 30 tosses to encounter the first occurrence
of (h, h, h, h). In other words, streak pattern (h, h, h, h)
has been “delayed” for its first occurrence. The expected
number of trials required for the first occurrence of a par-
ticular pattern is a statistical property known as “waiting
time”, which can be different among patterns due to dif-
ferent pattern compositions (see Gardner, 1988; Graham,
Knuth, & Patashnik, 1994). While the probability of oc-
currence (or frequency) describes how often a pattern oc-
curs, the waiting time describes when a pattern will occur
from the time at which monitoring begins. Interestingly,
these are different statistical properties and clearly bear
different psychological relevance. For example, for a pas-
senger who is waiting for a bus, when the first bus arrives
probably is more relevant than how often the bus arrives.

It is the goal of this paper to demonstrate a plausible link
between the statistics of pattern times and people’s per-
ception of randomness.

It is important to note that the concept of waiting
time has recently received attention in psychology liter-
ature (Hahn & Warren, 2009; Sun, Tweney, & Wang,
2010a, 2010b). Hahn and Warren (2009) show that, in
a global sequence of moderate length, streak patterns
such as (h, h, h, h) have higher “probabilities of nonoc-
currence” than (h, h, h, t). Base on this result, they argue
that, given people’s limited exposure to the environment
(e.g., the number of coin tosses is limited), mispercep-
tions of randomness such as the gambler’s fallacy might
actually emerge as apt reflections of these environmen-
tal statistics. Sun, Tweney, and Wang (2010a) criticize
Hahn and Warren’s interpretation by clarifying the rela-
tionship between the probability of nonoccurrence and
waiting time. In particular, Sun et al. argue that the proba-
bility of nonoccurrence is a manifestation of waiting time,
which is independent of the length of the global sequence,
and neither statistic would justify the prediction of revert-
ing of a streak by the gambler’s fallacy (also see Sun, et
al., 2010b). Notwithstanding the debate, the argument
of treating waiting time as a part of the environmental
statistics appears to be quite plausible. Given that dif-
ferent statistics can arise from the same process of coin
tossing (or basketball shooting), it is likely that they have
been actually experienced by people and have different
effects on people’s perception of randomness. In the fol-
lowing, we examine these statistics in detail and discuss
their psychological implications.

2 Mean time, waiting time, and
variance of interarrival times

Let us call the occurrence of a pattern an arrival of the pat-
tern when a coin (fair or biased) is tossed repeatedly. We
can define a counting process N (n) , n ≥ 1, where N (n)
denote the number of arrivals of a pattern by the time n
(i.e., by the nth toss). The process has parameters µ and
σ2 as the mean and variance of the time between suc-
cessive arrivals. (A more detailed treatment is provided
in the Appendix. The results presented in this paper are
verified by simulations conducted in the R statistics envi-
ronment and the scripts are available in this issue of the
journal.)

For a particular pattern, its interarrival time T is de-
fined as the number of tosses between any two successive
occurrences of the pattern, and the first arrival time T ∗ is
defined as the number of tosses until the first occurrence
since the beginning of the counting process. The mean
of interarrival times E [T ], hence referred to as “mean
time”, is determined by the individual probabilities of the
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elements in the pattern. Assume a fair coin with equal
probabilities of heads and tails, ph = pt = 1/2,

E [Th,h,h,t] = E [Th,h,h,h] = µ = (ph)−4 = 16. (1)

That is, patterns (h, h, h, t) and (h, h, h, h) have the
same mean time (16 tosses) between successive arrivals.
This is equivalent to the statement that (h, h, h, t) and
(h, h, h, h) have the same probability of occurrence. Re-
gardless of the number of coin tosses, a gambler will en-
counter either pattern equally often. After n tosses, the
expected number of encounters for either pattern is the
same as in

E [N (n)] = (n− 4 + 1) /16. (2)

However, the mean of the first arrival time E [T ∗], the
waiting time, can be different due to the different amount
of “self-overlap” within a particular pattern (see Figure
1). The amount of self-overlap (s) can be defined as the
maximum length of a sub-pattern that has to occur twice
(with or without overlap) to start and finish one occur-
rence of the original pattern. For example, among all
patterns of length 4, pattern (h, h, h, h) has the largest
amount of self-overlap (s = 3), and (h, h, h, t) is non-
overlapping (s = 0). A direct consequence of self-
overlap is that the pattern’s first occurrence will be de-
layed when s > 0. Imagine that one is waiting for an
occurrence of (h, h, h, h) and has already obtained three
heads — a sub-pattern of length 3, (h, h, h) — if the 4th
toss is a tail, the waiting has to start from scratch and the
waiting time spent on the sub-pattern (h, h, h) is wasted.
In contrast, when one is waiting for pattern (h, h, h, t)
and has already obtained three heads, if the 4th toss is a
head, the waiting continues but it still has three heads to
start with. It can be shown that, for a fair coin, among all
patterns of length 4, (h, h, h, h) and (h, h, h, t) have the
longest and shortest waiting times, respectively (also see
Table 1),

E
[
T ∗h,h,h,h

]
= E

[
T ∗h,h,h

]
+ E [Th,h,h,h]

= 14 + 16 = 30 (3)

E
[
T ∗h,h,h,t

]
= E [Th,h,h,t] = 16. (4)

Moreover, it can be shown that waiting time E [T ∗]
is almost perfectly correlated to the variance of interar-
rival times Var (T ) for patterns of the same length (see
Table 1 and Appendix). Intuitively, both E [T ∗] and
Var (T ) are direct consequences of the self-overlapping
property, and the amount of self-overlap in the pattern
determines the minimum distance by which a consecutive
occurrence can follow (i.e., the shortest interarrival time).
While consecutive reoccurrences of (h, h, h, t) have to be

Figure 1: Self-overlap within patterns. Pattern
(h, h, h, h) overlaps with itself at 3 positions when a copy
is shifted to the right end each time by one position, and
pattern (h, h, h, t) has no shifted overlap. Overlapped el-
ements are underlined.
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Table 1: Mean and variance of the first arrival time, and
mean and variance of interarrival times for patterns of
length 4 when a fair coin is tossed repeatedly. Recipro-
cal patterns are listed only once, for example, (h, h, h, t)
is equivalent to (t, t, t, h). For non-overlapping patterns
such as (h, h, h, t), the two pairs of statistics are identical.

Patterns E [T ∗] Var (T ∗) E [T ] Var (T )

(h, h, h, t) 16 144 16 144
(h, h, t, t) 16 144 16 144
(h, t, t, t) 16 144 16 144
(h, t, h, h) 18 210 16 208
(h, h, t, h) 18 210 16 208
(h, t, t, h) 18 210 16 208
(h, t, h, t) 20 276 16 272
(h, h, h, h) 30 734 16 592

completely separated from each other thus more evenly
distributed, consecutive reoccurrences of (h, h, h, h) can
overlap with each other and tend to be clustered (see Fig-
ure 1). As a consequence, among all possible patterns of
length 4, these two patterns have the smallest and largest
variance of interarrival times, respectively:

Var (Th,h,h,t) = 144, SD (Th,h,h,t) = 12;

Var (Th,h,h,h) = 592, SD (Th,h,h,h) = 24.33.

3 Frequency versus delay
In essence, the contrast between mean time and waiting
time lies in the contrast between “frequency” and “de-
lay”. On one hand, the mean time estimates the average
distance between consecutive occurrences and equals to
the inversion of the probability of occurrence, therefore, it
is a measure of frequency. When the coin is fair, patterns
of the same length have the same mean time thus the same
frequency to occur (see Equations 1 and 2). On the other
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hand, waiting time estimates when a pattern will occur
since one starts counting and the time of occurrence is de-
layed on the basis of the pattern’s mean time: Equations
(3) and (4) show that the amount of delay for an over-
lapping pattern (s > 0) equals the waiting time for the
repeating sub-pattern of length s; for a non-overlapping
pattern (s = 0), no delay is incurred and its waiting time
always equals its mean time (also see Table 1).1

If one assumes that people’s perception of random-
ness is shaped by the environment (e.g., Ayton & Fischer,
2004; Lopes & Oden, 1987; Pinker, 1997), it is likely that
people have actually experienced different statistics from
the same process, although they might not be aware of the
exact distinction. The contrast, either between mean time
and waiting time, or between frequency and delay, might
have important implications regarding people’s percep-
tion of sequential patterns, particularly in the gambler’s
fallacy and the hot hand belief. In the following, we first
examine the (ex-ante) perception or expectation of pat-
terns as an integrated sequence, then, the prediction of a
single outcome based on the perception of patterns.

First, due to the largest amount of self-overlap, a streak
pattern is the most delayed pattern for its first occur-
rence, comparing to all other patterns of the same length.
The amount of delay is considerably large even for short
streaks (see Table 1), and it will grow exponentially as
the length of the streak grows. For example, for a streak
of 10 heads in tossing a fair coin, its mean time is 1024
tosses, and its waiting time is 2046 tosses, 1022 tosses
away from the mean time (which is the waiting time for
a streak of 9 heads). Given that the mean time remains
the same for all patterns of the same length, it is possi-
ble that people’s sense of rareness about streak patterns
have stemmed from their experiences of the long waiting
times.

Moreover, the waiting time statistic can manifest itself
in many other forms. One example is the probability of
occurrence at least once — the probability that a partic-
ular pattern occurs at least once when a coin is tossed N
times — which is complementary of the probability of
nonoccurrence — the probability that a particular pattern
will not occur at all in N tosses. The latter probability has
been discussed by Hahn and Warren (2009), and Sun et
al. (2010a) provide an analytical solution to both proba-
bilities. It can be shown that among all patterns of length
4, the streak pattern (h, h, h, h) has the lowest probabil-
ity of occurrence at least once for any N > 4, which
is another consequence of the self-overlapping probabil-

1We have been discussing the case in which individual patterns are
counted separately. When multiple patterns are counted simultaneously,
a statistical property known as “nontransitivity” will arise in which a
pattern with a longer waiting time may occur earlier than a pattern with
a shorter waiting time (Sun, et al., 2010a). However, it can be shown
that streak patterns remain the most delayed patterns in the presence of
nontransitivity.

Figure 2: Probabilities of occurrence at least once for pat-
terns (h, h, h, t) and (h, h, h, h) when a fair coin is tossed
N times.
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ity in the pattern composition (Figure 2 shows the com-
parison between (h, h, h, h) and (h, h, h, t)). This fact
might from another prospective explain why streak pat-
terns are under-represented in people’s perception. That
is, because of its clustering tendency, overlapped reoc-
currences of a streak pattern may be counted only once
or replaced by one count of a longer streak. Such specu-
lation appears to be consistent with the finding in a recent
study by Olivola and Oppenheimer (2008): when partici-
pants recalled the studied binary sequence, the lengths of
streaks imbedded in the original sequence were underes-
timated.

Nevertheless, although the long waiting time might
provide a statistical basis to justify people’s perception
of streak patterns as rare events, it does not justify the
prediction of a single outcome to reverse (or, to avoid)
a streak pattern by the gambler’s fallacy. By the in-
dependence assumption of Bernoulli trials, given that
one has already obtained three heads in a row, the ad-
ditional time to encounter (h, h, h, h) is E [Th,h,h,h], and
the additional time to encounter (h, h, h, t) is E [Th,h,h,t],
which is the same in the case of a fair coin (see Equa-
tions 3 and 4). That is, the statement that the streak
pattern(h, h, h, h)’s first occurrence is “delayed” is an ex-
ante expectation when the pattern is treated as a whole as
one starts tossing the coin from scratch. However, such
statement does not mean that the “streak-reversal” pat-
tern (h, h, h, t)’s first occurrence is “expedited” since its
waiting time cannot be shorter than its mean time. In
other words, although waiting time (or probability of oc-
currence at least once) may depict (h, h, h, t) as the most
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“representative” pattern of the coin tossing process (for
its waiting time is equal to its mean time, or, its occur-
rences are most evenly distributed), it does not predict
that a streak of heads will soon be reversed by a tail, thus,
it does not vindicate the error in the gambler’s fallacy.

Then, what about the prediction of a single outcome to
continue a streak by the hot hand belief? The debate over
the statistical validity of the hot hand belief has lasted
more than twenty years (e.g., Bar-Eli et al., 2006), and it
is not likely to be ended by simply introducing a new set
of statistics. However, pattern time statistics do seem to
support some of the existing theories. In particular, it has
been suggested that the hot hand belief arises when peo-
ple are evaluating human performance, and people pay
particular attention to streak patterns in order to detect a
change in the performance, for example, fluctuations in
the shooting accuracy of basketball players (e.g., Ayton
& Fischer, 2004; Burns, 2004; Burns & Corpus, 2004;
Sun, 2004). By such account, the prediction to continue a
streak is actually valid on the basis of a higher probabil-
ity of a single outcome (e.g., a higher shooting accuracy,
a higher probability of heads in case of a biased coin). It
can be shown that by the measure of either mean time or
waiting time, streak patterns are indeed a good indicator
for detecting the changes in the probability of single out-
comes. Figure 3 shows mean time and waiting time as the
function of the probability of heads (ph), respectively. It
shows that with a small change in ph, both mean time and
waiting time change more rapidly for pattern (h, h, h, h)
than for pattern (h, h, h, t). For example, when ph in-
creases from .5 to .6, E [Th,h,h,h] drops from 16 tosses to

7.7 tosses (∆ = 8.3) and E
[
T ∗h,h,h,h

]
drops more rapidly

from 30 tosses to 16.8 tosses (∆ = 13.2). In contrast,
E [Th,h,h,t] and E

[
T ∗h,h,h,t

]
only drops from 16 tosses

to 11.6 tosses (∆= 4.4) (note that for pattern (h, h, h, t),
its mean time and waiting time are identical at all levels
of ph).

Furthermore, Figure 3 also shows that the mean time
and waiting time depict different pictures regarding the
occurrences of streak pattern (h, h, h, h) at various lev-
els of ph. For example, at ph = .5, (h, h, h, h) and
(h, h, h, t) are indifferent by the measure of mean time
but quite distinguishable by the measure of waiting time,
a fact we have mentioned before. It also shows that
(h, h, h, h) will occur more frequently than (h, h, h, t)
(shorter mean time) as soon as ph > .5, but remains de-
layed (longer waiting time) for its first occurrence until
ph > .7. Then, one may wonder if the mean time and
waiting time have different effects on people’s percep-
tion, or, if people perceive the properties of frequency
and delay differently, how these effects can be integrated
to produce a single response in the subjective preference
over patterns?

Figure 3: Mean time and waiting time as the function
of the probability of heads (ph) for patterns (h, h, h, t)
and (h, h, h, h). To illustrate the difference in detail, the
function is plotted in the range of ph = [0.3, 0.7].
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As mentioned before, waiting time E [T ∗] is in ef-
fect an indicator of the variance of the interarrival times
Var (T ) as both are direct consequences of the inter-
overlapping property of the pattern. From this prospec-
tive, the contrast between frequency (mean time) and
delay (waiting time) actually reflects the contrast be-
tween the mean and variance of the same random vari-
able interarrival times, E [T ] and Var (T ). To evaluate
the combined effect of frequency and delay on people’s
perception, a quantitative measure may be provided by
the mean-variance paradigm in the modern portfolio the-
ory (Markowitz, 1952; Sharpe, 1994) or the coefficient
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of variation in risk perception (Weber, Shafir, & Blais,
2004).2 In this paradigm, to describe the desirability of
an option in the tradeoff between return and risk, a Sharpe
Ratio (Sharpe, 1994) is calculated as the ratio between the
expected return and the variance of the returns. Similarly
for pattern occurrences, we can calculate a “Frequency-
Delay ratio” (100/µσ) to describe the tradeoff between
the frequency of occurrence (1/µ) and the delay (σ),
where µ = E [T ] and σ = SD (T ) are the mean and
standard deviation of interarrival times, respectively, and
the constant 100 is to express the ratio as a percentage.
Analogous to the Sharpe Ratio by which people would
prefer an option with a higher return and a lower risk, the
assumption underlying the Frequency-Delay ratio is that
people would be more willingly to make a prediction on a
pattern with a higher frequency of occurrence and a lower
amount of delay. In other words, a person can possess
both the gambler’s fallacy and the hot hand belief, and
which belief arises would depend on how frequency and
delay are weighted separately and how they are incorpo-
rated. Figure 4 shows the Frequency-Delay ratio at var-
ious levels of ph, where pattern (h, h, h, t) has a higher
ratio when ph < .61, and pattern (h, h, h, h) has a higher
ratio when ph > .62. Described by such ratio, a person
would be more willingly to predict on (h, h, h, t) when
ph < .61, and more willingly to predict on (h, h, h, h)
when ph > .62. That is, “a streak of heads is unlikely to
occur if the coin is fair, and a basketball player is unlikely
to make shots in streaks unless he or she (really) has a hot
hand.”

4 Conclusion

We presented a set of statistics on the time of pattern oc-
currences in Bernoulli trials. In particular, we demon-
strated that, due to the different pattern composition, dif-
ferent statistical properties can arise. The mean time
measures the frequency of pattern occurrences, and the
waiting time measures the amount of delay in pattern
occurrence times. While previous research on percep-
tion of random patterns has focused on the mean time
or the frequency of occurrences (e.g., Budescu, 1987;
Falk & Konold, 1997; Gilovich, et al., 1985; Lopes &
Oden, 1987; Nickerson, 2002; Oskarsson, et al., 2009),
the waiting time and the property of delay have not been
addressed until recently. It is likely that people are not
able to precisely differentiate these statistics. However,
given that these statistics can be observed from the same
process, it is possible that they all have played roles

2It should be noted that although we adopt a paradigm in risk analy-
sis, our intention here is to present a quantitative measure for the com-
bined effect of frequency and delay, and we withhold claims about risk
preferences in the hot hand belief or gambler’s fallacy.

Figure 4: Frequency-Delay ratio as a function of the
probability of a head (ph) for patterns (h, h, h, t) and
(h, h, h, h). To illustrate the difference in detail, the func-
tion is plotted in the range of ph = [0.3, 0.7].
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in shaping people’s perception of random patterns. It
has long been argued that people may have an accurate
sense of randomness but fail to reveal it in their behav-
ior (e.g., Pinker, 1997; for an overview of different opin-
ions, see Rapoport & Budescu, 1992). The distinction
between mean time and waiting time may provide a new
prospective in the studies on people’s perception of ran-
dom events. For instance, the mean time does not differ-
entiate any patterns in the case of tossing a fair coin; if
one assumes people have acquired accurate experiences
from the environment, it is quite possible that people’s
notion of streak patterns as rare events is guided by the
waiting time.

It should be noted that the statistics of pattern times can
manifest themselves in many forms and each manifesta-
tion may receive different interpretations, depending on
the specific assumptions about human perception of se-
quential events and the specific task environment. For ex-
ample, regarding the distinction between frequency and
delay, people may be more sensitive to one property than
to the other; or one property is more important than the
other in different situations. For a passenger waiting for
a bus, if he or she is concerned only with catching the
first bus (or, at least one bus), the waiting time (delay)
is certainly more important. However, if the passenger
is interested in estimating the number of bus arrivals in a
certain period of time, the mean time should be the statis-
tic of choice. Another example is that, if we assume the
actual basketball shooting as tossing a coin with a fixed
probability of heads (as the null hypothesis), the hot hand
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belief would be judged as a fallacy. However, if we as-
sume that the basketball player’s shooting accuracy is ini-
tially unknown and can fluctuate, paying attention to the
occurrence of streaks may actually be an effective way to
detect the change.

Even in simple cases like coin tossing, people’s per-
ception of randomness surely cannot be reduced to a cer-
tain set of statistics. Many other perceptual and cognitive
mechanisms can come into play, such as perception of
proportion and symmetry (Rapoport & Budescu, 1997),
subjective complexity (Falk & Konold, 1997), or, work-
ing memory capacity (Kareev, 1992). Nevertheless, the
statistics of pattern times appear to qualify for a useful
toolset since they provide objective measures in situa-
tions where sequential information is essential. For ex-
ample, people respond differently depending on whether
they view sequences all at once on paper or they actually
observe sequences unfolding over time (e.g., Olivola &
Oppenheimer, 2008). They habitually look for sequen-
tial patterns and their perception of patterns influence
their responses in single experimental trials even when
the sequence of trials is completely independent (Barr-
aclough, Conroy, & Lee, 2004; Huettel, 2006; Huettel,
Mack, & McCarthy, 2002). Moreover, the dissociation
of frequency and delay might have important implica-
tions in studies on people’s intertemporal choices. And it
has been suggested that people are sensitive to time dis-
counting while the behavioral and neural effects of delays
are independent of probability (e.g., Luhmann, Chun, Yi,
Lee, & Wang, 2008; McClure, Laibson, Loewenstein, &
Cohen, 2004). In these aspects, we conjecture that ex-
amination of the pattern time statistics, combined with
empirical experiments, might be a fruitful approach in
future investigations on pattern detection, perception of
randomness, and judgment and decision-making under
uncertainty.
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Appendix. The mean of the first ar-
rival time, and the mean and variance
of interarrival times
Let X1, X2, ... be independent variables with
P {Xi = j} = p (j), j ≥ 0 . In the case of coin
tossing, j = 0, 1, p(0) = ph and p(1) = pt represent
the probabilities of a head and a tail, respectively.
For a pattern (x1, ..., xr) of length r, we say that
an arrival (renewal) occurs at time n, n ≥ r, if
(Xn−r+1, ..., Xn) = (x1, ..., xr). LetN (n) denote
the number of arrivals by time n. N (n) , n ≥ 1, is a
counting process in which the first arrival time has a
different distribution than the other interarrival times.
Then, N (n) , n ≥ 1 is said to be a general or delayed
renewal process with parameters µ and σ2 as the mean
and variance of the time between successive arrivals.

Define indicator variables I (i), I (i) = 1 if there is an
arrival at time i and I (i) = 0 otherwise, i ≥ r. I (i) are
Bernoulli random variables with parameter p, where

p =
∏r

i=1
p (xi). (5)

Then, the mean interarrival time is given by

µ = 1/p, (6)

and the variance of interarrival times is given by

σ2 = p−2 (1− p) + 2p−3
r−1∑

j=1

Cov (I (r) , I (r + j)).

(7)
An overlap index s is defined as the maximum number

of elements at the end of the pattern that can be used as
the beginning part of the next arrival,

s = max {j < r : (ir−j+1, ..., ir) = (i1, ..., ij)} . (8)
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We further define s = 0 when no equality can be found
in Equation (8). Then, s = 0 for (h, h, h, t), s = 2 for
(h, t, h, t), and s = 3 for (h, h, h, h).

Since the first arrival time can have a different distri-
bution, let T denote the interarrival time of the process
when reoccurrences are included, and T ∗ denote the first
arrival time. For pattern (h, h, h, t), r = 4 and s = 0, so
that N (n) , n ≥ 1 is an ordinary renewal process. There-
fore, for a fair coin, ph = pt = 1/2, from Equation (6),

E [Th,h,h,t] = E
[
T ∗h,h,h,t

]
= µ = 1/p = 16.

Since two arrivals of (h, h, h, t) cannot occur within a
distance less than r (r = 4) of each other, it follows that
I (r) I (r + j) = 0 when 1 ≤ j ≤ r − 1, and,

Cov (I (r) , I (r + j))
= −E [I (r)] E [I (r + j)] = −p2.

Assume a fair coin, from Equation (7), we obtain

Var (Th,h,h,t) = Var
(
T ∗h,h,h,t

)

= σ2 = p−2 − (2r − 1) p−1 = 144.

For pattern (h, h, h, h), r = 4 and s = 3, and

T ∗h,h,h,h = T ∗h,h,h + Th,h,h,h, (9)

where T ∗h,h,h,h is the first arrival time for pattern
(h, h, h, h), T ∗h,h,h is the first arrival time for pat-
tern (h, h, h), and Th,h,h,h is the interarrival time for
(h, h, h, h). Since the coin is tossed independently, we
have

E
[
T ∗h,h,h,h

]
= E

[
T ∗h,h,h

]
+ E [Th,h,h,h] . (10)

For a fair coin, from Equation (6), we have

E [Th,h,h,h] = µ = 16.

Then, E
[
T ∗h,h,h,h

]
can be obtained by recursively apply-

ing Equation (10) s times, starting from the shortest non-
overlap pattern (h). That is,

E [Th] = E [T ∗h ] = 1/ph = 2;

E
[
T ∗h,h

]
= E [T ∗h ] + E [Th,h] = 2 + 4 = 6;

...

E
[
T ∗h,h,h,h

]
= 2 + 4 + 8 + 16 = 30.

For the variance of interarrival times, since no two ar-
rivals of (h, h, h, h) can occur within a distance (r−s−1)

of each other, it follows that I (r) I (r + j) = 0 if 1 ≤
j ≤ (r − s− 1). Therefore, from Equation (7), we have

Var (T ) = σ2

= p−2 − (2r − 1) p−1 (11)

+ 2p−3
r−1∑

j=r−s

E [I (r) I (r + j)]

︸ ︷︷ ︸
for overlapped arrivals

.

The overlapped arrivals can happen in the following
ways,

E [I (4) I (5)] = P {h, h, h, h, h} =
1
32

;

E [I (4) I (6)] = P {h, h, h, h, h, h} =
1
64

;

E [I (4) I (7)] = P {h, h, h, h, h, h, h} =
1

128
.

Thus,

Var (T ) = (16)2 − 7(16)

+ 2(16)3
(

1
32

+
1
64

+
1

128

)

= 592.

From Equations (10) and (11), it can be seen the over-
lapped arrivals will extend both the mean of the first ar-
rival time and the variance of interarrival times. Thus,
these two variables are correlated, and both are positively
determined by the overlap index s. The procedure of cal-
culating the variance of the first arrival times is omitted
here.


